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Abstract: Extensive attention has been given to the use of cognitive radio technology in underwater
acoustic networks since the acoustic spectrum became scarce due to the proliferation of human aquatic
activities. Most of the recent studies on underwater cognitive acoustic networks (UCANs) mainly
focus on spectrum management or protocol design. Few efforts have addressed the quality-of-service
(QoS) of UCANs. In UCANs, secondary users (SUs) have lower priority to use acoustic spectrum than
primary users (PUs) with higher priority to access spectrum. As a result, the QoS of SUs is difficult
to ensure in UCANs. This paper proposes an analytical model to investigate the link connectivity
and the probability of coverage of SUs in UCANs. In particular, this model takes both topological
connectivity and spectrum availability into account, though spectrum availability has been ignored
in most recent studies. We conduct extensive simulations to evaluate the effectiveness and the
accuracy of our proposed model. Simulation results show that our proposed model is quite accurate.
Besides, our results also imply that the link connectivity and the probability of coverage of SUs
heavily depend on both the underwater acoustic channel conditions and the activities of PUs.
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1. Introduction

There is a growing interest in exploring the underwater environment due to a diversity of
underwater applications, including ocean environment monitoring, offshore structural health monitoring,
mine reconnaissance, distributed tactical surveillance, target tracking, shipping safety, and fish farm
monitoring [1–3]. A key technology to enable various underwater monitoring applications is underwater
sensor networks (USNs), which can be deployed in various underwater environments such as reservoirs,
lakes, rivers, and oceans. Due to the high attenuation of electromagnetic waves in underwater environments,
acoustic communications are typically used in USNs.

However, the underwater acoustic spectrum is becoming a scarce resource for the following
reasons: (1) the high competition for acoustic spectrum between different users due to the proliferation
of man-made underwater acoustic systems, including sonars, acoustic sensors, and unmanned
underwater vehicles [4]; (2) the co-existence of man-made acoustic systems and natural acoustic systems
(e.g., marine animals like whales, dolphins, and sea lions) [1]. It is worth mentioning that we often
ignore the interference caused by man-made acoustic systems to marine animals that may use the
same frequencies as the human-made acoustic systems. Therefore, it is necessary to solve the spectrum
scarcity problem in an environmentally-friendly and spectrum-efficient way.

Cognitive acoustic communications are one of the most promising solutions to the acoustic
spectrum scarcity problem. We name such underwater cognitive acoustic sensor networks as UCANs.
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In UCANs, there are two types of acoustic spectrum users: primary users (PUs) and secondary users
(SUs). PUs (including both artificial and natural acoustic systems) have the higher priority to use
the acoustic spectrum. SUs (usually only include artificial acoustic systems) have a lower priority
to use acoustic spectrum only when the acoustic spectrum is idle or their communications do not
hamper the communications of PUs; the awareness of the existence of PUs can be achieved by using
spectrum-detecting technology [5]. In fact, cognitive radio technology has been well investigated in
terrestrial wireless networks. However, underwater acoustic communications are significantly different
from terrestrial wireless communication systems due to the unique features of underwater acoustic
channels (e.g., frequency-dependent attenuation and long propagation delay). Therefore, UCANs bring
new research challenges in investigating cognitive radio technology in underwater environments.

Cognitive acoustic communications have recently received substantial attention. Luo et al. [1] summarized
the research challenges in underwater cognitive acoustic networks. A dynamic spectrum-borrowing algorithm
was proposed in [6]. Most recently, a receiver-initiated spectrum management system for underwater acoustic
networks was developed in [7]. However, few studies focus on the quality-of-service (QoS) of SUs in UCANs.

Essentially, SUs are spectrum-constrained in UCANs compared with PUs who have a greater
chance to access acoustic spectrum than SUs. Therefore, it is more difficult to guarantee the QoS
of SUs than that of PUs. One of the most important QoS metrics is the link connectivity and the
coverage probability; the former concerns the possibility of whether a pair of nodes can establish a
communication link, and the latter concerns the probability that a user is able to achieve a certain
threshold signal-to-noise ratio (SNR). To the best of our knowledge, there is no study on the link connectivity
and coverage probability of SUs in underwater cognitive acoustic networks.

The main goal of this paper is to investigate the link connectivity and coverage of SUs in UCANs.
It is non-trivial to analyze the link connectivity and the coverage probability of SUs because of the
influence of various ambient factors caused by the complicated underwater acoustic channel and the
activities of PUs. The major research contributions can be summarized as follows.

