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Abstract—Electricity theft can be harmful to power grid
suppliers and cause economic losses. Integrating information
flows with energy flows, smart grids can help to solve the problem
of electricity theft owning to the availability of massive data
generated from smart grids. The data analysis on the data of
smart grids is helpful in detecting electricity theft because of
the abnormal electricity consumption pattern of energy thieves.
However, the existing methods have poor detection accuracy
of electricity-theft since most of them were conducted on one
dimensional (1-D) electricity consumption data and failed to
capture the periodicity of electricity consumption. In this paper,
we originally propose a novel electricity-theft detection method
based on Wide & Deep Convolutional Neural Networks (CNN)
model to address the above concerns. In particular, Wide & Deep
CNN model consists of two components: the Wide component
and the Deep CNN component. The Deep CNN component
can accurately identify the non-periodicity of electricity-theft
and the periodicity of normal electricity usage based on two
dimensional (2-D) electricity consumption data. Meanwhile, the
Wide component can capture the global features of 1-D electricity
consumption data. As a result, Wide & Deep CNN model can
achieve the excellent performance in electricity-theft detection.
Extensive experiments based on realistic dataset show that Wide
& Deep CNN model outperforms other existing methods.

Index Terms—Electricity Theft Detection, Smart Grids, Con-
volutional Neural Networks, Machine Learning, Deep Learning

I. INTRODUCTION

Electricity has become a necessity in our life. Losses often
occur during electricity generation, transmission and distribu-
tion. The electricity losses can be generally categorized into
technical losses (TLs) and Non-technical losses (NTLs) [1].
One of the primary NTLs is electricity theft. This misbehavior
usually includes bypassing the electricity meter, tampering the
meter reading, or hacking the meter [2]. Electricity theft can
result in the surging electricity, the heavy load of electrical
systems, the huge revenue loss of power company and the
dangers to public safety (such as fires and electric shocks). For
example, it is reported in [3] that the losses due to electricity
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theft approximate 100 million Canadian dollars every year;
this lost electricity can even supply 77,000 homes for a year.

There is a substantial body of studies on detecting elec-
tricity theft. Conventional electricity-theft detection methods
include: humanly checking problematic meter installation or
mis-configuration, comparing the abnormal meter readings
with the normal ones and examining the bypassed power
transmission line etc. However, these methods are extremely
time-consuming, expensive and inefficient.

The appearance of smart grids brings opportunities in
solving electricity theft. Smart grids essentially consist of
traditional power grids, communications networks connecting
intelligent devices (such as smart meters and sensors) in grids
and computing facilities to sense and control grids [4]. Both
energy flows and information flows in smart grids connect
users and utility companies together. In this manner, smart
meters or sensors can collect data such as electricity usage,
status information of grids, electricity price and financial
information [5]. The data of smart grids is helpful for us
to design demand response management (DRM) schemes [6],
forecast the electricity price [7] and schedule the electricity in
more profitable way [8], [9]. In addition, some recent works
such as [2], [10], [11], [12], [13] show that data analysis
on smart grids can help to detect electricity theft. However,
most of these approaches have the following limitations: 1)
many of them require specific devices [1]; 2) most of them
are based on artificial feature extraction according to domain
knowledge (requiring manual interventions); 3) many methods
(such as support vector machine and linear regression) have
low electricity-theft detection accuracy.

Therefore, in this paper, we aim to design a novel electricity-
theft detection method to address the above concerns. In
particular, we originally propose a Wide & Deep Convolu-
tional Neural Networks (CNN) model to learn the electricity
consumption data and identify the electricity thieves. Our Wide
& Deep CNN model consists of a Wide component with a
fully-connected layer of neural networks and a Deep CNN
component with multiple convolutional layers, a pooling layer
and a fully-connected layer. Essentially, the Wide component
can learn the global knowledge while the Deep CNN com-
ponent can capture the periodicity of electricity consumption
data. This model integrates the benefits of the Wide component
and the Deep CNN component consequently resulting in good
performance in electricity-theft detection.

The primary research contributions of this paper can be
summarized as follows.
• We originally propose a Wide & Deep CNN model to

analyze electricity theft in smart grids. To the best of our
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Fig. 1. An example of electricity consumption of normal usage

knowledge, it is the first study to propose the Wide &
Deep CNN model and apply it to analyze electricity theft
in smart grids.

• Our model has numerous merits: 1) memorization of the
global knowledge brought by the Wide component, 2)
generalization of the new knowledge brought by the Deep
CNN model, 3) accuracy in electricity-theft detection.

• We have conducted extensive experiments on massive
realistic electricity consumption dataset. Experimental
results show that our Wide & Deep CNN model out-
performs than other existing approaches.

