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Abstract

One of recent proposals on standardizing quality of user experience (QoE) of video streaming over mobile network is
video Mean Opinion Score (vMOS), which can model QoE of video streaming in 5 discrete grades. However, there are
few studies on quantifying vMOS and investigating the relationship between vMOS and other quality of service (QoS)

Mobile networks

parameters. In this paper, we address this concern by proposing a novel data analytical framework based on video
streaming QoF data. In particular, our analytical model consists of K-means clustering and logistic regression. This
model integrates the benefits of both these two models. Moreover, we conduct extensive experiments on realistic
dataset and verify the accuracy of our proposed model. The results show that our proposed framework outperforms
other existing methods in terms of prediction accuracy. Moreover, our results also show that vMOS is essentially
affected by many QoS parameters such as initial buffering latency, stalling ratio, and stalling times. Our results offer a
number of insights in improving QoE of video streaming over mobile networks.
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1 Introduction

Video streaming is becoming one of the most popu-
lar services over mobile networks. It is predicted in [1]
that the traffic caused by video streaming will occupy
more than 77% of all consumer Internet traffic by 2021,
among which mobile video traffic will be more than
55% of all video traffic. The growing demands on video
streaming over mobile networks inevitably lead to the
challenges in optimizing network resource in order to
improve the user perceptual experience. Many previ-
ous studies mainly focus on improving quality of service
(QoS) of video streaming over mobile networks. Typi-
cal QoS measures include throughput, bandwidth, outage,
jitter, and delay [2]. However, most of these QoS met-
rics fail to characterize user perceptual experience, which
is also called quality of experience (QoE). It is more
crucial to conduct video quality assessment from QoE
than that from QoS [3, 4] because (i) enhancing QoS
does not directly improve QoE [5] and (ii) only improv-
ing QoS sometimes significantly increases operating
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expenditure, consequently decreasing the profit of service
providers [6].

Therefore, QoE improvement of video streaming over
mobile networks has received extensive attention recently.
In particular, the work of [7] investigates QoE-driven
cross-layer optimization for video transmission in wire-
less networks. Ramamurthi et al. [8] propose a resource
management scheme at network core in wireless net-
works to improve video QoE. The work of [9] presents
a large-scale measurement-based study on the effects of
Internet path selection in video QoE and offers several
QoE enhancement schemes.

However, the prerequisite of QoE improvement of video
streaming is to quantify QoE appropriately. Video QoE
assessment schemes can be generally categorized into sub-
Jective tests, objective assessments, and data-driven anal-
ysis [3]. Compared with subjective tests and objective
assessments, data-driven analysis is more promising due
to the availability of massive datasets and the accuracy
of characterizing user perception while overcoming the
drawbacks of subjective tests and objective assessments
(such as high cost and insufficient human visual sys-
tem knowledge). In particular, the work of [6] proposes a
data-driven model to quantify the metrics affecting video
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QokE. Jiang et al. [10] improve video QoE by exploiting
data-driven QoE prediction. The work of [11] improves
the video bitrate adaptation based on data-driven QoE
prediction. Huang et al. [12] propose a dynamic adap-
tive streaming via HTTP to optimize user QoE. Ref.
[13] presents a Multi-Constraint Quality-of-Experience
(QoE) centric Routing (MCQR) scheme to improve user
video streaming QoE over mobile networks. The work
of [14] presents a queue-based model to analyze the
video buffer using discrete-time analysis. Marai et al. [15]
propose a client-server cooperation-based approach to
achieve efficiency, fairness, and stability of video adaptive
streaming.

