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Abstract— Traffic flow prediction has received extensive
attention recently, since it is a key step to prevent and miti-
gate traffic congestion in urban areas. However, most previous
studies on traffic flow prediction fail to capture fine-grained
traffic information (like link-level traffic) and ignore the impacts
from other factors, such as route structure and weather con-
ditions. In this paper, we propose a deep and embedding
learning approach (DELA) that can help to explicitly learn from
fine-grained traffic information, route structure, and weather
conditions. In particular, our DELA consists of an embedding
component, a convolutional neural network (CNN) component
and a long short-term memory (LSTM) component. The embed-
ding component can capture the categorical feature information
and identify correlated features. Meanwhile, the CNN component
can learn the 2-D traffic flow data while the LSTM component
has the benefits of maintaining a long-term memory of historical
data. The integration of the three models together can improve
the prediction accuracy of traffic flow. We conduct extensive
experiments on realistic traffic flow dataset to evaluate the
performance of our DELA and make comparison with other
existing models. The experimental results show that the proposed
DELA outperforms the existing methods in terms of prediction
accuracy.

Index Terms— Urban informatics, traffic flow prediction,
embedding neural networks, deep learning.

I. INTRODUCTION

WE ARE experiencing the urbanization shift. It is pre-
dicted in [1] that more than 60% the world’s popu-

lation will live in urban areas by 2050. Traffic congestion
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is one of the major challenges to enable urbanization. The
deployment of Intelligent Transportation Systems (ITS) in
urban areas brings the opportunities to prevent or reduce
traffic congestion. Meanwhile, recent advances in sensing
technologies and the wide distribution of various sensors of
ITS result in the proliferation of massive traffic data. Big
traffic data analytics can help to manage and control the urban
transportation efficiently.

Traffic flow prediction serving as the key component of ITS
can assist ITS to forecast and prevent traffic congestion, con-
trol and manage traffic efficiently, and plan the best traveling
route. Data-driven traffic flow prediction has received exten-
sive attention recently due to the availability of massive traffic
data from various sensors deployed in ITS. Machine learn-
ing (ML) based approaches such as k-nearest neighbor (kNN)
algorithm [2], Markov process based scheme [3] and Artificial
Neural Network (ANN) schemes [4]–[6]. Compared with con-
ventional ML methods, deep learning (DL) models have the
advantages such as simplifying data preprocessing procedure
and outperforming other ML methods in terms of accuracy.
Therefore, DL schemes have received extensive attention
recently in traffic flow prediction, e.g., [7]–[12].

However, most previous ML and DL approaches have
the following limitations: 1) failed to capture fine-grained
features of traffic data like link-level traffic data; 2) failed
to consider other categorical factors such as special events,
route structure and weather conditions that also affect
the traffic flow even though some previous studies con-
sider a single categorical factors (like rainfall [13]). The
recent proliferation of inductive-loop sensors deployed in the
highways [9], [10] and the availability of multiple categorical
features (such as weather conditions, route structure and spe-
cial events) [13], [14] bring the opportunities in analyzing the
traffic flow at the link level with consideration of categorical
features. Motivated by the limitations of previous studies and
the availability of fine-grained traffic flow data and traffic
categorical data, we propose a Deep and Embedding Learning
Approach (DELA) to analyze the traffic flow in terms of travel
time.

The proposed DELA consists of an embedding component,
a Convolutional Neural Networks (CNN) component and a
Long Short-term Memory (LSTM) component. Compared
with conventional ML and DL approaches, DELA has the
following merits:

1) Learning fine-grained traffic flow features. The CNN
component can learn the traffic flow features from
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2-D traffic flow data at the link level in contrast to
the route-level data in conventional DL methods. Mean-
while, CNN can also overcome the limitations of com-
mon DL models like the large number of parameters and
the overfitting problem.

2) Learning long-term dependent traffic flow features. The
LSTM component has the advantages in learning the
periodicity of traffic flow data due to the excellent ability
of memorizing long-term dependencies.

3) Capturing multiple categorical features. The embedding
component can essentially capture the categorical fea-
tures such as special events, route structure and weather
conditions and investigate the impacts of the categorical
features on the travel time. In addition, it not only learn
the hidden information of the impacts of special events,
weather conditions and route structures, but also it can
learn the relationship between different impacts.

The proposed DELA obtains the benefits from the embed-
ding component, the CNN component and the LSTM com-
ponent consequently resulting in an excellent performance
in terms of prediction accuracy of the travel time. To the
best of our knowledge, this is the first hybrid approach of
integrating CNN, LSTM and categorical embedding in traffic
flow prediction. The main research contributions of this paper
can be summarized as follows.

• We propose a novel deep learning method (DELA) to
analyze the traffic flow. We consider the impacts of
traffic flow, special events, weather conditions and route
structures together. Our DELA model can make full use
of these information and the relationship between them.

• Our model is based on link-level traffic flow data unlike
the conventional methods that are based on coarse
route-level traffic.

• We conduct extensive experiments on realistic datasets
to evaluate the performance of the proposed DELA.
The experimental results show that DELA outperforms
existing approaches in terms of prediction accuracy of
the travel time.

• Experimental results also show that DELA is efficient
in real-time traffic-flow prediction. For example, the pre-
diction time of DELA is less than 0.5 second implying
DELA can fulfill the basic requirement in real-time
prediction.

The remainder of the paper is organized as follows.
Section II gives an overview on related studies. We then
present the problem analysis in Section III. Section IV presents
the DELA model. We then give the experimental results
in Section V. Finally, we conclude the paper in Section VI.

II. RELATED WORK

We categorize the studies on traffic flow prediction into two
categories: 1) parametric approaches and 2) non-parametric
approaches.

