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Abstract—There is a substantial body of literature on analyzing
Quality of Experience (QoE) of Video Streaming while there are
few studies on standardizing QoE assessments. One of recent
proposals on standardizing QoE of video streaming is video
Mean Opinion Score (vMOS), which can model QoE of video
streaming in 5 discrete grades. However, there are few studies
on quantifying vMOS and investigating the relation between
vMOS and other Quality of Service (QoS) parameters. In this
paper, we address this concern by proposing a data-driven QoE
analysis framework on video streaming QoE data. Moreover, we
conduct extensive experiments on realistic dataset and verify the
effectiveness of our proposed model. Our results show that vMOS
is essentially affected by many QoS parameters such as initial
buffering latency, stalling ratio and stalling times. Interestingly,
we have found that a small set of QoS parameters play an
important role in determining vMOS.

Index Terms—Quality of Service (QoS), Quality of Experience
(QoE), Video Streaming, Mobile Networks

I. INTRODUCTION

It is predicted in [1] that the traffic caused by video

streaming will occupy more than 77% of all consumer Internet

traffic by 2021, among which mobile video traffic will be

more than 55% of all video traffic. The growing demands

on video streaming over mobile networks inevitably lead to

the challenges in optimizing network resource in order to

improve the user perceptual experience. Many previous works

mainly focused on improving quality of service (QoS) of

video streaming over mobile networks. Typical QoS measures

include throughput, bandwidth, outage, jitter and delay [2].

However, most of these QoS metrics failed to characterize

user perceptual experience, which is also called quality of

experience (QoE). In fact, it is more crucial to conduct video

quality assessment from QoE than that from QoS [3], [4]. This

is because (i) enhancing QoS does not directly improve QoE

[5]; (ii) only improving QoS sometimes significantly increases

operating expenditure, consequently decreasing the profit of

service providers [6].

Therefore, QoE improvement of video streaming over mo-

bile networks has received extensive attention recently. In

particular, the work of [7] investigated QoE-driven cross-layer

optimization for video transmission in wireless networks. Ra-

mamurthi et al. [8] proposed a resource management scheme

at network core in wireless networks to improve video QoE.

The work of [9] presented a large-scale measurement-based

study on the effects of Internet path selection in video QoE

and offers several QoE enhancement schemes.

However, the prerequisite of QoE improvement of video

streaming is to quantify QoE appropriately. Video QoE as-

sessment schemes can be generally categorized into subjec-

tive tests, objective assessments and data-driven analysis [3].

Compared with subjective tests and objective assessments,

data-driven analysis is more promising due to the availability

of massive data sets and the accuracy of characterizing user

perception while overcoming the drawbacks of subjective tests

and objective assessments (such as high cost and insufficient

human visual system knowledge). In particular, the work of [6]

proposed a data-driven model to quantify the metrics affecting

video QoE. Jiang et al. [10] improved video QoE by exploiting

data-driven QoE prediction. The work of [11] improved the

video bitrate adaptation based on data-driven QoE prediction.

In addition to the above efforts, there are also other solutions

on standardizing QoE. One of recent video QoE measure-

ment standards is U-vMOS (User/Unified/Ubiquitous video

Mean Opinion Score)1, which was proposed by Huawei in

2016 [12]. The score of vMOS is essentially established

according to Mean Opinion Score (MOS) standardized by

International Telecommunication Union (ITU) [13], in which

discrete grades from 1 to 5 represent bad, poor, fair, good

and excellent, respectively. It is shown in [12] that vMOS

at video playback startup is mainly determined by three

key factors: video quality, initial buffering delay and video

freezing duration, each of which is also affected by multiple

QoS variables. Recently, Pan et al. [14] investigated machine

learning based bitrate estimation on YouTube video streaming

based on Huawei’s vMOS assessment model. However, they

just gave a mathematical expression of vMOS based on their

subjective estimations. To the best of our knowledge, there is

no data-driven QoE analysis on vMOS.