In addition to the above efforts, there are also
other solutions on standardizing QoE. One of recent
video QoOE measurement standards is U-vMOS
(User/Unified/Ubiquitous video Mean Opinion Score)?,
which was proposed by Huawei in 2016 [16]. The score
of vMOS is essentially established according to Mean
Opinion Score (MOS) standardized by International
Telecommunication Union (ITU) [17] as shown in
Table 1, where discrete grades from 1 to 5 represent bad,
poor, fair, good, and excellent, respectively. It is shown
in [16] that vMOS at video playback startup is mainly
determined by three key factors: video quality, initial
buffering delay, and video freezing duration, each of which
is also affected by multiple QoS variables. Recently, Pan
et al. [18] investigate machine learning-based bitrate esti-
mation on YouTube video streaming based on Huawei’s
vMOS assessment model. However, they just give a math-
ematical expression of vMOS based on their subjective
estimations. The work of [19] presents using vMOS to
investigate the impacts of several system parameters on
long-term evolution (LTE) networks based on simula-
tions. To the best of our knowledge, there is no data-driven
QoE analysis on vMOS.

Therefore, this paper aims to conduct data-driven QoE
analysis on vMOS. In particular, we obtain a realistic
dataset on video QoE based on SpeedVideo Global Oper-
ating Platform (SVGOP) established by Huawei. This
dataset has the following unique characteristics: (1) het-
erogeneous data types, (2) positive/negative correlations,
and (3) dependence of features; these characteristics result
in the difficulties in analyzing video QoE data.

Table 1 Mean Opinion Score (MOS) evaluation scale

Score Quality Distortion Class
1 Bad Very annoying but objectionable 0

2 Poor Annoying, but not objectionable

3 Fair Perceptible and slightly annoying 1

4 Good Just perceptible, but not annoying

5 Excellent Imperceptible
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To address the above concerns, we propose a data-
driven analysis framework to analyze the relationship
between VMOS and other QoS parameters. Although
our previous work [20] presented preliminary results
on quantifying vMOS and other QoS parameters, this
study is significantly different from our previous work
in the following aspects: (1) we conduct a data pre-
liminary analysis on vMOS data; this analysis has
been ignored in our previous work; (2) we propose
a novel analytical framework in this paper, which is
significantly different from the previous work; and
(3) experiment results have shown that our proposed
model can improve the predication accuracy than our
previous work.

In addition, this paper has the following research con-
tributions in contrast to other existing studies: (i) our
model consists of K-means clustering approach and logis-
tic regression; the combination of these two approaches
can greatly improve the predication accuracy; (ii) we
have conducted extensive experiments on three train-
ing datasets and one testing dataset and the experiment
results show that our proposed model outperforms other
existing methods in terms of predication accuracy; and
(iii) moreover, our results also imply that a small set of
QoS parameters play an important role in determining
vMOS.

The remainder of this paper is organized as follows.
Section 2 describes the data used in this paper and iden-
tifies the challenges. We then present the overview of our
method in Section 3. Section 4 presents the experimental
results. Finally, we conclude this paper in Section 6.

2 Datadescription
We obtained the realistic datasets from SpeedVideo
Global Operating Platform (SVGOP) established by
Huawei?; SVGOP is a specific application of vYMOS in
mobile networks throughout the world. In particular,
three datasets contain totally 89,266 samples with 11 fea-
tures (i.e., QoS parameters) and 1 scoring factor vMOS.
Table 2 summarizes the features. As shown in [16], vYMOS
is a function of the above QoS parameters. However, to the
best of our knowledge, there is no data-driven analysis on
the relation between vMOS and other QoS parameters.
We first conduct a preliminary statistic analysis on the
dataset. In particular, Fig. 1 displays the histogram of
vMOS in different scales (ranging from 1 to 5), where
the vertical axis represents the frequency of vMOS and
the horizontal axis represents the evaluation scale of
vMOS. We observe from Fig. 1 that most of vMOS val-
ues concentrate on the range from 3.5 to 4. When plot-
ting the normal distribution curve (i.e., the red curve
in Fig. 1), we can find that the median is about 4.0,
implying that most of vMOS values are quite close
to “good”.
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Table 2 Description of dataset

Types Features

QoS parameters Average rate of playing phase (kbps)
Video total download (DL) rate (kbps)
Video bitrate (kbps)

