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Abstract—In Cognitive Radio Networks (CRNs), secondary
users (unlicensed users) can use spectrum when their transmis-
sions cause no interference to primary users (licensed users). The
spectrum sensing is a necessity to achieve this spectrum sharing
scheme. However, it is challenging to achieve wideband spectrum
sensing due to the computational complexity. In this paper, we
propose a novel greedy algorithm to solve the wideband spectrum
compressive sensing problem. The main idea of our algorithm
is to reconstruct spectrum for wideband signals without any
prior knowledge of spectrum. The proposed greedy algorithm
will reconstruct wideband spectrum along with sub-bands of
frequency in which spectrum is divided. The proposed greedy
algorithm can sense the range of each sub-band of frequency
efficiently without any apriori information. Extensive simulation
results show that our proposed algorithm outperforms existing
greedy algorithms such as Orthogonal Matching Pursuit (OMP)
in terms of accuracy and computational speed, Block OMP in
terms of computational speed.

I. INTRODUCTION

Cognitive Radio Networks (CRNs) are predominantly pro-
posed to solve issues regarding spectrum efficiency. The
Cognitive Radio may reduce the quality of service due to
interfering with primary users. It can also detect weak primary
users and sense the availability of spectrum for secondary users
with knowledge of presence and absence of primary users.
This can be done by utilizing the spectrum in opportunistic
fashion through which Cognitive Radio enable secondary users
to search available spectrum for transmission without causing
any disturbance in transmission of primary users. Due to
high demand for data transmission and increasing number
of users, different and more efficient spectrum management
approaches are needed to be developed to solve the challenges
in spectrum sensing and spectrum sharing. Spectrum sensing
techniques are used to detect the spectrum holes for data
transmission of secondary users without interfering primary
users data transmission [1]. The frequency bands allocated to

primary users for data transmission are called spectrum holes.
The spectrum sensing techniques can improve transmission of
both primary and secondary users by allocating spectrum dy-
namically. Therefore, Spectrum sensing is the most important
technique in Cognitive Radio networks. Cognitive Radio has
the ability to access sparse portion of spectrum and monitor
the spectrum to make sure that Cognitive Radio cause no un-
expected interference which depends on spectrum sensing. In
this paper, Compressive spectrum sensing is used to access the
sparsity in the given spectrum.There are numerous techniques
and methods used for spectrum sensing e.g., Energy detector
based sensing, Coherent based sensing, Cyclo-stationary based
sensing, Matched filter detector based sensing and other hybrid
techniques (that use two or more techniques at a time/ their
hybrid version) [2].

There are various techniques proposed to sense and detect
spectrum for narrowband spectrum and wideband spectrum. In
this paper, only wideband spectrum sensing techniques have
been discussed. Nowadays most of the transmission is based
on wideband spectrum in terms of communication such as 5G.
For narrowband spectrum sensing, many efficient and reliable
techniques have already been proposed but in case of wideband
spectrum sensing, there is a vast chance of improvement in
sensing spectrum more efficiently and accurately in significant
time without losing useful data.Numerous techniques and
methods have been proposed in past decade to detect wide-
band spectrum. In this paper, Various Compressive sensing
techniques are discussed to detect Wideband spectrum for
Cognitive Radio Networks. To understand compressive sensing
better, one can say that it is used to recover or reconstruct
the sparse signal present in the spectrum. The core idea of
compressive sensing is to sample analog signals at sub Nyquist
sampling rate by exploiting the sparsity in the signals using
a linear sampling process. To reconstruct/recover signal for



spectrum using compressive sensing, there is a variety of meth-
ods proposed from last decade such as; Basic Pursuit (BP),
Orthogonal Matching Pursuit (OMP) [3], Block Orthogonal
Matching Pursuit (Block_OMP) [4], Least Absolute Shrinkage
Operator (LASSO), Group Least Absolute Shrinkage Operator
(G_LASSO) [5].