Therefore, this paper aims to conduct data-driven QoE

analysis on vMOS. In particular, we obtain a realistic dataset

on video QoE based on SpeedVideo Global Operating Plat-

form (SVGOP) established by Huawei. This dataset contains

88,526 samples and 15 features. This dataset has the following

1For simplicity, we use vMOS to represent U-vMOS throughout this paper.
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Fig. 1. Our method used in this paper

unique characteristics: 1) heterogeneous data types, 2) posi-

tive/negative correlations and 3) dependence of features; these

characteristics result in the difficulties in analyzing video QoE

data.

To address the above concerns, we propose a QoE data-

driven analysis framework. In particular, our analysis frame-

work consists of four components: feature categorization,

correlation analysis, coefficient influence analysis and weight

determining. We then conduct extensive experiments on the

dataset by using our proposed framework and obtain the exact

expression of vMOS, which heavily depends on multiple QoS

parameters. Our results also offer many useful insights in

improving video QoE.

The remainder of this paper is organized as follows. We

present the overview of our method in Section II. Section III

presents the experimental results. Finally, we conclude this

paper in Section IV.

II. QOE ANALYSIS FRAMEWORK

Fig. 1 shows the flow chart of our proposed method. In par-

ticular, we first categorize various QoS parameters into three

types. We then apply Pearson correlation analysis to determine

the positive and negative correlations of these parameters. We

next employ multiple regression to determine the influence of

coefficients and obtain the weights of these coefficients by

using independent weighting method.

The categorization of the QoS parameters will be given in

Section III since it is highly related to the dataset. In this

section, we mainly describe correlation analysis in Section

II-A, coefficient influence analysis in Section II-B and weight

analysis in Section II-C.
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Fig. 2. Correlation standard

A. Correlation Analysis

Correlation analysis is used to analyze the linear correlation

between two variables. In this paper, we use Pearson corre-

lation coefficient as the measure of the correlation between

two variables. In particular, we define a Pearson correlation

coefficient (rxy)i between two variables xi and yj as follows,

(rxy)ij =

∑T

t=1
(xti − x̄i) · (ytj − ȳj)√∑T

t=1
(xti − x̄i)2 ·

√∑T

t=1
(ytj − ȳj)2

, (1)

where T is the sample size, x = {xt1, xt2, ..., xtm} and

y = {yt1, yt2, ..., ytn} represent two feature sets with the same

sample size, x̄i =
∑T

t=1
xti/T and ȳj =

∑T

t=1
ytj/T .

The value of Pearson correlation coefficient (rxy)ij is in a

range of [−1, 1] as shown in Fig. 2. In particular, a value of

1 means the maximum positive (i.e., the total positive linear

correlation between two variables), −1 means the maximum

negative (i.e., total negative linear correlation) and 0 means

no linear correlation. Note that when (rxy)ij is quite close to

0, it may probably lead to the confused positive and negative

relevance as shown in [15]. In this situation, we need some

interventions on choosing indicators.

After determining the positive or negative correlation coef-

ficients of features, we need to normalize the features since

they are in different units. In particular, we make a conversion

from the absolute value to the relative value. In particular,

we choose the MAX-MIN scaling method to normalize the

positive and negative values. More specifically, we have

• Positive values:

uij =
xij −min(xij)

max(xij)−min(xij)
, (2)

• Negative values:

uij =
max(xij)− xij

max(xij)−min(xij)
, (3)

where xij represents the original value, uij represents the

value after normalization, min(·) is the minimum value and

max(·) is the maximum value.

B. Coefficient Influence Analysis

We then conduct multiple regression to analyze the rela-

tionship between two or more independent variables and one

dependent variable. In particular, we conduct the multiple

regression analysis on the QoS features and the scoring factors

(i.e., SQuality, SLoading and SStalling). This analysis is

implied by that fact that vMOS is a function of the above 3

key factors, i.e., vMOS = f(SQuality, SLoading, SStalling)
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TABLE I
CATEGORIZATION OF FEATURES