The remainder of the paper is organized as follows. Section
II presents an overview on related literature. We present the
problem analysis in Section III. Section IV presents the Wide
& Deep CNN model. We then give the experimental results
in Section V. Finally, we conclude the paper in Section VI.

II. RELATED WORK

In this section, we first present a survey on electricity-
theft detection in Section II-A and an overview on anomaly
detection in Section II-B.

A. Electricity-theft Detection

We roughly categorize the studies on electricity-theft detec-
tion into two types: hardware-based solutions and data-driven
solutions. In particular, hardware-based solutions concentrate
on designing specific metering devices and infrastructures so
that electricity theft can be easily detected. Typical electricity-
theft detection equipments include smart meters with anti-
tampering sensors, radio-frequency identification (RFID) tags
and sensors [14], [15], [16]. The main limitations of hardware-
based solutions include 1) the cost of deploying smart metering
devices, 2) the vulnerability of hardware devices (e.g., failure
due to severe weather condition), 3) the difficulty in maintain-
ing devices (e.g., replacing batteries of devices).

Data driven electricity-theft detection has drawn consid-
erable attentions recently. For example, the work in [2] is
based on the data fusion from sensors and advanced metering
infrastructure (AMI). Many recent studies [17], [18], [19] are
based on support vector-machines (SVM). The main idea of
SVM methods is to classify the normal users and the electricity
thieves. In addition to SVM, artificial neural networks can also
be used to electricity-theft detection [10], [11]. However, most
of these studies are less accurate in electricity-theft detection
and require artificial feature extraction according to domain
knowledge.
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Fig. 2. An example of electricity consumption of electricity theft

B. Anomaly Detection in Smart Grids

Anomaly detection in smart grids represents a substantial
body of works related to data driven electricity-theft detection.
In particular, anomaly detection (a.k.a. outlier detection) is
the procedure of detecting abnormal patterns that do not
conform the expected behavior [20]. Anomaly detection has
been widely used in many research areas, such as intrusion
detection [21], fraud detection [22] and industrial control
systems [23].

Recently, anomaly detection has received extensive attention
from the smart grid community since it can help in improv-
ing operational safety, enhancing the control reliability and
detecting faults in smart metering infrastructure [24], [25],
[26]. The typical approaches used in anomaly detection in
smart grids mainly include SVM (Support Vector Machine),
clustering and classification [27]. Besides, Decision Tree and
Rough Sets can also be used in fraud detection in power
systems [28]. Moreover, [29] presents a rule-based model to
detect the NTLs.

However, most of related studies in either electricity-theft
detection or anomaly detection are based on the analysis
on 1-D electricity consumption data and fail to capture the
periodicity of electricity consumption. Therefore, it is the
purpose of this study to propose a novel analytical model to
overcome the limitations of the above existing works.

III. PROBLEM ANALYSIS

Electricity theft is a criminal behavior of stealing electrical
power from power grids. This malicious behavior can be
done by bypassing the electricity meter, tampering the meter
reading, or hacking the meter. Since electricity theft can result
in the abnormal patterns of electricity consumption, the data-
driven electricity-theft detection approaches have received ex-
tensive attention recently due to the availability of smart-meter
readings and electricity consumption data from smart grids.
We next illustrate the abnormality of electricity consumption
data of energy thieves, which can be potentially captured by
machine learning tools.

We conduct a preliminary analysis on electricity consump-
tion data. This dataset released by State Grid Corporation of
China (SGCC)1 contains the electricity consumption data of
42,372 electricity customers within 1,035 days (details about
the dataset will be given in Section V-A). In particular, Fig.
1 (a) shows an example of electricity consumption of normal

1State Grid Corporation of China http://www.sgcc.com.cn/
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Fig. 3. Pearson Correlation Coefficient (PCC) of electricity consumption

usage by a customer in a month (i.e., August 2016). We ob-
serve that there is a fluctuation on the electricity consumption
data day by day. It is hard to capture the key characteristics of
electricity thieves and normal customers from this 1-D data.
However, we can observe that there is a periodicity on the
electricity consumption of this customer if we plot the data
in 2-D manner by week as shown in Fig. 1 (b), in which
the electricity consumption reaches the peak on day 3 every
week while it often reaches the bottom on day 5 every week
(the exception is on the 2nd week, when there is the lowest
consumption on day 6). In fact, we can have similar findings
for the whole dataset (i.e., electricity consumption data with
1,035 days). Without too many repetitions, we only show an
excerpt data from the whole dataset. We can observe that there
is a periodicity for most of normal customers if we align the
electricity consumption data of all the 35 months together.