A. Parametric Approaches

In the early stage of traffic flow prediction, parametric
approaches were typically proposed. Parametric methods are

usually based on the assumption on specific functions for some
variables (either independent or dependent). These approaches
include auto-regressive integrated moving average (ARIMA)
model [15], HoltWinter [16] and their variants [17]–[19].
These linear time-series models can capture the trend and
periodicity information from the flow. The advantages of these
linear time-series models include simplicity and efficiency
while the main disadvantage is the low accuracy due to the
impacts of chaotic and fractal characteristics of traffic flows.

There are other models proposed to improve prediction
accuracy of traffic flow. In [20], a method of integrating
Kalman filter and ARIMA model was proposed. Experi-
mental results also verify the effectiveness of the proposed
method. The benefit of Kalman filter is to update the state
variables continuously so that it can improve the prediction
accuracy [21]. Moreover, Nair et al. [22] established a nonlin-
ear time-series model to analyze a traffic data. Furthermore,
the work in [23] presents a multi-layer strategy to identify and
cluster the nonlinear traffic structural patterns.

B. Non-Parametric Approaches

The proliferation of various sensors deployed in ITS results
in the availability of massive traffic data. Non-parametric
(or data-driven) approaches based on massive traffic data
can potentially improve traffic flow prediction. In general,
machine learning (ML) based methods can identify the pat-
terns and capture the key features of traffic flows, conse-
quently improving the prediction accuracy. In [2], a short-
term traffic condition prediction model based on k-nearest
neighbor algorithm was proposed. The study in [3] proposed
a Markov process based method to predict traffic condi-
tions between roads. Among ML-based methods, an Artificial
Neural Network (ANN) can accurately recognize the traffic
patterns, consequently surpassing other ML methods [24].
Typically, an ANN needs to update the weights of the hidden
layer via back propagation [25]. We name such NN meth-
ods as Back-Propagation Neural Networks (BPNN). Many
BPNN-based or hybrid BPNN-based models [4]–[6] were
proposed in traffic flow prediction.

Compared with conventional BPNN-based methods, deep
learning (DL) models have the advantages in learning com-
plicated and hierarchical features of massive data [26], [27].
Recently, DL methods have shown their strengths in traf-
fic flow prediction [7], [8], [10], driving behavior feature
extraction [11] and city-wide crowd flows prediction [28].
One deep learning model is recurrent neural network (RNN),
which has the advantage of capturing time-series charac-
teristics during the training and predicting phase [29]–[31].
Long short-term memory (LSTM) [32], [33] improves RNN
by including memory cells which can preserve information for
a long period. As a result, LSTM can learn longer-term depen-
dencies. Recently, both RNN and LSTM models have been
investigated in travel speed prediction [34] and short-term
traffic flow forecast [12]. In addition, convolutional neural
networks (CNN) have also been used in transportation network
speed prediction [35].
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Moreover, many other factors such as weather condi-
tions and special events have influence on traffic flow.
In particular, the weather conditions (such rainfalls and
snows) [13], [36]–[38] can affect the urban traffic flow. For
example, it is shown in [13] that the rainfall intensity and
visibility can significantly affect the freeway traffic flow. More-
over, ref. [38] shows that the rainfall intensity may alter users’
route choice consequently affecting the traffic flow. In addition
to weather conditions, special events or accident events can
also significantly affect the traffic flow. For example, it is
shown in [10] that the traffic flow fluctuates differently in a
special event day (like a football game) compared with an
ordinary day. Moreover, the accidental event like traffic jam
or an accident has significant impacts on traffic flow [14].

Limitations of Previous Studies: In summary, previous
studies failed to address the following issues. First, most
previous studies analyze the traffic flow at the route level.
The route-level analysis conducted between the entry and the
exit is relatively coarse and cannot capture the influence of
other route-related factors. For example, the traffic flow of a
route is also affected by traffic flow condition at each segment
of the route. Second, although some previous studies consider
the impacts of weather conditions and special events on traffic
flow, most of them only consider a single factor like rainfall
intensity or a special event and their analysis is only based on
coarse traffic flow data (i.e., route-level traffic).

In this paper, we propose a new deep and embedding
learning approach (DELA) to overcome the above limitations
of previous studies.

III. PROBLEM ANALYSIS

We investigate a real highway traffic dataset in a certain
city in China from July 19, 2016 to Oct. 17, 2016 released
by Knowledge Discovery and Data Mining Tools Com-
petition (KDD CUP 2017).1 Note that the exact city is
omitted by the data publisher. In particular, this dataset
contains the following types of data: i) traffic flow data,
e.g., the average travel time for a particular route or a link,
ii) route structure data, e.g., the number of links for a route,
iii) weather condition data including atmospheric pressure,
pressure at sea level, wind direction, wind speed, air temper-
ature, relative humidity and precipitation.

A. Preliminary Analysis

We first conducted a preliminary analysis on a subset of the
whole dataset. Fig. 1 shows an example of the route structure
of a route consisting of 6 routes: (1) route A → 1, (2) route
A → 2, (3) route A → 3, (4) route B → 1, (5) route B → 2,
and (6) route B → 3, where → connects a start to an
end. Each route consists of multiple links. For example, route
A → 1 consists of four links, i.e., link 1, link 2, link 3 and
link 10. In particular, we define a route denoted by R as
follows,

R := (S, E, linkSets), (1)

1Traffic Flow Data/KDD CUP 2017 https://tianchi.aliyun.com/datalab/
dataSet.html?spm=5176.100073.0.0.63696fc1cVfp6R&dataId=60

Fig. 1. An example of route structure.

Fig. 2. Multiple factors affect travel time. (a) Impacts of days and routes.
(b) Temperature affects travel time.

where S denotes the start location, E denotes the end location
and linkSets refers to the links between the start and the end.

The route structure data has the following characteristics:
i) two routes may share some common links, e.g., route
A → 1 shares link 3 with route B → 2; ii) links of a road
may be different from each other in terms of road structure,
e.g., link 1 is a narrow road with 2 lanes while link 3 is a wide
road with 4 lanes. The route structure should be considered
in traffic flow analysis since these two features may have a
significant influence on the traffic flow.