Types Features Variables

Video
Quality

Average rate of playing phase (kbps) x1

Video total download (DL) rate (kbps) x2

Video bitrate (kbps) x3

Initial
Loading

Initial max DL rate (kbps) x4

End-to-End (E2E) round-trip time (RTT) (ms) x5

Initial buffering latency (ms) x6

Video Initial buffer download (byte) x7

Stalling

Playing time(ms) x8

Playing total duration x9

Stalling times x10

Stalling ratio x11

[12]. We then give a general expression of the multiple

regression equation as follows,

yi = β0 + β1x1 + β2x2 + ...+ βmxm, (4)

which yi refers to one of the scoring factors such asvMOS,

SQuality, SLoading and SStalling, xi represents each of QoS

features, β0 is the offset, βi is the corresponding regression

coefficient.

In order to assess the accuracy (or fitting) of regression,

we use the root mean square error (R2), which is defined as

follows,

R2 =

√√√√ 1

n

n∑
j=1

(yj − ŷj)2, (5)

where yj is the dependent variable and ŷi is the predicated

value. In practice, the regression fits successfully only when

the level of significance is less than 0.005 [15].

C. Weight Determining

After obtaining coefficients of QoS parameters, we need to

evaluate the importance of each QoS parameter. In particu-

lar, we use independent weighting method to determine the

weights of coefficients [16].

We denote the weight of a coefficient βi by wi, which can

be calculated by the following equation,

wi =
ζi∑m

i=1
ζi
, (6)

where ζi can be calculated by

ζi =

√
βi∑m

i=1
βi

. (7)

III. EXPERIMENT RESULTS

In this section, we conduct the analysis on the sample

dataset SpeedVideo Global Operating Platform (SVGOP) es-

tablished by Huawei2; SVGOP is a specific application of

vMOS in mobile networks throughout the world. In particular,

the dataset contains 88,526 samples with 11 features (i.e.,

QoS parameters) and 4 scoring factors. We first categorize the

features in Section III-A, and then conduct correlation analysis

2http://speedvideo.huawei.com/

TABLE II
CORRELATION COEFFICIENTS

Types Features Values Pos/Neg Chosen

Video
Quality

Average Rate of playing phase -0.0104 - +

Video total DL rate -0.028 - +
Video bitrate 0.8709 + +

Initial
Loading

Initial Max DL rate 0.6164 + +
E2E RTT -0.5550 - -
Initial buffering latency -0.8866 - -
Video initial buffer download 0.2138 + +

Stalling

Playing time 0.9066 + +
Playing total duration 0.0371 + +
Stalling times -0.9334 - -
Stalling ratio -0.3371 - -

in Section III-B. Next, Section III-C presents the multiple

regression results. Finally, we determine the weights based

on independent weighting method in Section III-D.

A. Categorization of features

It is shown in [12] that vMOS is a function of SQuality,

SLoading and SStalling; this implies that we should cate-

gorize the features into three types: 1) Video Quality related

features, 2) Initial Loading related features, 3) Stalling related

features. Therefore, we categorize 11 features into 3 types as

shown in Table I. We denote each of these 11 features by

variable xi (i = 1 to 11). In addition, we also denote the

scoring factors vMOS, SQuality, SLoading and SStalling by

y1, y2, y3 and y4, respectively.

B. Correlation Analysis

We then conduct Pearson correlation analysis on these

features. In particular, we calculate the correlation coefficients

according to Eq. (1) and obtain the values as listed in Table

II.

Let us first analyze the first type of features. As shown

in Table II, we can see that the coefficient of Video bitrate

is 0.8709, which is relatively close to 1 (i.e., the maximum

positive), implying that Video bitrate is quite correlated with

SQuality (i.e., y2). However, Table II also show that Average

rate of playing phase and Video total DL rate have the values

of -0.0104 and -0.028, respectively. These two values are quite

close to 0. In this case, we need to take some interventions on

the indicators of the coefficients. According to the guidance

given in [15], we choose positive indicators for both Average

rate of playing phase and Video total DL rate (see the plus

symbols in bold fonts in Table II).