In this paper, we have recovered wideband spectrum
through existing compressive sensing algorithms such as
OMP, Block_OMP, compared these existing algorithms (OMP,
Block_OMP) and proposed a novel greedy algorithm whose
performance is better than OMP in both noiseless environment
and noisy environment. Block_OMP still preforms the best
because it has prior knowledge of sub bands of frequency
in which spectrum is divided. To some extent, the proposed
greedy algorithm is also better than Block_OMP in those cases
where there is no prior knowledge of sub bands of frequency.
We have experimented all of these algorithms by taking
wideband spectrum and wideband signals into assumptions i.e,
OFDM (Orthogonal Frequency Division Multiplexing) signals.
The performance of all algorithms have been observed in ideal
conditions as well as in noisy interference.

II. BACKGROUND AND EXISTING ALGORITHMS

For Wideband spectrum sensing, spectrum sensing has been
facing plentiful challenges. The researchers from past few
decades have been concentrating, primarily, on narrowband
spectrum sensing for exploiting spectrum holes over narrow-
band frequency range. The wideband spectrum sensing can
help to enact more clusters of information or more throughput
by taking advantage of available wideband frequency range
in spectrum as much as possible. For compressive spectrum
sensing, Richard G. Baraniuk [6] first proposed that the signal
acquisition based on compressive sensing is more efficient than
traditional sampling for sparse/compress signals. In this paper,
we have compared two existing sparse approaches: Orthogo-
nal Matching Pursuit (OMP) [7], [8] and Block_Orthogonal
Matching Pursuit (Block_OMP) [3]. In comparison, we have
analyzed the results of both algorithms for reconstruction
of signals. Furthermore, we have discussed their limitations
and recovery conditions for wideband spectrum sensing and
sparsity in ideal and noisy circumstances. We have proposed a
novel greedy algorithm in comparison of previously described
algorithms and compared the reconstructed signal from pro-
posed greedy algorithm with existing algorithms.

A. Orthogonal Matching Pursuit (OMP)

The orthonormal basis gets inclination over linear method,
notably when input signals are compatible with the basis.
Some other problems faced by this type of data which can
deal with redundant systems are called dictionaries. The
dictionaries are used for analyzing and representing compli-
cated functions. The problems procreate from the redundant
systems known as sparse approximation can be overcome by
Orthogonal Matching Pursuit (OMP). For input signal, OMP
can persuade sparse estimation containing error slightly worse
than optimal error (which is obtained by same number of

terms). OMP can get the common constraints from all optimal
representation of non_sparse signal. Matching Pursuit (MP)
also known as greedy algorithm, selects dictionary vector one
by one according to the applications of compression, denoising
and pattern recognition. MP selects iteratively one vector
at a time for computing signal estimation from redundant
dictionary. It contains a single adequate condition under which
both OMP and Basic Pursuit (BP) can recover exactly same
sparse signal. Matching Pursuit estimations are improved by
orthogonalizing the direction of projection with techniques
processed by numerous researchers in different time span. The
outcome of OMP is very promising and beneficiary for con-
vergence of finite number of iterations [7]. High dimensional
sparse signal recovery is based on linear measurements that is
possibly corrupted by noise and modeling error. We consider
the following linear model for reconstruction of signal:

y = Ax+ w (1)

where y ∈ Rm is measurement vector, the sens-
ing/measurement matrix is A ∈ Rm∗n, the signal is x ∈
Rn and w ∈ Rm is the measurement error. Let A =
(A1, A2, ..........., Am) such that Ai is the ith column of matrix
A. In this case, our assumption is that matrix A is normalized,
i.e., ||Ai||2 = 1 for all values of i. Our ambition is to
reconstruct x ∈ Rnfrom given values of y and A. For a
vector x = (x1, x2, ..........., xm) ∈ Rn , the support for x
is |supp(x)| ≤ k. The sparsity of signal could measure by
various methods such as Restricted Isometry Property (RIP),
mutual coherence and exact recovery conditions. In this paper,
we will reconstruct signal by keeping the mutual coherence
limitations.