Next, we conduct a preliminary analysis on traffic flow data
based on two routes B → 3 and A → 3 on three typical days,
i.e., Sep. 10, 2016, Sep. 12, 2016 and Oct. 1, 2016. These three
days represent a weekend day, a week day and a holiday,2

respectively. Fig. 2(a) shows the average travel time in a day.
We have the following observations from Fig. 2:

1) There are two peaks for average travel time in a week
day. For example, there are two peaks in the date
Sep. 12, 2016 for route B → 3: one is from 7 am to
9 am in the morning and another one is from 6 pm to
8 pm in the afternoon.

2) The peaks in a holiday and a weekend day are different
from those in a week day. For example, the morning
peak hour in a weekend day (e.g., Sep. 10, 2016) is
10 am for route B → 3 while that in a weekday is 8 am.

3) The peaks in a holiday are different from those in a
weekend day. For example, the morning peak hour in
a holiday (e.g., Oct. 1, 2016) is 2 am while that in a

2October 1st is the national day for China and is usually the first day of
the annual 7-day national holiday)
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Fig. 3. Deep and Embedding Learning Approach (DELA).

weekend day (e.g., Sep. 10, 2016) is about 10 am; this
may owe to the fact that the national day is usually a
seven-day weekend and it is one of the busiest periods
for travelling in China.

We further analyze the impact of other factors (such as
weather conditions) on traffic flow. Fig. 2(b) shows the average
travel time against temperature for the four routes A → 2,
A → 3, B → 1 and B → 3. We find from Fig. 2(b) that
the average travel time for route A → 2 reaches the peak at
a high temperature (i.e., 36◦C) while that for route B → 1
reaches at a low temperature (i.e., 18◦C); it implies that the
travel time is also affected by the weather condition.

B. Challenges

The preliminary analysis in Section III-A shows that the
traffic flow dataset also has the following characteristics:

• Heterogeneous data types. There are different types of
data in the traffic flow dataset. For example, the data
type of air temperature is different from that of the route
structure).

• The travel time is affected by multiple factors. These fac-
tors include the route structure, traffic flow information,
day information, special event and weather condition.

• The factors are often correlated to each other. This
observation is different from previous studies that only
consider one factor affecting the traffic flow.

These characteristics pose a significant challenge in traffic flow
prediction. To address the above challenges, we propose a new
deep and embedding learning approach (DELA).

IV. OUR APPROACH

As shown in Fig. 3, our analytical process mainly includes
two stages: 1) data preprocess and 2) data analysis based
on deep and embedding learning approach (DELA). DELA
mainly consists of two major components: the embedding

component to be presented in Section IV-A and the deep
learning component to be presented IV-B. We then explain
them in detail as follows.

A. Embedding Component

In recent years, a number of embedding methods have been
proposed. Most of them transform an ID into an embedding
vector that can then be used to represent the hidden informa-
tion of the ID [39], [40]. As shown in Fig. 3, the embedding
component (enclosed in the blue dash box) contains three
components. The input embedding layer is the first component,
which learns categorical features, such as route structure infor-
mation, weather conditions, and date information. However,
there is no way for our DELA to learn such categorical features
directly. In order to convert categorical data into a numerical
form denoted by embedding vectors, we firstly exploit one-hot
encoding to represent categorical features [41]. We then take
the one-hot encoding vector as inputs of the full connection
layer. We next apply back-propagation algorithm to calculate
the weight of every edge in the full connection layer. The
output layer consisting of the full connection layer is also an
embedding layer, i.e., embedding vectors of start location IDs
or link IDs. Embedding maps the data from resource space to
target space with structural-preservation.

The embedding vector can represent the correlation between
different categories. In particular, we derive the inner dot
product of any two different embedding vectors. We then
concatenate the embedding vectors with the inner dot product
values. The concatenated vectors can better represent cat-
egorical features and the correlation between two different
categorical features. Specifically, the output of embedding
component is given by Eq. (2),

ŷEmbedding := f (x̂) :=
∑

i∈x̂

∑

j �=i, j∈x̂

wi, j 〈vi , v j 〉 +
∑

i∈x̂

wi vi ,

(2)
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where x̂ represents the set of categorical features, i, j ∈
x̂ are categorical features from this set, vi represents the
embedding feature of category i , 〈vi , v j 〉 is the inner dot
product of two categorical embedding vectors vi and v j , wi, j

represents the weight of inner dot product value and wi is
the weight of embedding vector. Eq. (2) essentially indicates
that the embedding component not only learns features, but
also captures the correlation between two different categorical
features.

B. Deep Learning component

1) Data Preprocess: The travel time was taken over
each link every 20 minutes. If there is no vehicle passing
within 20 minutes for a link, the average travel time for that
link will be a missing value. In this paper, we exploit the
interpolation method to recover the missing values according
to the following equation,

f (xl
i ) =

⎧
⎪⎪⎨

⎪⎪⎩

xl
i−1 + xl

i+1

2
xl

i ∈ NaN, xl
i−1, xl

i+1 /∈ NaN,

0 xl
i ∈ NaN, xl

i−1 or xl
i+1 ∈ NaN,

xl
i xl

i /∈ NaN,

(3)

where xl
i stands for the average travel time over the i -th

20 minutes within two-hour window on link l. If xl
i is a null

value, we represent it as NaN.
As neural networks are sensitive to the diversity of input

data, we need to normalize input data. Specifically, we choose
the MAX-MIN scaling method to normalize the data [42].