Regarding to the second type (i.e., Initial Loading), it is

shown in Table II that both Initial Max DL rate and Video

initial buffer download are positively correlated to SLoading
(i.e., y3) while both E2E RTT and Initial buffering latency

are negatively correlated to SLoading. Among them, the

coefficient of Initial buffering latency is -0.8866 (i.e., the

maximum absolute value), implying that it strongly affects

QoE in terms of Initial Loading.

We next analyze the third type of features. Table II shows

that Stalling times is strongly negatively correlated with

SStalling (i.e., -0.9334), implying that it has a strong influence

1117



TABLE III
CORRELATION COEFFICIENT WITH VMOS

SQuality SLoading SStalling

vMOS 0.0328 0.8131 0.9320

on QoE in terms of stalling. Besides, we can see from Table

II that Playing total duration has a less influence on QoE (i.e.,

0.0371). This result implies that users may be more concerned

with Stalling times than Playing total duration.

Finally, we conduct correlation analysis on vMOS and

the three scoring factors SQuality, SLoading and SStalling.

Table III shows the results. It is shown in Table III that all the

three factors are positively correlated to vMOS. In contrast

to SQuality and SLoading, SStalling is more dominant in

users QoE since it has the maximum positive value 0.9320

(i.e., quite close to 1).

C. Multiple Regression Analysis

We next conduct multiple regression analysis. In particular,

we give the regression equation on 11 features as follows,

y1 = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6

+β7x7 + β8x8 + β9x9 + β10x10 + β11x11, (8)

where xi (i = 1 to 11) corresponds to each of 11 features as

given in Table I and βi is the regression coefficient.

Table IV lists the regression results, where “Coeff” stands

for coefficient. Note that we assess the accuracy of the multiple

regression model by the coefficient of determination (R2). In

practice, we require R2 > 0.8 so that the regression fits suc-

cessfully. Our multiple regression analysis is also conducted

according to the three types of features (see our categorizations

in Section III-A).

It is shown in Table IV that the first group of multiple regres-

sion results has the accuracy with R2 = 0.871, implying that

the regression model fits well. Besides, Table IV also shows

that the coefficient of determination for the second group of

regression results is R2 = 0.895 (i.e., the regression model

fits). Among 4 features in this group, the coefficient of Initial

buffering latency is -2.263 (i.e., the maximum absolute value);

it indicates that Initial buffering latency plays an important role

in QoE. Similarly, the regression in the third group also fits

successfully with the coefficient of determination R2 = 0.906.

One thing to note that the coefficient of Play time is 0. This

is because the significant level is 0.014 (i.e., > 0.005) during

the regression. Thus, we ignore it in the regression according

to [15]. Moreover, the coefficient of Stalling times is -1.234,

implying Stalling times plays an important role in QoE; it

confirms with our aforementioned observation in Section III-B.

Finally, we conduct the regression on vMOS and SQuality,

SLoading and SStalling together and obtain the coefficients

as shown in Table V.

As shown in Table V, the value R2 = 0.977 implies that the

regression fits well. Besides, Stalling has the largest coefficient

(i.e., 0.710) compared with Video Quality and Initial Loading;

this indicates that Stalling plays an important role in vMOS.

TABLE IV
REGRESSION COEFFICIENTS AND MODEL PRECISION

Type Feature Coeff Value R2

Video Quality
Average Rate of playing
phase

β1 0.943
0.871

Video total DL rate β2 1.113
Video bitrate β3 1.003

Initial Loading

Initial Max DL rate β4 0.294

0.895
E2E RTT β5 -0.217
Initial buffering latency β6 -2.263
Video initial buffer download β7 0.214

Stalling

Playing time β8 0.001

0.906
Playing total duration β9 0.006
Stalling times β10 -1.234
Stalling ratio β11 0.906

TABLE V
COEFFICIENTS AND MODEL PRECISION

Video Quality Initial Loading Stalling R2

Value 0.002 0.471 0.710 0.977

Integrating the two stages of multiple regressions together,

we finally obtain the regression equation as follows,

y1 = 0.8127 + 0.0019 · x1 + 0.0022 · x2 + 0.0020 · x3

+0.1385 · x4 − 0.1022 · x5 − 1.0659 · x6 + 0.1215 · x7

+0.0043 · x9 − 0.8761 · x10 + 0.6433 · x11. (9)

0 1 2 3 4 5 6 7 8 9

x 10
4
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−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

E
rr

or
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Fig. 3. Residual Error Plot

We use the residual plots to evaluate the accuracy of the

regression model. Fig. 3 shows the residual plots. We can see

from Fig. 3 that the fitting rate is 98.18% under the confidence

interval of 99%, implying that the regression fits.