Initial max DL rate (kbps)

End-to-End (E2E) round-trip time (RTT) (ms)
Initial buffering latency (ms)

Video Initial buffer downloaded (byte)
Playing time (ms)

Playing total duration

Stalling times

Stalling ratio

Scoring factors vMOS

We then investigate the correlations between vMOS and
other QoS parameters. In particular, Fig. 2 shows a his-
togram of vMOS versus video total DL rate. It is shown in
Fig. 2 that there is a positive correlation between vMOS
and video total DL rate, implying that the higher the video
total DL rate is, the higher the vMOS is.

In order to measure the correlation between vMOS
and initial buffering latency, we plot vMOS against initial
buffering latency in Fig. 3 where there is a negative cor-
relation between vMOS and initial buffering latency. In
other words, vMOS decreases with the increment of initial
buffering latency, implying the worse QoE to users.

Figure 4 plots vMOS against stalling ratio. Essen-

tially, stalling ratio is defined as Stallingratio =
Stalling duration

Playing total duration

[16]. Since most of Stalling ratio values concentrate on

according to the white paper of Huawei

10000

8000

6000

Frequency

4000

2000

1 1.5 2 25 3 3.5 4 4.5 5
Score

Fig. 1 vMOS histogram of frequency distribution

Page 30f 10

some small values (i.e., less than 0.3), we also plot a sub-
graph in Fig. 4 to better present the results. We observe
from Fig. 4 that there is a negative correlation between
vMOS and stalling ratio. In other words, the higher the
stalling ratio is, the lower the vMOS is.

Due to the space limitation, we do not show other cor-
relation analytical results on other QoS parameters in this
section. In summary, we find that the dataset has the
following characteristics:

® Heterogeneous data types. The preliminary results
show that QoS parameters are in different types and
different ranges. For example, the initial buffering
latency is ranging from 500 ms (millisecond) to 30,000
ms while the average rate of play phase is ranging
from 300 kbps (kilobit per second) to 16,000 kbps.

e Positive/negative correlations of QoS parameters. As
shown in the statistics results, we observe that there
are positive or negative correlations between vMOS
and other QoS parameters. For example, there is a
positive correlation between vMOS and video total
DL rate while there is a negative correlation between
vMOS and initial buffering latency.

e Dependence on QoS parameters. The preliminary
statistics results also show that vMOS is essentially
affected by multiple factors, such as average rate of
playing phase, video total DL rate, end-to-end (E2E)
round-trip time, and initial buffering latency.

The above characteristics result in the difficulties in
analyzing video QoE data. To address the above chal-
lenges, we propose a novel data-driven QoE analy-
sis framework (which will be described in details in
Section 3).

3 QoE analysis framework

In order to address the above concerns, we propose a
novel data-driven QoE analysis method, which consists of
the following procedures: (1) data preprocessing and (2)
data analysis with integration of K-means clustering and
logistic regression. Figure 5 shows the flow chart of our
proposed method.

3.1 Data preprocessing

We need to normalize the features since they are in dif-
ferent units. In particular, we make a conversion from
the absolute value to the relative value. In particular, we
choose the MAX-MIN scaling method to normalize the
positive and negative values. More specifically, we have

e Dositive values:

Xjj — min (xij)

1)

" nax (%) — min (xlj)’

¢ Negative values:
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where x;; represents the original value, u;; represents the
value after normalization, min(-) is the minimum value,
and max(-) is the maximum value.

3.2 K-means + LR method

In this paper, we use logistic regression (LR) mainly to pre-
dict whether a user’s QoE of video streaming is “good” or
“bad” since it is hard to determine it based on a contin-
uous vMOS value within [1, 5]. However, logistic regres-
sion requires that the dependent variable is dichotomou

the sample datasets into two groups according to “good”
or “bad” We then use logistic regression to predict the
QoE of video streaming.