2) Input Data: Our preliminary results (refer to Section III)
reveal the relevance of different routes. In particular, different
routes may share some common links. Motivated by this
observation, we partition traffic flow data by links in contrast to
conventional methods partitioning traffic flow data by routes.
This fine-grained analysis on the traffic flow data can more
accurately model the realistic traffic since the traffic is different
from link to link even in the same route. Take Fig. 1 as
an example again. Route A → 2 consists of links 1 and 3,
where link 1 only has two lanes and link 3 has four lanes.
Essentially, the traffic flow in link 1 is quite different from
that in link 3. The fine-grained analysis can better capture
the features of traffic flow than conventional schemes. In this
manner, we convert 1-D traffic flow data into 2-D data. We will
show through experiments presented in Section V that this
scheme can significantly improve the prediction accuracy.

Every route may contain different number of links.
Each route is represented with the same number of links
(i.e., the maximum number of links among all the routes) and
the fields for those non-existing links are filled with zeros. For
example, if the maximum number of links for all the routes
is 5 and a route contains three links like [101, 105, 107]. Then
after being filled with zeros, it becomes [101, 105, 107, 0, 0].
Recall that the average travel time of the l-th link during
the i -th minutes is xl

i . In accordance with proposed non-zero
padding scheme, we obtain the average travel time matrix
denoted by x by averaging the travel time over all the links
of that route and over the given time period. It is obvious that

the newly constructed input data is not 1-D traffic data, but
2-D traffic data that contains both the route structure and time
information.

Fig. 3 shows that Deep Learning component (enclosed in
the red dash box) consists of a CNN component and an LSTM
component. We then explain them in details as follows.

3) CNN Component: CNN overcomes the disadvantages
of regular neural networks by connecting each neuron to its
neighboring neurons not all the neurons [43]. CNN conven-
tionally takes images as the input. Few studies use CNN to
analyze traffic flow data. In this paper, we exploit the benefits
of CNN by using 2-D traffic flow data. In our CNN component,
there are multiple convolution layers as shown in Fig. 3.
We use the 2-D convolution layer to extract the features from
the input 2-D average travel time data. We denote the average
travel time of the p-th link by vector vp ∈ Rd , where d is
6 in this paper because the travel time was taken over each
link every 20 minutes within 2 hours. We then represent the
concatenated average travel time of m links (denoted by v1:m)
as follows,

v1:m := v1 ⊕ v2 ⊕ ... ⊕ vm , (4)

where ⊕ is the concatenation operator and m = 	 n
6 
.

In general, let vp:p+k refer to the concatenation of every
link’s average travel time vp, vp+1, ..., vp+k . In this manner,
we finally obtain a 2-D feature map.

One convolution operation typically involves a filter ŵ,
which is applied to a window of size 3 × 3 to produce a new
feature. Note that we choose the filter with 3 ×3 in this paper
because this typical setting is shown to perform excellent in
most cases [43]. Moreover, we choose β filters, which are also
adjustable in the experiments. In a similar manner, we consider
a feature cp+1,q+1, which can be generated from a window of
matrix vp:p+2,q:q+2 by the following equation,

cp+1,q+1 := f (ŵ(g(vp:p+2,p:p+2)) + b2), (5)

where b2 ∈ R is a bias term and f (·) is a non-linear function
such as the hyperbolic tangent [43]. We then apply this filter
to data blocks denoted by v1:3,1:3, v1:3,2:4, . . . , vm−2:m,m−2:m ,
respectively to produce a feature map as given as follows,

c :=
⎡

⎢⎣
c1,1 · · · c1,6
...

. . .
...

cm,1 · · · cm,6

⎤

⎥⎦, (6)

where c is the generated feature map having the same size as
the raw matrix because of zero-padding.

4) Max Pooling Layer: The max pooling layer is typically
used in CNN to reduce the number of parameters (e.g., training
weights and filters) and the redundant features. Meanwhile,
the max pooling layer can also be used to control the conver-
gence of neural networks (e.g., avoid overfitting). The pooling
layer typically chooses the maximum (i.e., max) value of the
region covered by the pooling filter. In particular, we define
the max pooling operation as follows,

ŷCNN = max(c), (7)

where c is the feature map defined in Eq. (6) serving as the
input of the max pooling operation.
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5) LSTM Component: Traffic flow data is highly related
to the historical information. Due to the excellent ability of
memorizing long-term dependencies, LSTM model has the
advantages in traffic flow prediction. After following sophis-
ticated derivation in [44], we can calculate the output values
of LSTM model according to the following equation,

ŷLSTM,t = Why ∗ ht + bh, (8)

where ŷLSTM,t is the predicted value, Why is the weight of the
current hidden state information and bh is the bias value.

6) Ensembling: Finally, the embedding component and the
Deep Learning component are combined using a weighted
sum as hidden features after normalization. These features are
then concatenated and fed to a rectified linear unit (ReLU).
We consider the weighted sum of the outputs of the embed-
ding component, the CNN component and LSTM compo-
nent together and optimize the generated parameters at the
same time. We then upgrade weights via back-propagation.
Essentially, CNN component can capture the periodicity of
the traffic flow data and LSTM component can learn from the
historical information. The integration of CNN component and
LSTM component obtains the benefits of CNN and LSTM
models consequently leading to the excellent performance.
In particular, the prediction of the model is finally given as
follows,

Y := W[ŷEmbedding, ŷCNN, ŷLSTM] + b, (9)

where Y is the travel time, ŷEmbedding, ŷ CNN and ŷLSTM
represent the features of the embedding component, the CNN
component and the LSTM component, respectively, W is the
joint weights of the above components, and b is the bias term.
It is worth mentioning that the last layer of each component
is a dense and batch-normalization layer with identical size
(see Fig. 3). Finally, we concatenate the embedding, CNN and
LSTM components.

C. Computational Complexity

The computational complexity of our DELA can be esti-
mated by summarizing up the computational costs of the
embedding, CNN and LSTM components, respectively.