In contrast, Fig. 2 shows an example of electricity con-
sumption of an electricity theft in a month. Similar to Fig. 1,
we also plot the electricity consumption by date (as shown
in Fig. 2 (a)) and the electricity consumption by week (as
shown in Fig. 2 (b)). As shown in Fig. 2, we observe that
the electricity consumption in the first two weeks (i.e., the 1st
week and the 2nd week) fluctuates periodically. For example,
the electricity consumption reaches the peak on day 3 and
on day 6 every week. However, there is a distinct loss of the
electricity consumption from the third week and the electricity
consumption has remained at the low level after that.

To better analyze the periodicity of normal customers and
non-periodicity of energy thieves, we conduct a correlation
analysis on the electricity consumption data. Fig. 3 shows
Pearson Correlation Coefficient (PCC) of electricity consump-
tion of both normal customers and energy thieves by week. In
particular, Fig. 3 (a) shows PCC values of normal customers
while Fig. 3 (b) shows those of energy thieves. We can
find from Fig. 3 (a) that there is a strong correlation of
electricity consumption data of normal customers, i.e., most
of PCC values are greater than 0.8 (a larger PCC value
close to 1 means the stronger correlation [30]). However,
we cannot observe the correlation of electricity consumption
data of energy thieves as shown in Fig. 3 (b) (i.e., most of
PCC values are less than 0.7 and many of them are even
negative). We further plot autocorrelation function (ACF) of
the electricity consumption data of both normal customers and
energy thieves by day in Fig. 4. Fig. 4 shows ACF of the
electricity consumption data of normal customers by day in
contrast to that of energy thieves. It is observed from Fig. 4 that

(a) ACF values of normal customers (b) ACF values of energy thieves

Fig. 4. Autocorrelation function (ACF) of electricity consumption by week

the electricity consumption patterns of normal customers have
obvious periodicity, i.e., the similar pattern longs for about 7
days (see Fig. 4 (a)) while there is no obvious periodicity of
electricity consumption of energy thieves (see Fig. 4 (b)).

After statistically analyzing the electricity consumption data
of both normal customers and energy thieves, we can find
that the electricity consumption data of energy thieves is
usually less periodic or non-periodic, compared with that
of normal customers. We believe that this observation can
also be confirmed by other electricity consumption datasets
from different countries and regions as implied by recent
work [31]. This observation has motivated us to investigate
the periodicity of the electricity consumption and identify the
abnormal electricity usage.

However, it is challenging to analyze the periodicity of the
electricity consumption data due to the following reasons: 1)
the electricity consumption data is often erroneous and noisy;
2) it is difficult to analyze the periodicity of the electric-
ity consumption data since it is 1-D time series data with
massive size; 3) many conventional data analysis approaches
such as Support Vector Machine (SVM) and Artificial Neural
Network (ANN) cannot be directly applied to the electricity
consumption data due to the computation complexity and the
limited generalization capability [32], [33], [31], [7]. In order
to address the above challenges, we propose Wide & Deep
Convolutional Neural Networks framework (CNN), which will
be described in detail in Section IV.

IV. OUR APPROACH

A. Data Preprocessing

Electricity consumption data often contains missing or er-
roneous values; this is mainly caused by various reasons such
as the failure of smart meters, the unreliable transmission of
measurement data, the unscheduled system maintenance and
storage issues [34]. In this paper, we exploit the interpolation
method to recover the missing values according to the follow-
ing equation,

f(xi) =


xi−1+xi+1

2 xi ∈ NaN, xi−1, xi+1 /∈ NaN

0 xi ∈ NaN, xi−1 or xi+1 ∈ NaN

xi xi /∈ NaN,

(1)

where xi stands for the value in the electricity consumption
data over a period (e.g., a day). If xi is a null or a non-numeric
character, we represent it as NaN (NaN is a set).

Moreover, we have also found that there are erroneous
values (i.e., outliers) in the electricity consumption data. In
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Fig. 5. Wide & Deep Convolutional Neural Networks (CNN) framework

particular, we restore the value by the following equation
according to “Three-sigma rule of thumb” [35],

f(xi) =

{
avg(x) + 2 · std(x) if xi > avg(x) + 2 · std(x),
xi otherwise,

(2)
where x is a vector that is composed of xi day by day, avg(x)
is the average value of x and std(x) is the standard deviation
of x. Note that we only consider the positive deviation in
Eq. (2). This is because the electricity consumption of each
user is always greater than 0 after analyzing the electricity
consumption data of 1,035 days. In summary, this method can
effectively mitigate the outliers.

After dealing with the missing values and the outliers, we
need to normalize the electricity consumption data because the
neural network is sensitive to the diverse data. In particular,
we choose the MAX-MIN scaling method to normalize the
data according to the following equation,

f(xi) =
xi −min(x)

max(x)−min(x)
, (3)

where min(x) is the minimum value in x, and max(x) is the
maximum value in x.