• We develop a novel analytical model to investigate the link connectivity and the coverage
probability of SUs in UCANs. We find that the link connectivity and coverage of SUs depends on
both the spectrum availability and the topological connectivity, while the spectrum availability
has been ignored in most existing works.

• We conduct extensive simulations to verify the accuracy of our proposed model. The simulation
results match the analytical results, implying that our proposed model is fairly accurate.

• We observe that the probability of connectivity and the probability of coverage are affected by
acoustic signal frequency, various ambient factors (spreading factor and wind speed), and the
activity of PUs. Our results also offer some useful insights in designing QoS-aware UCANs.

The rest of this paper is organized as follows. We summarize related works in Section 2. Section 3
presents the system model of UCANs. We analyze the link connectivity and the probability of coverage
of SUs in UCANs in Section 4. Section 5 gives the simulation results, considering various factors.
Finally, we conclude the paper in Section 6.

2. Related Works

There is a growth of activities exploring aquatic environments such as ponds, lakes, rivers, and oceans.
An underwater sensor network (USN) is an important technology enabling us to monitor various
underwater environments [8–13]. USNs consist of sensor nodes that are connected through wired or
wireless manners. Compared with wired networks, wireless connection of sensor nodes can greatly reduce
the deployment cost and offer the flexibility to different environments [14]. Due to the high attenuation of
EM waves in underwater environments, acoustic communications are more scalable in various aquatic
environments due to the high penetration of acoustic signals and the long communication range.

There is a growing interest in investigating cognitive radio technology in UASNs since the
acoustic spectrum has become a scarce resource due to the proliferation of human aquatic activities.



Sensors 2017, 17, 2839 3 of 15

Baldo et al. proposed a channel allocation mechanism to efficiently manage acoustic spectrum in
UASNs in [15]. A spectrum signaling approach was proposed for distributed channel allocation for the
underwater acoustic networks in [16]. Bicen et al. proposed a dynamic spectrum sharing mechanism
in cognitive radio (in terrestrial wireless networks) in underwater acoustic networks in [17]. In [1],
research challenges in applying cognitive radio technology in UASNs are summarized. Meanwhile,
a spectrum management mechansism with the integration of physical layer schemes and Media
Access Control (MAC) layer schemes was proposed in [4]. Moreover, Wang et al. proposed a dynamic
spectrum borrowing algorithm in [6]. In [18], a novel statistical power adaptation over multiple-input
and multiple-output (MIMO) generalized frequency division multiplexing (GFDM) was proposed for
underwater acoustic networks. Luo et al. developed a receiver-initiated spectrum management system
for underwater acoustic networks in [7]. In [5], a spectrum detecting scheme was developed to avoid
the interference to PUs (especially for marine animals like dolphins).

However, few studies have concentrated on quality-of-service (QoS) in cognitive acoustic
underwater networks. Since PUs have higher priority to access acoustic spectrum than SUs, the QoS
of PUs is often guaranteed. In contrast, SUs are spectrum-constrained. Therefore, the QoS of SUs
is difficult to ensure, which nevertheless has been ignored in most of studies on cognitive acoustic
underwater networks. Therefore, the goal of this paper is to investigate two of the most important
QoS metrics—the link connectivity and the probability of coverage.

3. System Model

Herein, we first give the problem definition in Section 3.1. Then, we introduce the network model
in Section 3.2, and the underwater channel model in Section 3.3.

3.1. Problem Definition

Figure 1 presents an example of UCANs, in which primary users (PUs) denoted by red circles can
be natural acoustic systems (e.g., marine mammals) or man-made acoustic communication systems
(e.g., underwater sensors), while secondary users (SUs) denoted by blue triangles can be cognitive
acoustic communication nodes. SUs can transmit data only when their transmissions do not hamper
the communications of PUs. Therefore, some SUs must be silent if there are PUs close to them.
For example, as shown in Figure 1, SU5 cannot establish a communication link with SU6 due to the
possible interference to PU3, as PU3 is in close proximity to SU5. Similarly, SU1 and SU2 cannot
connect with each other successfully because of the existence of PU2, which is close to both SU1

and SU2. As illustrated in this typical UCAN, we observe that the link connectivity of SU pairs is
more difficult to ensure that of PUs, and consequently SU pairs have a lower probability of coverage.
Therefore, we aim to investigate the link connectivity and the probability of coverage of SUs in UCANs
in this paper.