Furthermore, we use t-statistics to assess the accuracy of

our regression. Table VI presents the t-statistic and standard

error values of regression coefficients, where the t-statistic

indicates the statistical significance of the relationship between

dependent and independent parameters. We can see from Table

VI that our regression fits well.

D. Weight Determining

After obtaining the coefficients of the features by using

multiple regression method, we then evaluate the importance
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TABLE VI
t-STATISTIC AND STANDARD ERROR OF REGRESSION COEFFICIENTS

Feature t-statistics Standard Error

Average rate of playing phase 0.270 0.029
Video total DL rate 13.547 0.030
Video bitrate -5.308 0.001

Initial Max DL rate -494 0.002
E2E RTT 6.664 0.001
Initial buffering latency 7.249 0.007
Video initial buffer download 16.256 0.013

Playing total duration 0.521 0.002
Stalling times -243.711 0.005
Stalling ratio 11.922 0.015

of the features. In particular, we use the independent weighting

method [16] to calculate the weight of each feature. Table VII

lists the weights as well as the rankings of these features.

TABLE VII
WEIGHTS AND RANKING

Features Initial Weights Ranking

Average rate of playing phase 0.0108 10
Video total DL rate 0.0118 8
Video bitrate 0.0112 9

Initial Max DL rate 0.0928 4
E2E RTT 0.0797 6
Initial buffering latency 0.2574 1

Video initial buffer download 0.0869 5

Playing total duration 0.0163 7
Stalling times 0.2333 2
Stalling ratio 0.2000 3

Table VII presents the rankings of all the features. We can

see from Table VII that Initial buffering latency, stalling times

and stalling ratio rank higher than other features, implying

that they play a dominant role in vMOS. In particular, the

weights of the three factors occupy 69.01% while other 6

factors occupy another 30.99%.

E. Result analysis

Table VII shows that vMOS is mainly affected by Initial

buffering latency, Stalling times and Stalling ratio. We next

investigate the influence of them on vMOS based on statistic

analysis of the original dataset.

Fig. 4 plots vMOS versus the average of Initial buffering

latency. In particular, we first categorize the samples into 5

groups according to different scales of vMOS (i.e., vMOS =
1, 2, 3, 4, 5) and then calculate the average value of each group,

which is represented by a histogram as shown in Fig. 4.

Besides, the bar diagram below shows the proportion of each

group to the number of all the samples (in percentage). For

example, we can see that the total number of samples with

vMOS > 3 counts for nearly 96% over the number of all the

samples, implying that most of samples are “good” to users.

Each dot in the red curve in Fig. 4 represents the average

value of Initial buffering latency in each group. It is shown

in Fig. 4 that there is a significant increment of Initial

buffering latency when vMOS is decreased; this implies that

vMOS decreases significantly when Initial buffering latency

is increased. For example, when Initial buffering latency is

vMOS group
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Fig. 4. vMOS versus Initial buffering latency

increased to greater than 3954 ms, vMOS decreases from

3 to 2 (i.e., from “fair” to “poor”); the user QoE decreases

significantly.

Stalling times
vM

O
S

Pe
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en
ta

ge

Fig. 5. vMOS versus Stalling times

We next investigate the influence of Stalling times on

vMOS. Fig. 5 plots the results of vMOS versus Stalling

times. In particular, we categorize the samples into 7 groups

according to different values of Stalling times (i.e., 1, 2, 3, 4,

5, 6, 7-10). We then calculate the average value of vMOS of

each group, which is shown as the histogram. Besides, Fig.