1) Computational Cost of Embedding Component: As
shown in [41], [45], the computational cost of embedding
component mainly depends on the dimension of input cat-
egorical vector and the embedding dimension. In particular,
we denote the computational cost of the embedding component
by NEmbedding, which can be calculated by

NEmbedding = Nv × Nv × De × De, (10)

where Nv is the number of categorical features and De is the
embedding dimension. The calculation is mainly based on the
concatenation of categorical feature vectors according to the
embedding dimension [41].

2) Computational Cost of CNN Component: The standard
convolution computational cost per time step in CNN is
O(NCNN), where N CNN is the total number of parameters
in a CNN [46], [47]. In particular, NCNN can be calculated
NCNN = Ci × Co ×D2

k ×D2
f , where Ci is the number of input

TABLE I

DATA INFORMATION

channels, Co is the number of output channels, D2
k is the kernel

size and D2
f is the feature map size.

3) Computational Cost of LSTM Component: It is shown
in [48] that the learning computational complexity per time
step in LSTM is O(NLSTM), where NLSTM is the total number
of parameters in a standard LSTM network. In particular,
NLSTM can be calculated by Eq. (11),

NLSTM = N 2
c × 4 + Ni × Nc × 4 + Nc × No + Nc × 3,

(11)

where Ni is the number of input units, Nc is the number of
memory cells, and No is the number of output units.

V. EXPERIMENTS

In this section, we conduct the experiments to evaluate the
performance of DELA. In Section V-A, we describe basic
experimental settings. Section V-B presents the performance
comparison of our proposed Embedding & Deep Learning
approach with other existing methods. We then investigate
the efficiency and convergence of DELA in Section V-C.
Section V-D presents the discussion of the results.

A. Experimental Setup

1) Dataset Description: We conduct our experiments on a
real highway traffic dataset. It contains nearly 3 months traffic
flow information (from July. 19, 2016 to Oct. 17, 2016), and
collects 1,527,136 road driving records with 77,012 vehicles.
This dataset was formally released by Knowledge Discovery
and Data Mining Tools Competition (KDD CUP 2017), which
can be downloaded from Tian Chi Platform.3 The metadata
information about the dataset is summarized in Table I, where
# means “the number of”. In particular, we convert the 1-D
data to the 2-D data with the dimensionality of 24 × 6, where
the number of links is 24 and there are 6 values because the
travel time was taken over each link every 20 minutes within
2 hours. It is worth noting that the travel time falls in the range
of [9.26, 6771.11]. The minimum value is 9.26 seconds while
the maximum value is 6771.11 seconds. In addition, the mean
value is about 93.5 seconds. It implies that the distribution of
travel time is extremely uneven.

3https://tianchi.aliyun.com/datalab/dataSet.html?spm=5176.100073.0.0.6369
6fc1cVfp6R&dataId=60
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TABLE II

WEATHER CATEGORICAL FEATURES

Fig. 4. Training and prediction sets.

Table II summarizes the weather indicators, which include
atmospheric pressure, pressure at sea level, wind direction,
wind speed, air temperature, relative humidity and precipita-
tion. These weather indicators are collected every three hours.
In order to convert categorical data into a numerical form
denoted by embedding vectors (as mentioned in Section IV-A),
we first discretize each of weather categorical data (i.e., indi-
cators) and then exploit one-hot encoding to represent these
categorical features.

2) Training Settings: In this paper, we aim to predict the
travel time in the next two hours based on the traffic flow
data. The training procedure can be divided into two phases:
1) the training phase and 2) the validation (prediction) phase
as shown in Fig. 4. In particular, the training data set contains
the traffic flow data from July 19, 2016 to Oct. 11, 2016 and
the validation data set contains the data from Oct. 11, 2016 to
Oct. 17, 2016. We essentially use the first two hours as the
training data to predict the average travel time in the next two
hours. The key step in the training phase is data sampling.
Since the large number of data samples is beneficial to DELA,
we attempt to obtain as many training samples as possible.
However, it may take a long time to obtain a large number
of data samples. In order to balance the efficiency and the
accuracy of training DELA model, we choose 5 minutes as
the sliding window length. For example, if a sample with
the feature within the time period is [6:00,8:00) and the label
within the time period is [8:00,10:00), then the next sample
with the feature will be within the time period [6:05,8:05) and
the next sample with the label will be within the time period
[8:05,10:05).

3) Performance Metrics: The prediction accuracy is typi-
cally evaluated by mean absolute error (MAE), mean absolute
percentage error (MAPE) and Root Mean Square Error
(RMSE) [7], [8], [49]. Therefore, we also use these three
metrics to evaluate the proposed approach and other baseline
approaches.

MAE is the absolute value of the difference between the
predicted value and the actual value. In particular, we define
MAE as follows,

MAE :=
∑N

i=1 |yi − ŷi |
N

, (12)

where yi denotes the observed real-world travel time value of
the i -th sample, ŷi is the predicted travel time value, N is the
number of all predicted values. It is relatively easy to calculate
MAE while MAE can also result in the bias measurement
when there are some observed values significantly different
from other values (these values are also named as outliers).
It is shown in [50] that a single large error can sometimes
dominate the calculation of MAE.

MAPE represents the prediction error in a percentage and
is usually used in the case of identifying the significant error
when MAE is quite small [51]. We define MAPE as follows,

MAPE := 1

n

N∑

i=1

| yi − ŷi

yi
|. (13)

RMSE is defined as follows,

RMSE :=
√∑N

i=1 |yi − ŷi |2
N

. (14)

The lower values of MAE, MAPE and RMSE imply higher
accuracy of models.

B. Performance Evaluation

We conduct extensive experiments to evaluate our DELA
by comparing with other representative baseline approaches.
In particular, we categorize the experiments into three groups:
1) the comparison between 1-D road traffic flow input and
2-D link traffic flow input; 2) the comparison between the 2-D
link traffic flow with categorical factors and the 2-D link traffic
flow dataset without categorical factors; 3) the performance
evaluation on our DELA with consideration of the impacts of
parameters.