Water 

PU1
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PU4

PU3

PU5

SU2

SU1

SU3
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SU5

SU6

Figure 1. Underwater network model. PU: primary user; SU: secondary user.
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3.2. Network Model

In our network model, we assume that PUs are distributed according to homogeneous Poisson
point process (HPPPs) with intensity λp [19]. Each PU radiates the identical power, denoted by
Pp. Since we are concerned with the link connectivity and the probability of coverage of an SU pair,
we consider that this SU pair is located at the center of this network within a 2-D plane; this assumption
is consistent with the sophisticated stochastic geometric method proposed in [20]. We consider that a
secondary transmitter sends a packet, with the power denoted by Ps.

3.3. Channel Model

In the underwater environment, acoustic signal experiences both attenuation and ambient noise.
We adopt a classic channel model first presented in [21]. This model has been widely used in most
previous studies, such as [5,22–28]. In order to ensure that the paper is self-contained, we present the
channel model including the attenuation component in Appendix A and the ambient noise component
in Appendix B.

4. Analysis of Link Connectivity and Probability of Coverage

In this paper, we evaluate the link connectivity of SUs in UCANs by probability of connection,
which is defined as follows:

Definition 1. Probability of connection is the probability that two SUs can successfully establish a
bidirectional link.

It is worth mentioning that we consider a bidirectional link in this paper because it is more
general than previous works, as most communications between a transmitter and a receiver require an
acknowledgement (i.e., ACK) [4,7].

In UCANs, two SUs can successfully establish a bidirectional link if and only if the following two
conditions are satisfied:

(1) Both of the SUs can connect topologically;
(2) Both of the SUs have the spectrum.

Essentially, condition (1) requires that the transmission range of each SU covers each other, and
condition (2) requires each SU to obtain the spectrum. Therefore, we first analyse the topological
connection condition in Section 4.1. We then derive the probability that two SUs have the spectrum in
Section 4.2. We next obtain the probability of connection of two SUs in Section 4.3. Finally, we analyze
the probability of coverage in Section 4.4.

4.1. Topological Connection Condition

We define the probability that two SUs can topologically connect each other by ptop, which can be
expressed as

ptop = P[SNRdB ≥ δs], (1)

where SNRdB is the signal-to-noise ratio in dB between a pair of SUs, and δs is the threshold that a
receiver can successfully received information.

The signal-to-noise ratio between a pair of SUs, denoted by SNR, can be expressed as follows:

SNR =
Ps∫

B
A(r, f )d f

∫
B

N( f )d f
, (2)
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where B represents the bandwidth used in UCANs. Since we are concerned with the relationship
between frequency f and SNR, we normalize the bandwidth. Thus, Equation (2) can be simplified to

SNR =
Ps

A(r, f )N( f )
. (3)

Then, SNRdB can be expressed as

SNRdB = 10 log Ps − 10 log A(r, f )− 10 log N( f ). (4)

Combining Equation (4) and Equation (A2) (as defined in Appendix A), we can have ptop

as follows,
ptop = P[k · 10 log r + r · 10 log α( f ) + 10 log N( f ) ≤ 10 log Ps − δs]. (5)

We can see that the left-hand-side (LHS) of the inequality in Equation (5) is an increasing function of
the distance r. If we let LHS of the inequality be equal to RHS, we can have the maximum communication
distance rmax. However, since the inequality is a transcendental function of r, it is impossible to get
a closed-form expression of rmax. Therefore, we calculate the numerical results of rmax. After setting
δs = 20 dB [29] and Pp = 110 dB, we obtain the numerical results of rmax with different frequency f ,
spreading factor k, and wind speed w, as shown in Figure 2. From Figure 2, we can see that rmax varies
with f . In particular, a higher value of f leads to a lower value of rmax. Moreover, a higher wind speed
w results in a lower rmax. This is because a higher wind speed brings higher noise according to the
underwater acoustic channel model. Furthermore, if we compare Figure 2a with Figure 2b, we can find
that rmax decreases with the increased spreading factor k.
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Figure 2. Maximum communication distance rmax (km) with different spreading factor k and wind
speed w (m/s) when s = 1, Ps = 100 dB, and δs = 20 dB. (a) k = 1; (b) k = 2.