3.2.1 K-means clustering

The main idea of K-means algorithm [21] is to find a par-
tition such that squared error between the empirical mean
of a cluster and the points in the cluster is minimized. In
particular, given a dataset X = {x;}, i = 1,2,..,m, we
partition them into K disjoint clusters so that the sum of
the intra-cluster variances is minimized. We denote the K
disjoint clusters by C = Cy, Cy, ..., Ck.

451
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Fig. 3 vMOS versus initial buffering latency
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Fig. 4 vMOS versus stalling ratio
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The goal of K-means is to minimize the within-cluster
sum of variance over all clusters. In other words, we need
to find

K
: 2
argmin } >l — e,

k=1 x€C;

3)

where puy is the mean of cluster C;.

This clustering process can be completed by alternating
between assigning instances to their closest centers and
recomputing the centers until a local minimum reaches.

3.2.2 Logistic regression

In this paper, we concern with a binary classification prob-
lem of categorizing QoE of a video streaming into two
cases of “bad” and “good”. To solve this problem, we exploit
logistic regression (LR). In particular, we denote the QoE
by a binary-dependent variable. This variable only takes
two values, either “0” or “1” Specifically, we use “1” to

represent “good” and “0” to represent “bad” Without loss
of generality, we classify a data sample as “bad” when its
vMOS score is within [1,2] and “good” when its vMOS
score is within [3, 5], as shown in Table 1.

Recall that a dataset contains m samples, D =
X1,91)s (X2, 92)5 ooy KXints Ym), Where X; = (xi1, %12, ..., Xi5) is
the i — th input pattern with dimensionality j and y; is a
corresponding variable that takes a value of 0 or 1. The
term y; = 0 indicates the i — th sample is bad and y; = 1
indicates the i — th sample is good. The vector X; contains
j influence features (for all n QoE features) for the i — th
sample and x;; denotes the value of feature j for the i — th
sample. We denote the probability of vMOS being “good”
by p and by 1 — p of vMOS being “bad”. Then, the logit
transform of probability p is as follow,

logit(p) = In |:1f}91| = Bo+ Bix1+ Baxa + ... + Buu,
(4)

our method
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Normalization

QoE dat

k-means + LR

k-means clustering

Empirical study
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Fig. 5 Our method used in this paper
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where fy is the offset and B; (i = 1, ..., n) is the correspond-
ing regression coefficient for each QoS parameter.

It is shown in Eq. (4) that the probability of occurrence
denoted by p(x) can be expressed as a non-linear function
of features,

1 1
1+ e logitp®@) — 1 + e~ (BotBrxitBoxato.tBurn)’

(5)

px) =

where p €[0,1]. Since the logistic regression model is
non-linear, the maximum likelihood estimation method
can be used to estimate the regression coefficient
Bi(i=0,..,n).

4 Empirical study

As we summarize in Section 2, the dataset has the char-
acteristics such as different types, positive and negative
correlations, and dependence. Therefore, we need to use
the proposed method to address these concerns. In par-
ticular, we describe the experiment settings in Section 4.1.
We then show the intermediate results of K-means clus-
tering and logistic regression in Section 4.2. We next
compare our proposed method with other existing meth-
ods in terms of predication accuracy in Section 4.3. Finally,
we conduct performance analysis of our proposed method
in Section 4.4.

4.1 Experiment settings

We obtain three sample datasets from SpeedVideo Global
Operating Platform of Huawei. Table 3 presents the meta
data information of these datasets. In particular, dataset 1,
dataset 2, and dataset 3 contain 30,000, 30,000, and 26,984
samples, respectively, each of which has 11 QoS parame-
ters. Table 4 summarizes the 11 features where we denote
each of these 11 features by variable x; (i = 1 to 11).