The OMP algorithm is forward selection algorithm advanc-
ing step by step and it is easy to implement. The stopping
rule of OMP algorithm depends on set noise threshold. OMP
analyzes the limitation of mutual coherence. Mutual coherence
of matrix A is defined as the maximum absolute value of
cross correlations between column of matrix A, given in linear
model equation. The mutual coherence property is :

µ = max
i 6=j
|(Ai, Aj)| (2)

B. Block_ Orthogonal Matching Pursuit (Block_OMP)

Block OMP used block sparsity to improve the results
and also to check the melioration as compared to OMP.
Block_OMP is block version of OMP to recover auspiciously
block sparse signal. The Block_OMP will also improve the
recovery of signal through OMP in presence and absence of
noise. In Block_OMP, it is our assumptions that the problems
occur for recovery of block sparse signal whose non zero
elements are fixed. Block sparse signal can be recovered
or reconstructed through Basic Pursuit, LASSO and OMP.
These algorithms could analyze through Restricted Isometry
Property (RIP), Mutual Coherence and Exact Recovery Con-
dition. Aside from this, recovery will be robust from noise
and other errors e.g., modeling errors. Consider the problem



of recovering a block sparse signal x ∈ Rn from noisy
measurements, as linear equation:

y = Ax+ w (3)

where A ∈ Rm∗n (m � n) is the measurement matrix and
w is an arbitrary vector of errors. Let the number of rows
in A is multiple integer of n where m = Rd and R is
integer. Such conditions are assigned on dictionary A that will
recover the block sparse vector x from the measurements of y
by computationally efficient algorithm [3]. To describe block
sparsity, concatenate model x of equal length blocks.

x = [ xT1 xT2 . . xTL]T (4)

In this paper, Block_ OMP will analyze through mutual
coherence property. For Block_OMP, if [xL] has non zero
Euclidean norm for k indices L, the vector x is known as
block k − sparse. When L = 1, the block sparsity reduces
to conventional sparsity. As in , the conventional coherence
matrix of dictionary A is:

µ , max
i,j 6=i
|aTi aj | (5)

where airepresents ith column of given dictionary A. The
conventional coherence matrix is not sufficient for block
sparsity. To fully utilize block sparsity property, the block
coherence µB and sub coherence v are defined respectively
as:

µB , max
i,j 6=i

1

d
ρ|AT

i Aj | (6)

and
v , max

L
max
i,j 6=i
|AT

i Aj |, ai, aj ∈ AL (7)

where ρ(A) denotes the spectral norm of A which is Eigen
values of square root of maximum value of ATA. The block
coherence defines the coherence between blocks of A, while
the coherence within the block is sub coherence. When L = 1
and v = 0 , the columns of dictionary Al are orthonormal.
When the columns of A have unit norm, then the coherence
µ ∈ [0, 1] and v ∈ [0, 1]. Hence same limits are valid for block
coherence.

III. METHODOLOGY

In this paper, the total frequency F Hz in the range of
[ fo , fn ] is available for transmission on wideband

spectrum. Cognitive radio networks receive a signal r(t) which
contains spectrum band adjacent to each other of length n and
their frequency band will be fo < f1 < . . . < fn
[9]. At first, assume that time window for sensing spectrum
is t ∈ [0,mTo] where To is Nyquist rate sampling. Due to
Nyquist rate sampling, the signal r(t) could reconstruct having
samples m without aliasing. The receiver is digital so the
continuous-time domain signal r(t) is converted into discrete-
time domain which will be represented as x(t) and is belongs

to x ∈ CLof length L. So the linear system model/sampling
process in discrete time domain represents as:

x(t) = AT ∗ r(t) (8)