1) 1-D vs 2-D: Most previous studies only analyze the
traffic flow at the route level which is fairly coarse and cannot
capture the impacts of other conditions like route structure.
In our DELA, we conduct a fine-grained analysis on the
traffic flow at link level. In particular, we convert the 1-D
route traffic data to the 2-D link traffic data. We choose the
following baseline approaches and compare the performance
of them with 1-D route traffic data and 2-D link traffic data,
respectively. It is worth mentioning that both ARIMA and
BPNN approaches can only accept 1-D route traffic data.

• ARIMA (1-D/2-D): This method is a common model in
the field of time series prediction. which is widely used
in the early research period.
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TABLE III

PERFORMANCE COMPARISON OF DELA WITH BASELINE METHODS

• BPNN (1-D/2-D): Many prior studies on traffic flow
forecasting have been based on BPNN.

• RNN (1-D/2-D): This method can capture the time series
characteristics.

• LSTM (1-D/2-D): It is an improved version of RNN.
It has the advantages of capturing the long temporal
feature of input time series. Recently, LSTM has been
applied in traffic flow forecasting.

• CNN (2-D): In this paper, we use this method to learn
the 2-D link traffic flow. Since CNN cannot process
1-D route traffic data, we convert the 1-D route traffic
data into the 2-D link traffic flow data, which can be
processed by CNN. The CNN can be work and deal with
the relationship of different links through convolution
operations.

• CNN (2-D) & LSTM (2-D): This method can also
be regarded as a special case of our DELA with the
removal of Embedding component. We conduct experi-
ments mainly to evaluate the effect of embedding com-
ponent.

Table III shows the experimental results when forecast-
ing future time period (FTP) is equal to 60 minutes and
120 minutes, respectively. In particular, Table IV summarizes
the experimental parameters used in experiments (we fix them
in other groups of experiments if no further specification).

It is shown in Table III that RNN, LSTM and CNN models
outperform ARIMA and BPNN (see bold-font values). The
improvement of RNN, LSTM and CNN models mainly owes
to the enhanced learning capability from deep neural net-
works. Moreover, when comparing RNN (1-D), LSTM (1-D)
with RNN (2-D), LSTM (2-D), respectively, we find that
both RNN (2-D) and LSTM (2-D) perform better than those
with 1-D inputs. This is because the generalization of RNN
and LSTM models can be enhanced with 2-D input data.
In addition, we also find that LSTM is slightly better than

TABLE IV

EXPERIMENT PARAMETERS FOR RESULTS OF TABLE III AND

OTHER GROUPS OF EXPERIMENTS IF NO SPECIFICATION

RNN. It is possible that LSTM effectively preserves long-term
memory and will show the advantage in learning travel time
data.

Furthermore, in order to make a fair comparison with con-
ventional methods like ARIMA and BPNN, we also convert
1-D traffic flow data to 2-D traffic flow data (at link-level) and
put them into ARIMA and BPNN consequently obtaining the
2-D data results for ARIMA and BPNN [see ARIMA (2-D)
and BPNN (2-D) in Table III] after averaging prediction
metrics at all the links along the route. It is shown in Table III
that ARIMA (2-D) and BPNN (2-D) outperform ARIMA (1D)
and BPNN (1-D). This is mainly due to the improvement
brought by the fine-grained analysis on link-level traffic data.

Last by not least, we also conduct experiments with a
slightly-modified version of our DELA with the removal of
embedding component. We name such model as LSTM (2-D)
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& CNN (2-D) model. It is shown in Table III that LSTM (2-D)
& CNN (2-D) model outperforms other existing models; this
may owe to the improved learning capability from both LSTM
and CNN models on 2-D link-level data.

2) With Categorical Factors vs Without Categorical Fac-
tors: Most previous studies failed to consider the impacts of
categorical factors on the traffic flow. In our DELA, we design
an embedding component that takes categorical factors into
account. In the 2nd group of experiments, we evaluate the
performance of the following models.

• Embedding & LSTM (2-D): This method can be
regarded as a special case of our DELA with the removal
of CNN component. We conduct experiments mainly
to evaluate the effect of embedding & LSTM (2-D) in
contrast to LSTM (2-D) model only.

• Embedding & CNN (2-D): This method can also be
regarded as a special case of our DELA with the removal
of LSTM component. We conduct experiments mainly to
evaluate the effect of embedding & CNN (2-D) in contrast
to CNN (2-D) model only.

It is shown Table III that both Embedding & LSTM and
Embedding & CNN models perform better than LSTM only
and CNN only. For example, when FTP is 60 minutes,
compared with CNN (2-D) model, the proposed DELA can
improve the prediction accuracy by reducing MAPE nearly
4.8% (obtained by (0.1808−0.1721)/0.1808), reducing MAE
by nearly 5.4% and reducing RMSE by nearly 5.3%. Com-
pared with LSTM (2-D) model, DELA reduces MAPE by
4.4%, MAE by 3.4%, and RMSE by 4.0%.

This implies that using the additional categorical fea-
tures can greatly improve the prediction accuracy since the
embedding component can effectively learn these categor-
ical features. Moreover, we also observe that Embedding
& LSTM slightly outperforms Embedding & CNN in short
time forecasting task, e.g., when FTP is 60 minutes. On the
contrary, Embedding & CNN model performs slightly better
than Embedding & LSTM model in long time forecasting task,
e.g., when FTP is 120 minutes. The experimental results also
show that our DELA outperform other existing models due
to the integration of the embedding component, the LSTM
component and the CNN component as shown in the last row
in Table III.