According to the above analysis, we have ptop given as follows,

ptop =

{
1 r ≤ rmax

0 r > rmax
. (6)

4.2. Spectrum Availability

Next, we analyze the spectrum availability of a pair of SUs. In UCANs, in order to avoid
interference from SUs to PUs, a spectrum sensing process has to be conducted at SUs before
transmissions are initiated [5,30]. During the spectrum sensing process, we assume that if the SNR
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(dB) at an SU is no less than a detection threshold δd (dB), the SU must be silent (i.e., it cannot transmit
data). In other words, an SU cannot have spectrum if the following condition is satisfied:

SNRdB = 10 log Pp − 10 log A(r, f )− 10 log N( f ) ≥ δd. (7)

Similar to the calculation of rmax, if we let LHS of Equation (7) be equal to RHS and combine
with Equations (A2)–(A5) (defined in Appendixes A and B) and Equation (7), we can then obtain
the detection range of an SU, which is defined as the maximum distance that an SU can detect PUs,
denoted by rd. Similar to rmax, we can obtain the numerical values of rd. In particular, Figure 3 shows a
detection region of a pair of SUs (e.g., SU1 and SU2). As shown in Figure 3, the detection region of each
SU is a circle with a radius of detection range rd. We observe that a pair of SUs can have the spectrum if
both of the following conditions are satisfied:

(1) No PUs in the detection region of SU1;
(2) No PUs in the detection region of SU2.

SU1

d
r

0
q

r SU2

PU

Figure 3. Detection region of a pair of SUs.

According to the fact that PUs follow HPPP, we can have the probability that two SUs can have
the spectrum, denoted by pspe, as follows:

pspe = e−Sλp , (8)

where S is the area of the detection region of two SUs, depicted as the blue region as shown in Figure 3.
We can see from Figure 3 that S is a piecewise function of the distance r. Then, S can be expressed as:

S =

πr2
d + (π − θ0)r2

d + rd sin(
θ0

2
)r r ≤ 2rd

2πr2
d r > 2rd

, (9)

where θ0 = 2 arccos r
2rd

.
After combining Equation (9) with Equation (8), we can have pspe as follows:

pspe =

 e
(

πr2
d + (π− θ0)r2

d + rd sin( θ0
2 )r

)
λp r ≤ 2rd

e2πr2
dλp r > 2rd

. (10)
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4.3. Link Connectivity

We denote the probability of connection of an SU pair by pcon. According to the above analysis of
the maximum communication distance rmax in Section 4.1 and the probability that a pair of SUs have
the spectrum pspe in Section 4.2, we have the pcon as follows:

pcon =

{
pspe r ≤ rmax

0 r > rmax
. (11)

Combining Equation (11) with Equation (10), we can obtain pcon if 2rd < rmax as follows:

pcon = ptop · pspe =


e
(

πr2
d + (π− θ0)r2

d + rd sin( θ0
2 )r

)
λp r ≤ 2rd

e2πr2
dλp 2rd < r ≤ rmax

0 r > rmax

. (12)

If 2rd > rmax, pcon can be expressed as:

pcon =

 e
(

πr2
d + (π− θ0)r2

d + rd sin( θ0
2 )r

)
λp r ≤ rmax

0 r > rmax

. (13)

4.4. Probability of Coverage

In traditional terrestrial cellular networks, the probability of coverage is defined as the probability
that the received signal-to-interference-plus-noise ratio (SINR) is higher than a threshold [20]. Specifically,
for cellular networks with a distribution of distance between a user and a base station, the probability of
coverage is the expectation (in terms of the distance between a user and a base station) of the probability
that the received SINR is higher than a threshold [20]. However, for SUs in UCANs, if signal from an
SU can cover another SU (i.e., an SU can connect with another SU), it needs two conditions: (1) SUs can
topologically connect to each other (refer to Section 4.1); (2) both SUs have the spectrum (refer to Section
4.2). Therefore, in contrast to terrestrial cellular networks, we originally define the probability of coverage
of SUs in UCANs as the expectation (in terms of the distance between two SUs) of the probability that
an SU can connect with another SU. Then, the probability of coverage, denoted by pcov, can be expressed
as follows:

pcov = Er[pcon], (14)

where Er[∗] is the expectation of ∗ in terms of the distance r.
We assume that the distance between a pair of SUs r follows the uniform distribution in (0, Rd],

where Rd is the maximum distance of r. Then, Equation (14) can be expressed by

pcov =
∫ Rd

0
pcon · fr(r)dr =

∫ Rd

0
pcon

1
Rd

dr, (15)

where fr(r) is the probability distribution function (PDF) of r and pcon is given by Equations (12) and (13).