where r(t) is m ∗ 1 dimension vector and .T represents
transposition. The columns of {An}Ln=1 ofA can also view
as a set of signal or matched filter and the measurements
{xt[n]}Ln=1 are the projections of r(t) onto the process in
reality. For instance, A = Im represents uniform sampling at
Nyquist rate and Im represents identity matrix of size same as
rows of matrix A. We can take A = Fm as a random matrix of
dimension m∗n or aggregates frequency domain sampling and
Fm is DFT matrix (Discrete Fourier Transform). In this paper,
matrix A ∈ Rm∗n is DFT and the basis ψ, where ψ = F−1 is
also a DFT matrix which reconstruct the sparse signal/ sparse
coefficient vector x. For m − sparse signals, since m > n ,
there are infinitely many x′ that will satisfy Θx′ = y . This is
due to the linear model, if that is Θx = y, then Θ(x+ s) = y
for any vector s in null space N(Θ) of Θ. Therefore, the
algorithms for reconstructing signals are proposed to find the
sparse signal coefficient vector in n−m dimensional translated
in null space [6]. Let N−point DFT a[n] and 0 ≤ n ≤ N−1
is defined as:

A[i] ,
1√
N

[
n= 0]N − 1

∑
a[n]e−j

2πni
N , 0 ≤ i ≤ N−1 (9)

The DFT is discrete-time equivalent to continuous-time
Fourier transform, where A[i] = DFT{a[n]}, A[i] shows
the frequency content of samples in time domain of a[n]
associated with original signal a(t). Both C-T FT and DFT
are based on the parameters as complex exponential are eigen
function of any linear model. The a[n] can cover from its DFT
form through IDFT, which is:

a[n] ,
1√
N

[

i= 0]N − 1
∑

A[i]e−j
2πni
N , 0 ≤ i ≤ N − 1

(10)
a[n] = IDFT{A[i]}.The DFT and IDFT can be performed
using FFT and IFFT in hardware [10]. When n < m , sub-
Nyquist sampling rate or reduced sampling rate appears. The
basic idea of compressive sensing for wideband spectrum in
cognitive radio is to arrange and approximation the spectrum
of signalr(t) , whose samples are give as x(t) where n < m.
For that purpose, spectrum is organized in number of sub-
bands and their locations can be determined through given
frequency range.

A. Steps for Compressive sensing

For compressive sensing, the following steps bestow how
to minimize the complexity.

1) Compress the sampling rate to obtain measurements of
x(t) from r(t) signal primitively.

2) Reconstruct the signal from time domain to frequency
domain: r(f) = A ∗ r(t) from x(t) measurements.



3) Estimate the number of frequency bands(or one can say
signal present at bands on spectrum) and their location
in spectrum.

4) Recover the amplitude of signals present in spectrum
through compressive sensing, then check the accuracy
of algorithms by recovery of signal spectrum at Nyquist
rate and sub-Nyquist sampling rate (wheren < m ).

B. Reconstruction of Spectrum

We have inspected the spectrum recovery or reconstruction
through compressive sensing using existing greedy algorithms
along with proposed greedy algorithm. The proposed greedy
algorithm is much faster and accurate than OMP but not as
accurate as Block_OMP. With N measurements of x(t) =
AT ∗r(t) , estimate frequency response of r(t) as r(f) = A∗r
where A is DFT matrix. We have reconstructed a signal r(f) ∈
Cmfrom time domain sparse signal x(t) ∈ Cn through a non-
linear reconstruction function at sub-Nyquist sampling rate for
a linear sampler A ∈ Rm∗n i.e., based on linear transformation
equality x(t) = (ATF−1M )r(f) . This is NP-hard problem with
sparsity. An intuitive approach for recovery of signal is through
BP (Basic Pursuit) technique also known as greedy technique
which convert sparseness into convex optimization problem
which can be solved by linear programming [9].

rf = argmax
rf

||r(f)||1 s.t. x(t) = (ATF−1M )r(f)