B. Wide & Deep CNN Framework

As shown in Fig. 5, the Wide & Deep CNN framework
mainly consists of two major components: the Wide compo-
nent and the Deep CNN component. We then explain them in
detail as follows.

1) Wide component: As shown in Fig. 5, the Wide com-
ponent (enclosed in the red dash box) is a fully-connected
layer of neural networks and it learns the global knowledge
from the 1-D electricity consumption data. According to the
preliminary analysis in Section III, the electricity consumption
of customers fluctuates from time to time while the normal
electricity usage reveals the periodicity and the electricity
consumption of energy thieves is less periodic or non-periodic.
The electricity consumption of one customer is essentially
one dimensional (1-D) time series data. Motivated by the
previous study [36], we choose the Wide component to learn

the frequent co-occurrence of features by memorizing the 1-D
time series data.

Every neuron in the fully-connected layer calculates its own
score by using the 1-D electricity consumption data according
to the following equation,

yj :=

n∑
i=1

wi,jxi + b1, (4)

where yj is the output of the fully-connected layer in the j-th
neuron, n is the length of 1-D input data (x), wi,j stands for
the neuron weight between i-th input value and j-th neuron
and b1 is the bias. After the calculation, it will send this value
to the connected units in the higher layer through an activation
function to determine how much it contributes to the next step
prediction. The activation function is given as follows,

uj := f(yj) = max(0, yj), (5)

where uj is the output after activation calculation and f(·)
stands for the activation function. In this paper, we use
Rectified Linear Unit (ReLU) as the activation function, which
will only activate the positive value. This function can effec-
tively prevent the overfitting [37]. This procedure is called
the forward pass. The back-propagation works in an opposite
direction. During the back-propagation, every unit computes
its weights according to the loss value sent from higher layer.

2) Deep CNN component: Our preliminary analytical re-
sults (refer to Section III) reveal the periodicity of the normal
electricity usage and the non-periodicity of the electricity
theft. However, it is difficult to identify the periodicity or the
non-periodicity of electricity usage from the 1-D electricity
consumption data since the electricity consumption in every
day fluctuates in a relatively independent way. Nevertheless,
our preliminary results also imply that we can easily identify
the abnormal electricity usage if we analyze the electricity
consumption by aligning the consumption data of several
weeks together. The previous work in [36] also indicates
that the deep learning can help to derive new features (i.e.,
generalization). Motivated by this observation, we design a
Deep CNN component to process the electricity consumption
data in 2 dimension (2-D) manner. In particular, we transform
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the 1-D electricity consumption data into 2-D data according
to weeks. It is worth mentioning that we can transform 1-D
data into 2-D data according to different number of days (e.g.,
10 days or 15 days). However, we have found that the weekly
transformation in practice has the best performance compared
with other types of transformations (confirming our previous
observation in Section III).

We next let the Deep CNN component be trained on the 2-
D electricity consumption data. Fig. 5 shows that Deep CNN
component (enclosed in the blue dash box) consists of multiple
convolutional layers, a pooling layer and a fully-connected
layer. We then explain them in details as follows.

Multiple convolutional layers. One of the limitations of
regular neural networks is the poor scalability due to the full-
connectivity of neurons. CNN overcomes the disadvantages
of regular neural networks by connecting each neuron to its
neighboring neurons (not all the neurons). The local region
consisting of a small set of neurons is also called as the
receptive field [38]. Then, a filter (i.e., a vector) with the
same size of the receptive field will be used to conduct the
convolution operation with the input 2-D data. One convolu-
tion layer essentially consists of a number of filters working
independently. When the input 2-D data is passing through the
filters, convolution operations are conducted. We assume that
there are R CNN layers connecting adjacently as shown in Fig.
5. In this manner, we finally obtain a 2-D feature map. In this
paper, we choose γ filters; the number of filters γ is adjustable
in the experiments. Moreover, we also design unique kernels
to fulfill the periodicity of electricity consumption data. We
next describe the technical details as follows.

We use the 2-D convolution layer to extract the periodic
features from the input 2-D electricity consumption data. We
denote the electricity consumption of a customer of the p-th
week by vector vp ∈ Rd, where d is 7 in this paper. Note that
we choose d = 7 because a week has 7 days; this setting is
implied by our observation in Section III. We then represent
the concatenated electricity consumption of m weeks (denoted
by v1:m) as follows,

v1:m :=


v1

v2

...
vm

 , (6)

where m = dn7 e. In general, let vp:p+k refer to the concate-
nation of weekly electricity consumption vp, vp+1, ..., vp+k.