4.2 K-means LR method

4.2.1 K-means Analysis

As shown in Section 3, we exploit the proposed K-means
logistic regression method to predict QoE. In particular,
we classify each dataset into two classes: one class con-
tains samples with QoE being “good” and another class
contains samples with QoE being “bad” The experimental
results show that these two classes are fairly unbalanced
in terms of class size. Thus, we choose K-means scheme

Table 3 Meta data information

Description No. of samples No. of features
Dataset 1 30,000 1
Dataset 2 30,000 1
Dataset 3 26,984 11

Page 6 of 10
Table 4 Summary of features
Types Features Variables
QoS parameters  Average rate of playing phase (kbps) X1
Video total download (DL) rate (kbps) X
Video bitrate (kbps) X3
Initial max DL rate (kbps) X4

End-to-End (E2E) round-trip time (RTT) (ms) x5

Initial buffering latency (ms) X6
Video Initial buffer downloaded (byte) X7
Playing time(ms) Xg
Playing total duration X9
Stalling times X10
Stalling ratio X11

to search the cut-off values. Specifically, we obtain classi-
fication standard values, 3.9, 3.9, and 3.93 for datasets 1, 2,
and 3, respectively. Table 5 shows the K-means clustering
results.

4.2.2 Logistics regression analysis

We next conduct logistics regression analysis. In partic-
ular, we give the regression expression on 11 features as
follows,

logit(p) = Bo + B1x1+Paxa+P3x3 + Paxa+ Bsxs + Bexe
+B7x7 + Bsxg + Poxg + Proxio + P11x11, (6)

where x; (i = 1 to 11) corresponds to each of 11 features
as given in Table 4 and p; is the regression coefficient.
Table 6 lists regression results on the three datasets,
where “Value” denotes the resulting value of each coeffi-
cient, “Wal” denotes the value of the Wald test under the
significant level of “Sig” [22]. We observe from Table 6
that the lower “Sig” value (or the higher “Wal” value) of a
coefficient indicates the higher impact of that coefficient
on vMOS. In general, Sig> 0.05, the coefficient is not sta-
tistically significant, implying that no correlation can be
found between the QoS parameter and vMOS. In prac-
tice, there is no correlation between a QoS parameter and
vMOS when Sig < 0.05 according to the Wald test [23].

Table 5 K-means clustering analysis

Dataset Classification standard QoE No. of samples
Dataset 1 3.90 Bad 10,306

Good 19,694
Dataset 2 3.90 Bad 19,833

Good 10,167
Dataset 3 393 Bad 9,199

Good 17,785
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Table 6 Regression coefficients
Coefficient Dataset 1 Dataset 2 Dataset 3

Value Wal Sig Value Wal Sig Value Wal Sig
B 3443 0.005 0.943 — 1551 0.272 0.602 —11.094 0214 0.643
B — 1265 0.001 0.98 9.88 0.103 0.748 12.21 0.245 0.621
B3 105.18 7.374 0.007 1.721 38.976 0 2263 75.108 0
Ba — 18403 0.27 0.599 —0632 0.129 0.72 —0.736 0.152 0.697
Bs 15.89 0.41 0522 0313 0.074 0.785 0.943 0.585 0444
Bs 112529 747 0.006 2156.26 404.857 0 2598.501 408.67 0
B7 — 1449 0.013 0.909 —4.778 0312 0576 4.1 0454 0.501
Bs 211762 237 0.123 3612.752 6.299 0.012 4204.75 5.961 0.015
Bo — 325245 2.359 0.125 —56.298 6.409 0.011 —64.055 5813 0.016
Bio — 191144 0.265 0.607 19.609 0.062 0.803 — 45572 4.02 0.045
B — 207352 2369 0.124 — 3553314 6.368 0.012 —4158.129 4.132 0.042

It is shown in Table 6 that coefficient B¢ (corresponding
to initial buffering latency) has the most significant impact
on vMOS. Similarly, we can find that coefficient 3 (cor-
responding to video bitrate) also has a strong influence on
vMOS because of high Wal value (i.e., 7.374).