(11)
Besides this approach, there are numerous recovery techniques
such as : OMP, Block_OMP (also called greedy algorithms)
and some dynamic approaches (LASSO,G_LASSO ). In this
paper, only greedy approaches are used to recover the spec-
trum. Assume that the problem of recovering sparse signal
x ∈ Rn from noisy measurements as linear equation (1):

y = Ax+ w (12)

where A ∈ Rm∗n (m < n) is the measurement
matrix and w is arbitrary vector of errors in case of
noise (in our assumptions, it is AWGN case). Let A =
[ A1, A2, .. .. .. .., Am ] where At is the tth col-
umn of matrix. In this paper, we assumed that the matrix A is
normalized that is ||At||2 = 1 for all values of i . The intention
of proposed greedy technique is to reconstruct x ∈ Rn from
the given and measured values of y and A. The core benefit of
this greedy approach is that there is no prior knowledge of sub
bands of frequency but the wideband signal can be recovered
through proposed algorithm for the reconstruction of spectrum.
We added a noise threshold through matched filter threshold
for noisy environment [11].

γ =
√
σ2EQ−1(PFA) (13)

where E is energy of matrix A, σ2 is variance and PFA is
probability of false alarm which is usually 0.01 ≤ PFA ≤ 1.

The preeminent ambition of proposing greedy algorithm
is to detect the sparse signal in case of unknown length of
frequency bands. In OMP case, only one atom/index at a

time has been recovered and subtracted from residual. It takes
too much time and too many iteration while executing the
loop. On contrary, Block OMP performs approximate 100%
and is much faster than OMP because the size of frequency
bands is known in which spectrum is divided. The proposed
greedy algorithm have no prior knowledge of the length of
sub bands of frequency and it recovered the whole sub band
of frequency at a time by detecting a single peak value which
cause execution much faster and also number of iterations are
much less than OMP, near to the iterations of Block_OMP. The
essential objective of proposed greedy algorithm is to achieve
the results better than OMP and near to Block_OMP. This can
be ascertained in next section. The proposed greedy algorithm
is better than Block_OMP in such a way that the length of
sub bands of frequency is unknown while for Block_OMP, it
is prerequisite to have aforementioned knowledge of size of
sub bands of frequency. The only drawback of the proposed
greedy approach as compared to Block_OMP is, this approach
can not recover the tail of signal in noisy environment while
Block_OMP can recover spectrum along with the tail.

Algorithm 1 Steps followed by Proposed Greedy Algorithm
1) Initialize the residual ro = y and the variable that stores

the blocks of different length (or signals in sub bands
of frequency) sj = ∅ for iteration j.

2) Find the maximum value of variable x for tth step along
with the index.

jt = argmax
t
||AT

t rj−1||2 (14)

3) Find all the peaks greater than the noise threshold and
store them in a variable. Find their location in spectrum.

4) Initially, choose the block having maximum value of x
. Update the sj = sj−1 ∪ {tj} and S(j) = [S(j−1)Atj ] .

5) Solve the optimization problem to obtain new estimated
signal x(t) = argminx||y − S(j)x||2.

6) Calculate the new residual from above equation as
r(t) = y − S(j)x(t) = y − PS(j)y, where PS(j) =
S(j)(S(j))† is the orthogonal projection onto the column
space and .† stands for pseudo_inverse.

7) If ||rj ||2 ≥ w , return to Step 2; Otherwise Stop.

The number of iterations for execution of loop in each
algorithm e.g., existing greedy algorithms and proposed greedy
algorithm shows that the proposed greedy takes least time for
execution. It is much faster in implementation as compared
existing greedy algorithms. OMP algorithm is slow because
it takes only one atom at a time to recover the sparse signal.
Block_OMP is slower than proposed greedy algorithm because
of the prior knowledge of length of sub bands/block size and
it will take time to check all the blocks either there is any
signal present in respective sub band. On the other hand, the
proposed greedy algorithm only checked peaks greater than
noise threshold and would execute the whole block of peak.
This is main reason for faster execution time. Other reason
is Block_OMP is recovering tail along with signal meanwhile



OMP and proposed greedy algorithm do not recover tail of
signal.