Traditionally, a convolution operation involves a filter ŵ,
which is applied to a window of size 3 × 3 to produce a
new feature. This method is effective in image processing
and recognition. However, the 2-D electricity consumption
data is different from the image data. Therefore, we design
the unique kernels to process the 2-D electricity consumption
data. In particular, we consider a feature cp+1,q+1, which can
be generated from a window of matrix vp:p+2,q:q+2 by the
following equation,

cp+1,q+1 := f(ŵ(g1(vp:p+2,p:p+2) + g2(vp:p+2,p:p+2)) + b2),
(7)

where b2 ∈ R is a bias term and f(·) is a non-linear function
such as the hyperbolic tangent [38]. It is worth noting that we

design kernel functions g1(·) and g2(·) dedicated for the 2-D
electricity consumption data. In particular, g1(·) is defined as
follows,

g1(·) := g1(vp:p+2,p:p+2)

:=

2vp,p:p+2 − vp+1,p:p+2 − vp+2,p:p+2

2vp+1,p:p+2 − vp,p:p+2 − vp+2,p:p+2

2vp+2,p:p+2 − vp,p:p+2 − vp+1,p:p+2

. (8)

Essentially, g1(·) transforms the current row values by sub-
tracting the other two rows; it captures fluctuations and trends
in different periods.

We define g2(·) as follows,

g2(·) := g1(vTp:p+2,p:p+2)
T . (9)

Specifically, g2(·) transforms current column values by sub-
tracting the other two columns; it essentially captures fluctu-
ations and trends in the same period.

We then apply this filter to data blocks denoted by
v1:3,1:3, v1:3,2:4, ..., vm−2:m,m−2:m, respectively to produce a
feature map as given as follows,

c :=

 c1,1 · · · c1,7
...

. . .
...

cm,1 · · · cm,7

 (10)

where c is the generated feature map having the same size as
the raw matrix because the zero-padding of 1 is used.

Pooling layer. The pooling layer has been typically used
in CNN to reduce the number of parameters (e.g., training
weights and filters) and the redundant features. Besides, a pool
layer can also be used to control the convergence of neural
networks (e.g., avoid overfitting). One of the most typical
pooling operations is the max pooling [39]. In this way, the
pooling layer will choose the maximum value of the field
covered by the pooling filter. We also use the max pooling
operation in this paper. In particular, we define the max
pooling operation as ĉ = max(c), which takes the generated
feature map (defined in Eq. (10)) as the inputs. Essentially,
there are two directed passing procedures in CNN: 1) during
the forward passing procedure, the pooling layer will choose
the maximum value of the field covered by the pooling filter;
2) during the back-propagation procedure, the pooling layer
will route the gradients (weights) to the preceding filter with
the highest value.

Fully-connected layer. The fully-connected layer in the
Deep CNN component is similar to that in the Wide com-
ponent while they are different in size (i.e., the size of the
Wide component is α and that of CNN is β). The fully-
connected layer in the Deep CNN component is used to obtain
the principal features, which can be calculated in a similar way
to the fully-connected layer in the Wide component like Eq.
(4) and Eq. (5).

Finally, the Wide component and the Deep CNN component
are combined using a weighted sum of their output as hidden
features; these features are then fed to one logistic loss
function for the joint training and prediction [36]. In the joint
training and prediction procedure, we consider the sum of
the weights of both the Wide component and the Deep CNN
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TABLE I
META DATA INFORMATION

Description Value
Time window for electricity consumption 2014/01/01 - 2016/10/31
# of the customers (total) 42,372
# of normal electricity customers 38,757
# of electricity thieves 3,615

component together and optimize the generated parameters at
the same time. Motivated by the similar idea of the Wide &
Deep learning model [36], we have achieved the joint training
and prediction procedure by back-propagation. In particular,
the prediction of the model is finally given as follows,

P (Y = 1|x) := δ(W[xWide, xCNN] + b) (11)

where Y is the binary class label, δ(·) is the sigmoid function,
xWide and xCNN represent the features of the Wide component
and those of the CNN component, respectively, W is the joint
weights of the Wide component and the CNN component, and
b is the bias term.

V. EXPERIMENTAL RESULTS

A. Experiment Settings

1) Raw electricity consumption data: We conduct the ex-
periments on a realistic electricity consumption dataset re-
leased by State Grid Corporation of China (SGCC). Table I
presents the meta data information of this dataset, where #
means “the number of”. This dataset contains the electricity
consumption data of 42,372 electricity customers within 1,035
days (from Jan. 1, 2014 to Oct. 31, 2016). It is worth
mentioning that the dataset contains some erroneous data and
missing values. Therefore, we exploit the data preprocessing
method as described in Section IV-A to address this issue.

2) Ground truth: Along with the released dataset, SGCC
also explicitly indicated that the dataset contains 3,615 elec-
tricity thieves (as shown in Table I), which occupy nearly 9%
of all the customers; this implies that the electricity theft in
China is quite serious. We use the the given electricity thieves
as the ground truth to evaluate the performance of the proposed
scheme and other related schemes.