5 also plots the proportion of each group to the number of

all the samples (in percentage), where a blue dot represents

the percentage value of each group. We can see from Fig. 5

that the average value of vMOS in the group with Stalling

times = 1 is 2.86, which is the highest value among all

the groups. Moreover, the average value of vMOS drops

significantly with the increased Stalling times. This implies

that users cannot tolerate too many times of stalling. For

example, a small proportion of samples falls into the group

with Stalling times 7-10, implying that users felt extremely

annoying with the number number of Stalling times. In fact,

we have observed from Fig. 5 that there is a significant drop in

terms of the proportion when Stalling times = 2 though there is

no significant increment or decrease when Stalling times > 2.

This may imply that there may exist a threshold on Stalling

times. The investigation on the threshold on Stalling times will

be left as one of our future works.

Fig. 6 plots the results on vMOS against Stalling ratio,

in which we categorize samples into 5 groups according to

different scales of vMOS (i.e., vMOS = 1, 2, 3, 4, 5). It is

worth mentioning that we only consider the data samples with

Stalling ratio ≥ 1 and ignore those with Stalling ratio = 0 (i.e.,
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Fig. 6. vMOS versus Stalling ratio

no stalling); this analysis is different from the categorization

in Fig. 4 that considers all the samples. The histogram in Fig.

6 represents the average Stalling ratio in different groups and

each dot in the red curve represents the percentage of each

group. We can see from Fig. 6 that there is a significant

increment on Stalling ratio when vMOS is decreased; this

implies that Stalling ratio is negatively correlated with vMOS.

Remark 1: In summary, we can see from Fig. 4, Fig. 5

and Fig. 6 that Initial buffering latency, Stalling times and

Stalling ratio can significantly affect vMOS. In particular,

Initial buffering latency, Stalling times and Stalling ratio are

negatively correlated with vMOS.

This result essentially offers us some useful insights in

improving video QoE. For example, we may focus on opti-

mizing the network resource to reduce Initial buffering latency,

Stalling times and Stalling ratio so that we can significantly

improve the video QoE while maintaining relatively low op-

erating expenditure. However, it is not an easy task to achieve

this goal because the enhancement of these QoS parameters is

also involved with many other technologies, such as cross-

layer optimization and distributed resource allocation [10],

[17], [18]. For example, we can distribute the most popular

videos at the server close to users so that we can significantly

reduce the initial buffering latency. However, to determine the

popularity of video streaming is challenging since it requires

the extensive efforts in analyzing the massive video data [19].

Moreover, it is also difficult to identify the QoS bottlenecks

since they are often affected by many factors. For example,

video stalling is essentially caused by many factors, such as

network congestion, network failure, device mobility and radio

spectrum scarcity. There is a challenge in identify the causality

of stalling. In the future, we may apply data-driven approach to

identify the reason behind video stalling according to different

scenarios.

IV. CONCLUSION

In this paper, we conduct a data-driven analysis on video

Mean Opinion Score (vMOS), which is an important measure

of user quality of experience of video streaming. In particular,

our study is based on a realistic dataset consisting of 88,526

samples and 15 features. This dataset has the characteristics

such as heterogeneity of data types, positive and negative

correlation of features and dependence of features; they result

in the difficulties in analyzing the data. In order to address

these challenges, we propose a data-driven analysis frame-

work, which can effectively analyze vMOS and investigate

the relation between vMOS and other QoS parameters. In

particular, we have the following major findings:

• vMOS is affected by multiple QoS parameters together.

In particular, we have found that vMOS is essentially

affected by 11 QoS parameters.

• Small set of QoS parameters dominates. Interestingly, we

have found that a small set of QoS parameters has the

stronger influence on vMOS than other QoS parameters.

For example, the weights of Initial buffering latency,

Stalling times and Stalling ratio occupy 69.01% while

other 6 parameters only occupy another 30.99%.

Our results have paved the ground for the improvement

of video streaming QoE in the future. For example, we may

integrate cross-layer optimization and distributed resource al-

location schemes together to mitigate the key QoS bottlenecks

so as to improve video streaming QoE.
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