TABLE I
NUMBER OF ITERATIONS FROM EXECUTION OF EACH ALGORITHM

SNR(dB) OMP Block_OMP Proposed Algo
20 35 3 3
15 32 3 3
10 33 4 3
5 40 4 3
3 45 4 3

IV. RESULTS

TABLE II
MUTUAL COHERENCE OF PROJECTION MATRIX AT DIFFERENT SAMPLING

RATE

Sampling Rate Mutual Coherence of Projection Matrix
100% 0
75% 0.0595
65% 0.0759
50% 0.0905

TABLE III
PERFORMANCE EVALUATION PARAMETERS

Bandwidth of Spectrum 3GHz
Sparsity of Spectrum 60%

Modulation Scheme for OFDM QAM-MOD
Signal-to-noise Ratio(SNR) 3-15dB

Number of transmitted bits in OFDM signal 1 64 bits
Number of transmitted bits in OFDM signal 2 128bits

Fig. 1. OFDM signal generated in Spectrum under noisy Conditions at sub-
Nyquist rate using 75% samples and having µ = 0,σ2 = 1 and SNR =
10dB, Recovered signal spectrum through Proposed Algorithm, OMP and
Block_OMP respectively

To contemplate the performance of these algorithms more
manifestly, We have used Orthogonal Frequency Division Mul-
tiplexing (OFDM). We have scrutinized the existing greedy

Fig. 2. OFDM signal generated in Spectrum under noisy Conditions at sub-
Nyquist rate using 65% samples and having µ = 0,σ2 = 1 and SNR =
10dB, Recovered signal spectrum through Proposed Algorithm, OMP and
Block_OMP respectively

Fig. 3. OFDM signal generated in Spectrum under noisy Conditions at sub-
Nyquist rate using 50% samples and having µ = 0,σ2 = 1 and SNR =
10dB, Recovered signal spectrum through Proposed Algorithm, OMP and
Block_OMP respectively

algorithms with proposed one by transmitting OFDM signals
through spectrum without causing any interference among
each other and recovered the signals through existing greedy
algorithms and proposed greedy algorithm. We have checked
the accuracy of proposed greedy algorithm by simulating
existing and proposed greedy algorithms in noisy and noise-
less environment. It is rough reckoning that Block_OMP
would work the best in all circumstances as in Block_OMP,
the size of sub bands are already known and can easily
recover the signals spread in the spectrum more precisely and
conveniently. On the other hand, OMP is less complex and



Fig. 4. OFDM signal generated in Spectrum under noisy Conditions at
sub-Nyquist rate using 75% samples and having µ = 0,σ2 = 1 and
SNR = 5dB, Recovered signal spectrum through Proposed Algorithm, OMP
and Block_OMP respectively

Fig. 5. OFDM signal generated in Spectrum under noisy Conditions at
sub-Nyquist rate using 65% samples and having µ = 0,σ2 = 1 and
SNR = 5dB, Recovered signal spectrum through Proposed Algorithm, OMP
and Block_OMP respectively

easy to implement but it is not an intelligent algorithm to sense
the presence of signal in the spectrum and have no idea of sub
frequency bands whether it is recovering consecutive signals
or not. On contrary to this, the proposed greedy algorithm is
intelligent enough to sense the sub frequency bands which
are divided randomly and numerous length of signals are
present in the spectrum for data transmission depending on
the user demand. The proposed greedy algorithm can sense
and recover the sub bands of frequency by sensing a single
peak of signal in the sub band. It is easy to implement and
fast computationally. It preforms better than OMP in noisy

Fig. 6. OFDM signal generated in Spectrum under noisy Conditions at
sub-Nyquist rate using 50% samples and having µ = 0,σ2 = 1 and
SNR = 5dB, Recovered signal spectrum through Proposed Algorithm, OMP
and Block_OMP respectively

Fig. 7. Absolute Error Curve of OMP, Proposed Algorithm and Block_OMP
for 100% samples and 5000 iterations for each SNR

circumstances in compressive sensing case. Other performance
evaluation parameters are described in table. These parameters
are keep into mind to observe the recovery performance of the
greedy algorithms while simulations.