3) Performance metrics: In this paper, we conduct the
experiments by considering two performance metrics: area
under curve (AUC) [40] and mean average precision (MAP)
[41]. We briefly introduce them as follows.

AUC is often used to evaluate the classification/rank ac-
curacy. The AUC value is equivalent to the probability that a
randomly chosen positive sample ranks higher than a randomly
chosen negative sample. The equivalent formula for AUC
calculation is given as follows,

AUC =

∑
i∈positiveClass Ranki − M(1+M)

2

M ×N
, (12)

where Ranki represents the rank value of sample i, M is the
number of positive samples and N is the number of negative
samples. It is worth mentioning that samples are sorted in the
ascending order according to the prediction of positive samples
for scoring.

MAP is often used to judge the quality of information
retrieval. In this paper, we use this metric to evaluate the

TABLE II
EXPERIMENT PARAMETERS FOR BASELINE METHODS

Method Features Parameters
TSR Raw (1-D) θ = 1, 2, 3, 4

LR Raw (1-D) Penalty: L2
Inverse of regularization strength: 1.0

RF Raw (1-D) # of trees in forest: 200
Function to measure the quality of a split: gini

SVM Raw (1-D) Penalty parameter of the error term: 1.0
kernel: radial basis function (RBF)

Wide Raw (1-D) same as Wide component of our approach
CNN Raw (2-D) same as CNN component of our approach

accuracy of our model. Before using MAP to evaluate, the
label of test set is sorted according to the prediction score.
We then choose the top N labels to evaluate the performance.

In order to calculate MAP, we first define precision at k
(denoted by P@k) as follows,

P@k =
Yk
k
, (13)

where Yk denotes the number of correctly-predicted electricity
thieves before the location k.

We then denote the mean of all P@k situations by MAP@N
(with top N labels), which is given as follows,

MAP@N =

∑r
i=1 P@ki
r

, (14)

where r is the number of electricity thieves in top N labels
and ki (i = 1...r) is the position of the electricity theft.

B. Performance Comparison

In this section, we present the experimental results over the
given dataset to have a performance comparison with other
conventional data analytical schemes (given as follow).

Three-sigma Rule (TSR): TSR is a typical anomaly detec-
tion method. Different from data preprocessing as presented in
Section IV-A, we use it as a baseline method to detect whether
an electricity customer is an electricity thief. The electricity-
theft detection in TSR can be expressed as follows,

TSR(θ) =
∑n
i=1 I(xi, x, θ)

n
, (15)

where I(xi, x, θ) is an indicator function defined as follows,

I(xi, x, θ) =

{
1 if xi > avg(x) + θ · std(x),
0 otherwise,

(16)

where xi is the i-th value of x, n is the length of x, θ is the
outlier threshold (we typically choose θ = 1, 2, 3, 4).

Logistic Regression (LR): This method is a basic model
in binary classification, which is equivalent to one layer of
neural network with sigmod activation function.

Random Forest (RF): In the previous study [42], decision
tree was used to identify power quality disturbances. Random
forest model is essentially an integration of multiple decision
trees. Compared with a single decision tree, random forest
model can achieve better performance while maintaining the
effective control of over-fitting.

Support Vector Machine (SVM): Many previous stud-
ies exploit SVM to infer the presence of electricity theft
[17][18][19].
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TABLE III
PERFORMANCE COMPARISON WITH OTHER CONVENTIONAL SCHEMES (PARAMETERS α = 90, β = 60, γ = 90)

Training ratio = 50% Training ratio = 60% Training ratio = 70% Training ratio = 80%
Methods AUC MAP@100 MAP@200 AUC MAP@100 MAP@200 AUC MAP@100 MAP@200 AUC MAP@100 MAP@200
TSR (1) 0.5705 0.5056 0.5140 0.5698 0.5111 0.5140 0.5593 0.5365 0.5332 0.5676 0.5284 0.5363
TSR (2) 0.5903 0.5755 0.5577 0.5847 0.5955 0.5737 0.5720 0.5255 0.5277 0.5801 0.5764 0.5654
TSR (3) 0.5514 0.5362 0.5336 0.5526 0.4774 0.4989 0.5513 0.5281 0.5326 0.5498 0.5458 0.5266
TSR (4) 0.5069 0.4973 0.5039 0.5115 0.4988 0.4979 0.5135 0.5560 0.5383 0.5034 0.5676 0.5452

LR 0.6773 0.6442 0.5669 0.6944 0.6612 0.5746 0.6916 0.6666 0.5783 0.7060 0.6560 0.5781
SVM 0.7183 0.6862 0.5919 0.7317 0.7192 0.6071 0.7276 0.7244 0.6068 0.7413 0.7353 0.6195
RF 0.7317 0.9078 0.8670 0.7325 0.8869 0.8525 0.7372 0.9259 0.8864 0.7385 0.9054 0.8536