4.3 Performance comparison

We next present the experimental results over the given
datasets with performance comparison with conven-
tional traditional methods including multivariate linear
regression, logistic regression, support vector machines,
K-nearest-neighbor and Naive Bayes [24].

We then evaluate the performance of our proposed
method and other traditional methods. Table 7 presents
performance comparison of our proposed K-means + LR
method with other methods, where we choose the pre-
cision as the performance metrics (the higher precision
implying the better performance). Among all the meth-
ods, our proposed K-means + LR method has the high-
est performance with precision 96.94, 97.13, and 97.54%
on dataset 1, dataset 2, and dataset 3, respectively. This
performance improvement may lie in the integration of
K-means method and logistic regression method.

4.4 Performance analysis of our method

4.4.1 Residual plots

We first use the residual error plots to evaluate the accu-
racy of the proposed model. In particular, we define
Error = Prediction — Original, where Prediction is the
prediction value and Original is the given value. Figure 6
shows the residual plots over the three datasets, in which
blue points denote the “good” QoE values and blue points
denote the “bad” QoE values. It is shown in Fig. 6 that
there are more red points than blue points, implying that
our model has a bias of regarding “good” QoE values
as “bad”.

4.4.2 Accuracy analysis
In order to assess the accuracy of prediction, we use
Accuracy, which is defined as follows,

(TP +TN)
(TP+FP+TN+FN)’

7)

Accuracy =

where TP is true positive, FP is false positive, FN is false
negative, and TN is true negative.

We obtain another dataset from SVGOP. This dataset
contains 2517 samples. This new dataset serves as the
testing dataset. We next evaluate the accuracy of our
proposed model over two datasets: training dataset (i.e.,
dataset 1) and testing dataset (i.e., the dataset contain-
ing 2517 samples). Figure 7 gives the histogram of the
accuracy values of 11 QoS parameters over two afore-
mentioned datasets. We observe from Fig. 7 that training
dataset has the accuracy value close to that of testing
dataset in most of QoS parameters while there are some
gaps between several QoS parameters (e.g., playing total
duration); the performance gaps may owe to the fact of
the small sample size of testing dataset (2517 samples ver-
sus 30,000 samples in training dataset). Note that we have
similar findings in dataset 2 and dataset 3. Without repe-
tition, we do not show the results on dataset 2 and dataset
3 here.

We next use the deviance to evaluate the measure of the
fitness of the data. In particular, the deviance denoted by
D value is calculated by comparing a given model with the
saturated model [24]. We define D value = |prediction —
original|, where prediction and original denote the predic-
tion value and the original value, respectively. Table 8 gives
the deviance results over the three datasets and the cor-
responding rankings (sorting D value in ascending order).
We observe from Table 8 that initial buffering latency,
stalling times, and stalling ratio have the smaller D values
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Table 7 Performance comparison

Method Precision
Dataset 1 Dataset 2 Dataset 3

Multivariate linear regression 72.55% 7251% 7151%
Logistics regression 74.93% 77.55% 83.55%
SVM 82.56% 87.17% 85.42%
K-nearest-neighbor 52.48% 61.34% 56.77%
Naive Bayes 88.12% 83.47% 91.09%
K-means + LR (proposed) 96.94% 97.13% 97.54%

Data in bold is the proposed method that outperforms other existing methods

than other QoS parameters, implying that they essen-
tially have the dominant influence on vMOS. This result
is consistent with the previous finding in [20].

In summary, we can see from Table 8 that initial buffer-
ing latency, stalling times, and stalling ratio can signifi-
cantly affect vMOS. In particular, initial buffering latency,
stalling times, and stalling ratio are negatively correlated
with vMOS. We have the following major findings: (1)
vMOS is affected by multiple QoS parameters together.
Essentially, vMOS is affected by 11 QoS parameters as
given in Table 4. (2) Small set of QoS parameters domi-
nates the performance of vMOS. Interestingly, we observe
that a small set of QoS parameters has the stronger influ-
ence on vMOS than other QoS parameters.