5. Simulations

In this section, we conducted extensive simulations to evaluate the accuracy and the effectiveness
of our proposed analytical model on the link connectivity and the probability of coverage in UCANs.
In particular, we describe the simulation method in Section 5.1. We then present the simulation results
on the link connectivity and the probability of coverage in Sections 5.2 and 5.3, respectively. Finally,
we discuss the implications of our results and point out the future directions in Section 5.4.



Sensors 2017, 17, 2839 8 of 15

5.1. Simulation Method

When we conducted this simulation-based study to evaluate the accuracy of our proposed models,
it was necessary to conduct extensive simulations. In particular, PUs are distributed according to
HPPP in a plane of area 200× 200 km2. Figure 4 shows a random topology of a simulation snapshot,
where red circles denote PUs, and blue triangles denote SUs (the distance between a pair of SUs is r).
Then, the probability of connectivity ps

con of simulations can be acquired by

ps
con =

# topologies that an SU pair can connect successfully
Ω

, (16)

where # denotes “the number of”. Note that we denote the simulation result by ps
con in order to

differentiate it from the analytical one. Once system parameters are chosen, we will repeat the same
experiment with different random topology of PUs for Ω times. As indicated in Bettstetter’s seminar
work [31], to obtain an approximated result to the analytical one, we need to choose a large enough
Ω (theoretically Ω→ ∞). However, it is extremely time-consuming to obtain such results. In this paper,
we choose Ω = 20,000 (which was shown to be large enough in a recent work [32]). More specifically,
Table 1 shows a comparison between the simulation results with Ω = 20,000 and those with Ω = 500.
We can observe from Table 1 that the average deviation for simulation results with Ω = 20,000 is only
1.56% (fairly close to the theoretical results), while that with Ω = 500 is 8.35%.

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

Figure 4. Random topology of a simulation snapshot of underwater cognitive acoustic sensor networks
(UCANs), where red circles denote PUs and blue triangles denote SUs.

Table 1. Deviation of ps
con between simulation results (with different values of Ω) and analytical results.

System parameters are set as f = 20 kHz, Pp = 110 dB, Ps = 100 dB, λp = 0.003, k = 1, w = 0 m/s,
s = 1, δs = 20 dB, and δd = 20 dB.

Analytical Value Simulation Value with Ω = 500 Simulation Value with Ω = 20, 000

r = 1 km 0.1758 0.1520 (13.53%) 0.1726 (0.18%)
r = 2 km 0.1624 0.1640 (0.99%) 0.1612 (0.74%)
r = 3 km 0.1500 0.1560 (4.00%) 0.1454 (3.07%)
r = 4 km 0.1386 0.1180 (14.86%) 0.1417 (2.24%)

Average deviation 8.35% 1.56%



Sensors 2017, 17, 2839 9 of 15

5.2. Probability of Connection

5.2.1. Impacts of Ambient Environment

Figure 5 shows the results of the probability of connection pcon versus distance r with different
spreading factor k and wind speed w, where curves represent analytical results and markers represent
simulation results. We can see that there is an excellent agreement between analytical results and
simulation results, indicating that our analytical model is accurate. It is worth noting that pcon drops
to 0 when distance r reaches the maximum communication range rmax, matching the aforementioned
results in Equations (12) and (13).

Firstly, we make a horizontal comparison of pcon with different values of k and identical values of
w. We observe that the increment of k results in the higher pcon within the maximum communication range
rmax. For example, when aligning Figure 5a and Figure 5b together, we can find that pcon with k = 2
is larger than that with k = 1 at the same frequency. This is because larger spreading factor k results
in higher attenuation and smaller value of rd, consequently leading to higher spectrum availability.
Moreover, we also observe that the maximum communication range rmax with larger k is also shorter than that
with smaller k. Take Figure 5a,b as an example again. The maximum communication range rmax with
k = 2 and f = 20 kHz is 9 km, smaller than that with k = 1 and the same frequency (i.e., 11 km).