Wide 0.6751 0.8013 0.7675 0.6950 0.8096 0.7841 0.6866 0.8116 0.7768 0.6965 0.8096 0.7646
CNN 0.7636 0.9059 0.8835 0.7837 0.9394 0.9077 0.7779 0.9547 0.9154 0.7797 0.9229 0.8853

Wide & Deep CNN 0.7760 0.9404 0.8961 0.7922 0.9555 0.9297 0.7860 0.9686 0.9327 0.7815 0.9503 0.9093

Wide: This scheme can be regarded as a variant of our
proposed Wide & Deep CNN model with the removal of the
CNN component. Note that the training data for the Wide
scheme is the 1-D electricity consumption data (the same as
our Wide & Deep CNN model).

Convolutional Neural Network (CNN): This scheme can
be regarded as a variant of our proposed Wide & Deep CNN
model with the removal of the Wide component and the
preservation of CNN. Note that the training data for CNN
is the 2-D electricity consumption data.

Table II summarizes the parameters used for the baseline
methods and the extracted features to train these models.
It is worth mentioning that we only used raw data and
did not artificially modify the models based on any expert
domain knowledge (it is relatively fair to evaluate the learning
capability of each model).

Table III presents the performance comparison of our pro-
posed Wide & Deep CNN scheme and other schemes. It is
worth noting that we randomly choose a subset of electricity
consumption records according to the training ratio, which is
defined by the ratio of the size of training samples to the size of
all the samples. We conduct four groups of experiments with
training ratio being 50%, 60%, 70%, and 80%, respectively.
Moreover, we choose parameters α = 90, β = 60, γ = 15 for
both our Wide & Deep CNN model and CNN model (without
parameter α). In each group of experiments, we evaluate the
performance metrics (AUC and MAPN ) for the five schemes
(note that we choose N = 100 and N = 200 for MAPN ).

It is shown in Table III that our proposed Wide & Deep
CNN scheme performs better than conventional schemes like
LR, RF, Wide, SVM and CNN in terms of AUC, MAP100 and
MAP200 in all four groups of experiments. For example, Wide
& Deep CNN can achieve the maximum MAP100 value with
0.9404 compared with other schemes when the training ratio
is 50%. This implies that our proposed method has the higher
accuracy in electricity theft detection than other conventional
schemes. This improvement may owe to the integration of
memorization and generalization features brought by the Wide
component and the Deep CNN component, respectively.

C. Parameter Study

We then investigate the impacts of various parameters on
the performance of our proposed Wide & Deep CNN scheme.

1) Effect of α: α is a parameter controlling the number of
neurons in the fully-connected layer of the Wide component.

To investigate the impact of α on the prediction results, we
vary the values of α from 10 to 120 with the step value of
1. At the same time, we fix β = 64 and γ = 10. We conduct
two groups of experiments with the training ratio with 60%
or 80%, respectively.

Fig. 6 shows the experiment results. We can see from Fig.
6 that both AUC and MAP increase at first when the number
of neurons (i.e., α) increases while they decrease when α is
greater than a certain value. For example, when α is smaller
than 50, AUC always increases in both these two groups
of experiments as shown in Fig. 6 (a) and (b) and it drops
when α is greater than 50 while it increases again when α is
greater than 60. But, the best performance was obtained when
α = 50. This is because the Wide component may lack of
enough neurons to learn from the 1-D electricity consumption
data when α is too small. However, when α is too large, too
many neurons will make the neural networks complicated,
consequently resulting in overfitting. Therefore, there may
exist a threshold on α to optimize the AUC performance. In
the two groups experiments, the threshold on α is 50.

We have similar findings in the MAP performance in both
two groups of experiments. Take Fig. 6 (c) and (d) as an
example. MAP@N reaches the peak when α = 60 in the first
group of experiments (with training ratio 60%) and reaches
the peak when α = 80 in the second group of experiments
(with training ratio 80%). This result implies that there are
different thresholds on α when we optimize AUC and MAP.
Therefore, it is worthwhile for us to investigate how to choose
an appropriate number of neurons in the Wide component to
optimize both AUC and MAP. This will be left as one of the
future works.

2) Effect of γ: in the CNN component of our Wide & Deep
CNN method, γ is a parameter controlling the number of filters
in the convolutional layer. To investigate the impact of γ on the
prediction results, we vary γ from 1 to 20 with the step value
of 1. Similarly, we also conduct two groups of experiments
with the training ratio with 60% or 80%, respectively. Note
that we also fix α = 60 and β = 60 in both the two groups of
experiments.