3) Parameter Study: We next evaluate the impacts of para-
meters of our DELA. In particular, we first consider impacts
of parameters α, β and γ independently. We then jointly
investigate the optimal values of them.

a) Impact of α: α is a parameter controlling the dimen-
sionality of embedding vector in the embedding component.
To investigate the impact of α on the prediction results,
we vary the values of α from 6 to 30 with the step value of 2.
At the same time, we fix β = 64 and γ = 128. We conduct
two groups of experiments with FTP equal to 60 minutes and
120 minutes, respectively.

Fig. 5 shows the experimental results. When FTP is
60 minutes, we can find that both MAE and MAPE decrease
at first when the number of dimensionality increases. when α
is greater than 14. MAE and MAPE increase when the number

Fig. 5. Impact of α. (a) MAE. (b) MAPE.

Fig. 6. Impact of β. (a) MAE. (b) MAPE.

of dimensionality increases. It also shows that the optimal
value of dimensionality is 14 at FTP = 60 minutes. When
FTP is 120 minutes, the optimal values of dimensionality
are 16 and 26 for MAE and MAPE, respectively. Moreover,
when FTP becomes longer, the optimal value of dimensionality
also increases. It may owe to the fact that higher-dimensional
information is needed to express long-term information.

b) Impact of β: β is a parameter controlling the number
of filters in the CNN component. To investigate the impact of
β on the prediction results, we vary the values of β according
to the following set of values (8, 16, 32, 64, 128, 256). At the
same time, we fix α = 15 and γ = 128. We also conduct
two groups of experiments with FTP with 60 minutes and
120 minutes, respectively.

Fig. 6 shows the experimental results. When FTP is
60 minutes, we can also find both MAE and MAPE decrease
at first when the number of filters increases. When β is greater
than 64, both MAE and MAPE increase when the number of
filters increases. It shows that the optimal value of β is 64 at
FTP = 60 minutes. When FTP is 120 minutes, the optimal
values of β are 64 and 32 for MAE and MAPE, respectively.
It implies that DELA obtains an excellent performance with
few filters in the case. It may owe to the fact that the high
travel time value has a great impact on the performance of
CNN model.

c) Impact of γ : γ is a parameter controlling the number
of neurons in LSTM component. To investigate the impact of γ
on the prediction results, we vary the values of γ according to
the set of values (16, 32, 64, 128, 192, 256, 512). At the same
time, we fix α = 15 and β = 64. We also conduct two groups
of experiments with FTP equal to 60 minutes and 120 minutes,
respectively.
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Fig. 7. Impact of γ . (a) MAE. (b) MAPE.

Fig. 8. Impact of α, β and γ . (a) MAE. (b) MAE.

Fig. 7 shows the experimental results. When FTP is
120 minutes, we can also find both MAE and MAPE decrease
at first when the number of neurons increases. When γ is
greater than 192, both MAE and MAPE increase when the
number of neurons increases. It also shows that the optimal
value of γ is 192 at FTP = 120 minutes. In addition, both
MAE and MAPE of the model change little after 192. When
the FTP is 60 minutes, the optimal values of γ are 256 and
128 for MAE and MAPE, respectively.

d) Joint investigation of optimal values of α, β and γ :
Fig. 7(a) shows that MAE reaches the minimum when γ is 128
(no progress made after γ exceeds 128). Therefore, we first fix
γ at 128 and conduct another group of experiments. We plot
the results of MAE against α and β in Fig. 8 (a). It is shown
in Fig. 8(a) that the minimum value of MAE is obtained when
α is around 15 and β is around 64. Similarly, we observe from
Fig. 6(a) that MAE is the minimum when β is 64 (no progress
made after β exceeds 64). Thus, we fix β at 64 and conduct
experiments again. We plot the results of MAE against γ
and α in Fig. 8(b). It is shown in Fig. 8(b) that the minimum
value of MAE is obtained when γ is around 128 and α is
around 15. Finally, we obtain the optimal values of α, β and γ
at (15, 64, 128) after jointly considering both Fig. 8(a) and
Fig. 8(b) together.

C. Efficiency and Convergence of DELA

The efficiency of travel time prediction plays an important
role in ITS. We next evaluate the efficiency of our DELA in
terms of training time and prediction accuracy.

We first compare the training time of the proposed DELA
with other baseline approaches like ARIMA, BPNN, RNN,
LSTM, CNN with both 1-D and 2-D traffic flow data. It is
worth mentioning that ARIMA (1-D/2-D) model ran in a
PC with single thread CPU (no GPU enabling) and other

TABLE V

TRAINING TIME COMPARISON WITH EXISTING
MODELS (FTP = 120 MINUTES)

approaches ran in a PC with GPU enabling (i.e., one GeForce
GTX 1080 Ti graphic card installed).

Table V shows the results. It is shown in Table V that it
takes the minimum training time for ARIMA while it takes
the longest time for the proposed DELA; this is mainly due to
the complexity of the model. However, it takes about only one
minute to train the DELA model at the current experimental
data scale (i.e., 3-month traffic flow data, 6 roads, and 24 links)
while DELA achieves the superior performance compared with
other existing methods (as shown in Section V-B). As shown in
Section IV-C, the computational time heavily depends on the
input size, output size and the model parameters. Therefore,
the computational time will increase with the increment of
data scale. In a large scale ITS, it may take a long training
time for DELA though this disadvantage can be overcome by
joint training at cloud servers, edge servers and end devices as
shown in recent work [52]. Moreover, the prediction time of
our DELA is pretty small (to be shown later) and it can fulfill
the basic requirement of real-time prediction in ITS since the
prediction time plays a more important role than the training
time in realistic application of ITS.

The second group of experiments was conducted to inves-
tigate the impact of the number of days on the training
set size and the training time. We choose N days among
85 days between July 19, 2016 and Oct 17, 2016 to train
the model. In particular, Fig. 9(a) shows that the number of
training samples increases with the increased number of days,
implying the increased computational cost. Fig. 9(b) shows the
training time (seconds) versus the number of days. It is shown
in Fig. 9(b) that the training time increases with the increased
number of days though the maximum training time is about
60 seconds (achieved on N = 85). It implies that the training
time consumption of our DELA is relatively small.