5 Discussion and future work
The analytical results essentially offer us some useful
insights in improving video QoE, which may pave the
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way toward improving vMOS in mobile networks. We
summarize several possible future directions as follows.

e Concentrating on optimizing several dominating
QoS parameters in vMOS. For example, we may
focus on optimizing the network resource to reduce
initial buffering latency, stalling times, and stalling
ratio so that we can significantly improve the video
QoE while maintaining relatively low operating
expenditure. However, it is not an easy task to
achieve this goal because the enhancement of these
QoS parameters is also involved with many other
technologies, such as cross-layer optimization and
distributed resource allocation [10, 25, 26].

e [dentifying QoS bottlenecks. Determining QoS
bottlenecks can help to enhance system performance
and consequently improving vMOS. However, it is
also difficult to identify the QoS bottlenecks since
they are often affected by many factors. For example,
video stalling is essentially caused by many factors,
such as network congestion, network failure, device
mobility, and radio spectrum scarcity. There is a
challenge in identifying the causality of stalling. In the
future, we may apply data-driven approach to identify
the reason behind video stalling according to
different scenarios.

e Distributing the videos appropriately to improve
vMOS. For example, we can distribute the most
popular videos at the servers close to users so that we
can significantly reduce the initial buffering latency.

a
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Fig. 7 Training samples versus testing sample

However, to determine the popularity of video
streaming is challenging since it requires the extensive
efforts in analyzing the massive video data [27].

6 Conclusions

In this paper, we propose a novel data analysis model
to analyze video Mean Opinion Score (vMOS), which
is an important measure of user quality of experience
of video streaming. In particular, our proposed model is
a combination of K-mean clustering method and logis-
tic regression method, which can essentially improve the
prediction accuracy than other existing methods. We con-
duct experiments over several realistic datasets. Exten-
sive experiment results show that our proposed method

Table 8 D value and ranking

outperforms other existing methods in terms of predic-
tion accuracy. For example, our proposed method has
the precision of 96.94, 97.13, and 97.54% on dataset 1,
dataset 2, and dataset 3. Our results also show that a small
set of QoS parameters play an important role in deter-
mining vMOS; this implies that we can concentrate on
enhancing these key QoS parameters. It can be achieved
by integrating cross-layer optimization and distributed
resource allocation schemes together and mitigating QoS
bottlenecks.

Our model has a broad range of applications. For exam-
ple, it can be used to enhance the QoE of video service
providers (such as Netflix and YouTube), video-centric
mobile applications (including Facebook LIVE, Instagram

Features Dataset 1 Dataset 2 Dataset 3
D value Ranking Dvalue Ranking D value Ranking

Average rate of playing phase 0.0605 7 0.0662 7 0.0667 6
Video total DL rate 0.0596 8 0.0651 8 0.0653 8
Video bitrate 0.1848 3 0.1620 3 0.2160 3
Initial max DL rate 0.3008 2 0.2997 2 0.3155 2
E2ERTT 0.5409 1 0.5186 1 0.5602 1
Initial buffering latency 0.0222 11 0.0222 11 0.0199 11
Video initial buffer downloaded 0.1020 4 0.1025 4 0.1033 4
Playing time —0.0668 6 —0.0667 6 —0.0657 7
Playing total duration —0.0814 5 —0.0741 5 —0.0695 5
Stalling times —0.0231 10 —0.0229 10 —0.0279 9
Stalling ratio —0.0232 9 —0.0231 9 —0.0224 10
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LIVE, Snapchat, etc.), video game live streaming services
(such as Twitch, Hitbox and NetEase Game Lives). More-
over, it can be used to improve the usability of video
surveillance systems. For example, the quality of video
streaming of video surveillance systems can be helpful in
detecting dangers in advance.

Endnotes

1For simplicity, we use vMOS to represent U-vMOS
throughout this paper.

Zhttp://speedvideo.huawei.com/
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