Secondly, we make a vertical comparison of pcon with identical values of k and different values
of w. We observe that the increment of w leads to the higher pcon within the maximum communication range
rmax. Take Figure 5c,e as an example. We can see that pcon with w = 20 m/s is larger than that with
w = 10 m/s at the same frequency (e.g., f = 20 kHz). This is because the larger value of w results in the
smaller value of rd, consequently leading to the higher spectrum availability. Another observation is that
the maximum communication range rmax with larger w is also shorter than that with smaller w. For example,
when aligning Figure 5c and Figure 5e together, rmax with w = 20 m/s and f = 20 kHz is 4 km
(i.e., smaller than that with w = 10 m/s and the same frequency).

Thirdly, we make a comparison of pcon with different values of frequency f . We observe that when
frequency f increases, pcon within rmax also increases. Take Figure 5a as an example again. When f increases
from 20 kHz to 80 kHz, though rmax becomes shorter, pcon within rmax increases. This phenomenon
may be owing to the fact that with a higher frequency, SUs have a shorter communication range,
resulting in a higher spectrum availability and consequently enhancing the connectivity. This result
implies that a proper frequency is necessary to ensure a higher probability of connection with the
given communication range of SUs.
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Figure 5. Cont.
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Figure 5. Probability of connection pcon versus distance r with different spreading factor k and wind
speed w. System parameters are set as Pp = 110 dB, Ps = 100 dB, λp = 0.003, s = 1, δs = 20 dB, and
δd = 20 dB. (a) k = 1, w = 0 m/s; (b) k = 2, w = 0 m/s; (c) k = 1, w = 10 m/s; (d) k = 2, w = 10 m/s;
(e) k = 1, w = 20 m/s; (f) k = 2, w = 20 m/s.

In summary, we observe that frequency f and ambient environment factors such as spreading
factor k and wind speed w have a significant influence on the link connectivity of SUs in UCANs.

5.2.2. Impacts of PUs

Figure 6 shows the probability of connection pcon versus distance r with different intensity of PUs
λp. We observe that pcon decreases with the increased intensity λp. This may owe to the fact that the higher
intensity of PUs leads to the lower spectrum availability of SUs.
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Figure 6. Probability of connection pcon versus distance r with different intensity of PUs λp. System parameters
are set as k = 1, w = 10 m/s, f = 30 kHz, Pp = 110 dB, Ps = 100 dB, s = 1, δs = 20 dB and δd = 20 dB.
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Figure 7 shows the probability of connection pcon with different values of the transmission power
of PUs Pp. We observe that pcon decreases with the increased transmission power Pp. This is because PUs
with higher Pp can cause higher interference to SUs (in other words, they are more easily detected by
SUs according to the detect and avoid protocol), and consequently SUs have less chance to transmit.
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Figure 7. Probability of connection pcon versus distance r with different transmission power of PUs
Pp. System parameters are set as k = 1, w = 10 m/s, λp = 0.005, f = 30 kHz, Ps = 100 dB, s = 1,
δs = 20 dB, and δd = 20 dB.

5.3. Probability of Coverage

Figure 8 shows the probability of coverage pcov versus frequency f with different values of spread
factor k and wind factor w. We can see that the probability of coverage varies with different acoustic
frequencies. In particular, pcov increases with the increased frequency when frequency is relatively low.
After pcov reaches the peak, pcov starts to decrease with the increased frequency. Moreover, the peak
values of pcov decrease with the increased factors of k and w.
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Figure 8. Coverage pcov versus frequency f with different spreading factor k and wind speed w.
System parameters are set as Rd = 12 km, Pp = 110 dB, Ps = 100 dB, λp = 0.003, s = 1, δs = 20 dB,
and δd = 20 dB.

Figure 9 shows the probability of coverage pcov versus frequency f with different values of
intensity of PUs λp, and Figure 10 shows the probability of coverage pcov versus frequency f with
different transmission power of PUs Pp. It can be seen from Figures 9 and 10 that pcov decreases with
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a higher λp or Pp, implying that the probability of coverage of SUs are significantly affected by PUs.
Moreover, the peak value of pcov also varies with different values of λp and Pp.
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Figure 9. Coverage pcov versus frequency f with different λp. System parameters are set as Rd = 12 km,
Pp = 110 dB, Ps = 100 dB, s = 1, k = 1, w = 10 m/s, δs = 20 dB, and δd = 20 dB.
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Figure 10. Coverage pcov versus frequency f with different power of PUs Pp. System parameters are
set as Rd = 12 km, Ps = 100 dB, λp = 0.003, k = 1, w = 10 m/s, s = 1, δs = 20 dB, and δd = 20 dB.