We then conduct another group of experiments to investigate
the impact of the number of days on the accuracy of our
DELA. Fig. 10 shows MAE and MAPE versus the number
of days in the training set. We observe from Fig. 10 that the
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Fig. 9. Impact of number of days with step value 1. (a) No. of training
samples vs. No. of days. (b) Training time vs. No. of days.

Fig. 10. Impact of number of days on prediction accuracy with step value 1.
(a) MAE vs. No. of days. (b) MAPE vs. No. of days.

Fig. 11. Convergence analysis of DELA. (a) MAE vs. epoch. (b) MAPE vs.
epoch.

increased number of days results in the significant reduction
on MAE and MAPE (i.e., the improved prediction accuracy).
In particular, when the number of days is about 65, the mini-
mum values of MAE and MAPE are achieved while this trend
tends to be even and smooth after 65. This finding shows that
an optimal prediction accuracy can be achieved when N = 65
is chosen (nearly two months), implying that we may not need
the total number of 85 days to train the model.

We next investigate the convergence of our DELA. In par-
ticular, we choose the number of epochs as the parameter to
control the training round. An epoch is defined by one forward
pass and one backward pass of all training samples. Fig. 11
shows the results. Note that the dimensionality of embedding
vector is 18, the filter number in a convolutional layer is
64 and the number of cells of LSTM is 128. We observe
from Fig. 11 that both MAE and MAPE decrease with the
increased number of epochs while the optimal values of MAE
and MAPE achieve when the number of epochs is about 20.

Real-time prediction is a critical issue in ITS. We also
evaluate the real-time performance of our DELA in terms

TABLE VI

PREDICTION TIME OF DELA WHEN FTP = 120 MINUTES

TABLE VII

NO. OF PARAMETERS WHEN FTP = 120 MINUTES

of prediction time. In particular, we conduct another group
of experiments on the prediction time of the learned models
of Embedding & CNN, Embedding & LSTM, Embedding
& CNN & LSTM when FTP = 120 minutes. Note that
the prediction time is essentially the time spent on a single
run on one input. Table VI shows that Embedding & CNN
has the shortest prediction time while Embedding & CNN
& LSTM has the longest prediction time. It implies that
LSTM consumes a large portion of prediction time. This is
mainly because the large number of parameters of LSTM
component results in the high computational cost agreeing
with our analysis in Section IV-C.

Table VII shows that LSTM component has the largest
number of parameters. Our result also shows that our DELA
can fulfill the basic requirement on real-time prediction in
practical ITS (e.g., the threshold of 0.5 second is necessary
to avoid traffic conflicts in [53]). It is worth mentioning that
our experiment is based on FTP = 120. In fact, the prediction
time can be even smaller when we choose a smaller FTP value.

D. Discussion

The extensive experimental results show that our DELA
outperforms other existing models in terms of prediction
accuracy (i.e., lowest values of MAE and MAPE). Mean-
while, a well-trained DELA model can predict the travel time
within 0.5 second (i.e., nearly real-time prediction). Moreover,
DELA may perform well in larger scale road networks due to
the following reasons: 1) CNN component of DELA is good at
learning the fine-grained link-level data. The input 2-D traffic
flow data is beneficial to CNN component because CNN is
good at extracting features in the local region while there exist
the correlation between two adjacent rows (i.e., two adjacent
links) and the correlation between two adjacent columns
(i.e., the traffic flow of two adjacent time slots along one
link) in the input 2-D traffic data. Meanwhile, there are 0’s
in the other non-existing links which has no effect on CNN.
Therefore, the merit of CNN can help DELA to learn traffic
flow data even in larger scale road networks (as there is
always a correlation between two adjacent links along a road
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or between two time slots along a link). 2) LSTM component
of DELA can effectively extract time-series features from the
input traffic data. Recent advances in [44] show that LSTM is
effective and scalable to learn time-series data such as traffic
flow data. Therefore, the feature of LSTM can also make
DELA be scalable to large scale traffic flow dataset.

However, there are several limitations in the proposed
DELA:

• Poor explanation capability of deep learning models. Our
DELA has shared one of the common limitations with
other deep learning models - the poor model interpretabil-
ity as shown in [10] though the embedding component in
our DELA can partially improve the explanation capabil-
ity of deep learning models. Therefore, we will improve
the explanation capability of our DELA by adopting other
machine learning models in the future.

• Limited learning capability of embedding component.
The embedding component in our DELA only learns
weather-related categorical features such as air pressure,
temperature and wind speed from one city in one season
(as the given dataset only discloses such information).
However, different cities may have different weather
characteristics in different seasons. Thus, the embedding
component in our DELA is poor in generalization of
weather features due to the lack of characteristics of
weather information from different cities in different
seasons. In the future, we will improve DELA by learning
weather information from other available datasets related
to the weather in the current city.

VI. CONCLUSION

In this paper, we propose a Deep and Embedding Learning
Approach (DELA) to predict the traffic flow. In particular,
our DELA consists of an embedding component, a CNN
component and an LSTM component. The embedding com-
ponent can capture the categorical feature information, such
as the structure of routes and weather information. Moreover,
the CNN component can learn the 2-D link traffic flow
information while LSTM has the advantages of maintaining
a long-term memory. We conduct extensive experiments on
real traffic dataset to evaluate the performance of DELA. The
experiment results show that our proposed DELA outperforms
existing methods in terms of prediction accuracy.

Regarding future work, we will improve the explanation
power of deep learning models via the adoption of other
machine learning models. Meanwhile, we will enhance our
DELA by learning from other traffic flow datasets. Moreover,
we will extend DELA to jointly investigate other traffic flow
metrics, such as traffic volume and traffic speed together.
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