A. Mutual Coherence

In this paper, the recovery limitations for existing algorithms
and proposed algorithm are mutual coherence of projection
matrix. By observing the performances of these algorithms
at Nyquist sampling rate and Sub-Nyquist sampling rate, we
concluded that all these algorithms have worked as expected.
By scrutinizing the given table for mutual coherence, we
observed that the mutual coherence at Nyquist sampling rate



Fig. 8. Absolute Error Curve of OMP, Proposed Algorithm and Block_OMP
for 75% samples and 5000 iterations for each SNR

Fig. 9. Absolute Error Curve of OMP, Proposed Algorithm and Block_OMP
for 65% samples and 5000 iterations for each SNR

is zero and at is changing slightly at sub-Nyquist sampling
rate.

B. Absolute Error Curve

For investigating the performance of all the discussed
greedy algorithms, we have compared their absolute error
curves at different sampling rates. To calculate absolute error
cure, we use the given formula:

Abserr =

∑K

i=1
recoveredsig − originalsig

len of original sig

Fig. 10. Absolute Error Curve of OMP, Proposed Algorithm and Block_OMP
for 50% samples and 5000 iterations for each SNR

V. CONCLUSIONS

In this paper, we have inquired different greedy approaches
to reconstruct the spectrum through compressive sensing. We
have scrutinized the performance of existing greedy algorithms
i.e., OMP and Block_OMP by inquiring their reconstruction
preciseness and absolute error curve. In comparison to the
existing greedy algorithms, we proposed a greedy algorithm
and checked the preciseness of this algorithm as well. In
the proposed algorithm, the length of frequency sub bands is
unknown as compared to Block_OMP. The proposed algorithm
has recovered the starting and ending points of each sub
band along with the signal present in the spectrum without
loosing its amplitude. We have inspected the reconstructed
signals at Nyquist sampling rate and sub Nyquist sampling
rate (using various percentage of sampling rates) in both noisy
and noiseless conditions. Through this observation, We have
concluded that Block_OMP performed more precisely and
efficiently as compared to the other algorithms. The logic
behind is; Block_OMP has prior knowledge of length of
frequency sub bands. The best performance of Block_OMP,
among all algorithms, also shows the succession of designed
models. Other than Block_OMP, the proposed algorithm pre-
ciseness is near to Block_OMP because it is also recovering
the length of sub bands along with the signal present in the
spectrum in considerably much less time. The performance
of proposed algorithm is much better than OMP. To check
the practicality of these algorithms, the OFDM signals present
in the spectrum through simulation were recovered. We have
investigated the recovered OFDM signals in both noisy and
noiseless conditions at Nyquist and sub Nyquist sampling
rates. To recover the spectrum, we have used matched filter
detection. The reason behind using matched filter detector over
energy detector is that, the matched filter performs better in
both low and high SNR whereas energy detector performs



poorly in low SNR cases.

VI. FUTURE RECOMMENDATIONS

To extend this research work further, there are many possi-
bilities. As we have proposed greedy algorithm in comparison
to existing greedy algorithms. One can focus on two main
objectives for extension of this work:

• Recover signal through concept of cyclic prefix.
• Heterogeneous Spectrum

For future advancements, the OFDM signals spread over the
spectrum can be recovered by using concept of cyclic prefix.
We can recover whole signal by only recovering cyclic prefix
of OFDM signal and check that if it is copied at the head
of the data as expected. In case of heterogeneous spectrum
where both narrowband and wideband signals are present, the
performance of all discussed algorithms will degrade. So one
can expand this work for such conditions.
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