Fig. 7 shows the experiment results. When γ increases, AUC
also increases at first. However, when γ surpasses a certain
threshold, AUC decreases. A similar trend can be found in
MAP. This is because the CNN component may not have
enough neurons to learn from the 2-D electricity consumption
data when γ is small while too large value of γ may cause
overfitting. Similar to γ, there may exist different threshold
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(d) MAP results with training ratio = 80%

Fig. 6. Effect of α. System parameters: γ = 10, β = 64, no. of neurons from 10 to 120 with the step value of 1.
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(c) MAP results with training ratio = 60%
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(d) MAP results with training ratio = 80%

Fig. 7. Effect of γ. System parameters: α = 60, β = 60, no. of filters from 1 to 20 with the step value of 1.
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Fig. 8. Effect of β. System parameters: α = 60, γ = 15, no. of neurons from 10 to 140 with the step value of 1.

values of γ to optimize AUC and MAP.

3) Effect of β: β is a parameter controlling the number of
neurons in the fully-connected layer in the CNN component
immediately following the pooling layer. To investigate the
impact of β on the prediction results, we vary the values of
β from 10 to 140 with the step value of 1. At the same time,
we fix α = 60 and γ = 15. We also conduct two groups of
experiments with the similar settings on the training ratio with
60% or 80%, respectively.

Fig. 8 shows experiment results. We have the similar
findings to those in investigating the effect of α. In fact, β
plays a similar role in the CNN component like α in the Wide
component. So, to avoid the repetition, we do not explain
the experiment results of β in detail. However, it is worth
mentioning that the range of β is usually different from that
of α since the input data size for the fully-connected layer
in the CNN component is different from that in the Wide
component.

4) Effect of R: We choose R to control the number of
layers in the Deep CNN component. To investigate the impact
of R on the prediction results, we vary the values of R from
1 to 5 with the step value of 1. Table IV shows experiment
results. Note that we choose a general setting with the training
ratio 80% in CNN. It is shown in Table IV that AUC of

Wide & Deep CNN increases with the increased number of
layers. MAP@N has the upward trend similar to AUC with
the increased number of layers. Overall, the increased number
of layers in Wide & Deep CNN can improve the prediction
performance. The performance improvement mainly owes to
the effect that Deep CNN can capture features of 2-D data
better with the increased number of layers.

TABLE IV
EFFECT OF R

Training ratio = 80%
# of layers R AUC MAP@100 MAP@200

1 0.7815 0.9190 0.8674
2 0.7872 0.9353 0.9051
3 0.7890 0.9449 0.9034
4 0.7923 0.9524 0.9080
5 0.8001 0.9565 0.9128

D. Convergence Analysis

In our Wide & Deep CNN method, the epoch is a parameter
controlling the train round. An epoch is defined by one forward
pass and one backward pass of all training samples. We choose
the similar settings like parameter study to investigate the
impact of the epoch. In particular, we vary the epoch values
from 10 to 100 with the step value of 1 and we fix α = 60,
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Fig. 9. Convergence analysis. System parameters: α = 60, γ = 15, β = 120, no. of epochs from 10 to 100 with the step value of 1.

γ = 15, β = 120. Similarly, we also conduct two groups of
experiments with different training ratio (60% or 80%).

Fig. 9 presents the results (in terms of AUC and MAP).
We can see that like the parameter study, when the epoch
value increases, both AUC and MAP increase at first. But
after a certain threshold on the epoch, both AUC and MAP
drop while they increase again later. This phenomenon can be
explained as follows. When we choose a smaller epoch value,
it may be not enough to let our Wide & Deep CNN system
learn from both 1-D and 2-D data. However, it may cause
overfitting when we choose a larger epoch value. Therefore,
there also exists a threshold on the epoch value to optimize the
training procedure in our Wide & Deep CNN. For example,
the best performance was achieved when the number of epochs
reaches 30 when the training ratio is 60%.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a Wide & Deep CNN model to
detect electricity theft in smart grids. In particular, our Wide
& Deep CNN model consists of the Wide component and the
Deep CNN component; it gains the benefits of memorization
and generalization brought by the Wide component and the
Deep CNN component, respectively. We conduct extensive
experiments on realistic electricity consumption data released
by State Grid Corporation of China (SGCC), the largest
electricity supply company in China. The experiment results
show that our proposed Wide & Deep CNN outperforms
existing methods, such as linear regression, support vector
machine, random forest and CNN. In fact, the proposed Wide
& Deep CNN model is quite general; it can be applied to other
scenarios, especially for industrial applications. For example,
indoor marihuana growing companies often steal electricity
from the power grid [43]. Since it consumes extremely high
amounts of electricity to grow marihuana, the abnormal elec-
tricity usage patterns can be captured by the proposed Wide
& Deep CNN model.
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