5.4. Discussion and Future Works

The above results show that both the link connectivity and probability of SUs in UCANs heavily
depend on acoustic signal frequency, underwater environment factors, and the activities of PUs.
Therefore, when system parameters as well as underwater environment are given, our analysis
(i.e., pcon and pcov) can be used to find a proper signal frequency to acquire the optimal values for the
link connectivity and the probability of coverage. Meanwhile, our results also offer an implication
on optimizing the network throughput of SUs in UCANs. For example, if we assume SU pairs
(i.e., both ST and SR) follow HPPP with intensity λs in our UCAN model, the spatial throughput of
SUs can be expressed by pconλs log(1 + δs) (the spatial throughput is defined in [33]. We observe that
the throughput of SUs is proportional to pcon.

In addition to the analysis of QoS metrics of UCANs, there are many interesting topics in UCANs.
For example, how to design effective Medium Access Control (MAC) protocols, considering spectrum
constraint [4,7,11,13]. Another issue is to design effective and efficient routing schemes [34] while
considering the spectrum constraint. Our study presented in this paper has paved the way for the
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solutions to these research problems. For example, we can obtain the whole network topology once
the link connectivity of each SU pair is obtained and we can then design the routing schemes based on
the available topology.

6. Conclusions

In this paper, we investigate the link connectivity and the probability of coverage of secondary
users in underwater cognitive acoustic networks (UCANs). In particular, we propose an analytical
model to analyze the above QoS metrics of SUs in UCANs. This model takes both topological
connectivity and spectrum availability into account. The extensive simulations validate the accuracy of
our model. From the results, we observe that both the link connectivity and the probability of coverage
of SUs in UCANs depend on frequency f , spreading factor k, and wind speed w. Meanwhile, both the
link connectivity and the probability of coverage of SUs in UCANs are also significantly influenced by
the activities of PUs (in terms of the intensity of PUs and transmission power of PUs).
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Appendix A. Attenuation

The attenuation underwater acoustic networks can be expressed as follows:

A(r, f ) = rkα( f )r, (A1)

where r is the distance between a transmitter and a receiver, α( f ) is an absorption coefficient of
frequency f , k is a spreading factor (ranging from 1 to 2). Note that the different values of k describe
the different scenarios of geometry of propagation: k = 1 for cylindrical spreading; k = 2 for
spherical spreading.

Then, Equation (A1) can be expressed in dB as follows:

10 log A(r, f ) = k · 10 log r + r · 10 log α( f ). (A2)

Generally, if the frequency f is above a few hundred Hz, the absorption coefficient 10 log α( f ) in
dB/km for f in kHz can be expressed as follows [21]:

10 log α( f ) = 0.11 · f 2

1 + f 2 + 44
f 2

4100 + f 2

+2.75 · 10−4 f 2 + 0.003.
(A3)

Appendix B. Ambient Noise

Usually, the ambient noise in underwater environments is modeled by four kinds of sources:
turbulence, shipping activities, waves, and thermal noise [22]. Specifically, the noise caused by
shipping activities depends on activity factor s (ranging from 0 to 1). The noise of waves, brought
by wind, can be expressed as a function of wind speed w (m/s). Then, the formula between power
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spectral density of the four noise sources and frequency in kHz in dB re µ Pa per Hz are given by [29]
as follows:

10 log Nt( f ) = 17− 30 log( f ),

10 log Ns( f ) = 40 + 20(s− 0.5) + 26 log( f )− 60 log( f + 0.03),

10 log Nw( f ) = 50 + 7.5w1/2 + 20 log( f )− 40 log( f + 0.4),

10 log Nth( f ) = −15 + 20 log( f ),

(A4)

where Nt( f ), Ns( f ), Nw( f ), and Nth( f ) express the noise produced by turbulence, shipping activity,
wind, and thermal, respectively.

Then the total noise can be expressed as:

10 log N( f ) = 10 log(Nt( f ) + Ns( f ) + Nw( f ) + Nth( f )). (A5)
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