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Abstract—At present, smart manufacturing computing 

framework has faced many challenges such as the lack of an 

effective framework of fusing computing historical heritages 

and resource scheduling strategy to guarantee the low latency 

requirement. In this paper, we propose a hybrid computing 

framework and design an intelligent resource scheduling 

strategy to fulfill the real-time requirement in smart 

manufacturing with edge computing support. First, a 

four-layer computing system in a smart manufacturing 

environment is provided to support the artificial intelligence 

(AI) task operation with the network perspective. Then, a 

two-phase algorithm for scheduling the computing resources 

in the edge layer is designed based on greedy and threshold 

strategies with latency constraints. Finally, a prototype 

platform was developed. We conducted experiments on the 

prototype to evaluate the performance of the proposed 

framework with a comparison of the traditionally-used 

methods. The proposed strategies have demonstrated the 

excellent real-time, satisfaction degree and energy 

consumption performance of computing services in smart 

manufacturing with edge computing.  

 

Index Terms—Industry 4.0, Smart Manufacturing, Edge 

Computing, Resource Scheduling 

I. INTRODUCTION 

Recently, thanks for the great progress of information 

and communication technologies in manufacturing domains, 

Industrial Internet of Things (IIoT), Cyber-Physical System 

(CPS) and other smart frameworks and systems have been 

constructed and implemented to increase the flexibility and 

enhance economic efficiency [1-5]. In this scenario, an 

increasing attention from enterprises and academia has 

been devoted to inventing and extending new computing 

technology or framework, e.g., Industry 4.0, smart factory 

and intelligent manufacturing [6-10]. However, traditional 

manufacturing systems that are lacking of efficiency, in 

terms of a slow computing speed on complicated task, are 

not suitable for complicated manufacturing process and 

dealing with big data analysis, especially for AI task. Hence, 

an extended framework on top of traditional manufacturing 

systems by introducing computing resources with different 

levels of computing capabilities, like cloud and edge 

computing platforms, can meet fundamental requirement 

for resolving the aforementioned problems. However, cloud 

computing platforms generally are far from the industrial 

devices; it consequently increases the latency, leads to the 

lag in data transmission, and cannot guarantee the real-time 

performance. 

Real-time feature of data flow of the whole industrial 

system, directly affecting the production efficiency and 

normal operation of the system, plays a critical role in a 

smart factory and Industry 4.0 [11]. Therefore, reducing the 

overhead of data processing and transmission in 

computing-extensive tasks (e.g., AI and deep learning tasks) 

is another aspect to guarantee the real-time performance. 

The current latency-constraints methods concentrate on 

network optimizations, data fusion, computing-task 

simplification, and computing resource decentralization. 

Edge/fog computing frameworks, close to producing 

equipment consequently leading to the decrement of the 

latency for data communications between servers and 

machines, are good candidate strategies for smart 

manufacturing to tackle the above problems [12]. In 

pioneering works [13]-[16], the authors presented the edge 

computing frameworks/strategies. Furthermore, the studies 

[17, 18] point out that computing-resource scheduling is an 

important factor to achieve the real-time performance and 

realize the fusion among of edge computing, AI and smart 

manufacturing in a manufacturing environment. Therefore, 

strategies of scheduling computing resources are a 

significant perspective for ensuring real-time AI task. The 

paper will focus on optimizing the solution to this problem 

and improve the efficiency of resources in a real-time 

manner. In particular, we will develop a better strategy to 

improving the efficacy of resources in a real-time manner, 

reducing the power consumption, and enhancing the 

reliability of the whole system. 

Recent research achievements, such as the fog-assisted 

manufacturing system (CAMS) [19], and the edge (fog) 

computing producing system (ECPS) [20] have provided a 

preliminary basis to enable the design of resource 

scheduling for smart manufacturing and Industry 4.0. 

Nevertheless, we should be aware that computing- resource 

scheduling to ensure the real-time requirement in the 

context of Industry 4.0 still faces many challenges. These 

challenges can be summarized as two fundamental 

problems: 1) how to propose a computing system to handle 
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and integrate the historical heritage of computing resources; 

2) how to construct some novel and efficient strategies and 

algorithms to ensure the real-time performance. 

This article explores resource scheduling strategy for 

manufacturing in edge computing to provide real-time 

computing services, from the perspective of the 

implementation of Industry 4.0. In summary, there are three 

main contributions of this paper:  

 From the AI task operation perspective, a four-level 

computing system architecture for smart 

manufacturing is designed for industrial 

environments, which contributes to integration and 

fully utilization of different computing resources. 

 A two-phase scheduling strategy for the computing 

resources strategy in edge computing is provided to 

meet the performance requirement of different AI 

tasks with consideration of low latency constraints. 

 The proposed scheduling method and the traditional 

algorithms are compared. The provided algorithm is 

implemented in a smart manufacturing prototype 

platform to validate its feasibility and effectiveness. 

The remainder of this paper is organized as follows. 

Section II introduces related work about edge computing, 

real-time and computing resources scheduling in 

manufacturing. Section III gives the four-level architecture 

and the working process for manufacturing computing. 

Section IV proposes the methods used for computing 

resources scheduling for edge servers. In Section V, the 

experiments for the proposed algorithms are undertaken. 

Section VI concludes the paper. 

II. RELATED WORK 

The effective of computing resources control is a 

necessity to guarantee the low latency and continuous 

production in smart factories, consequently improving 

production efficiency and bringing economic benefits. 

Therefore, in this section, we briefly outline existing efforts 

in aspects of edge computing, real-time methods and 

resources scheduling strategies in manufacturing. 

A. Edge/Fog Computing of Manufacturing 

In [21], the authors proposed an architecture of edge 

computing for IoT-based manufacturing and analyze the 

function of edge computing in a manufacturing system. In 

[22], a manufacture inspection system for the smart 

industry was designed, while it adopted the deep learning 

models to find out the defects based on fog computing. In 

[23], the authors proposed a cyber-physical machine tool 

system based on fog computing-based. Meanwhile, the 

study gave the definitions and functions for computer 

numerical control (CNC) machines. In [24], the authors 

divided the data flows into ordinary and emergent streams 

according to different latency constraints, then adopted the 

edge computing the adaptive transmission strategies. In 

[25], a multi-tier multi-access edge computing (mMEC) 

framework was provided and its role in the Industry 4.0 

was investigated for manufacturing computing performance. 

In [26], an edge device capable of collecting, processing, 

storing and analyzing data is constructed by using a 

single-board computer and a sensor. All these studies 

contribute to edge/fog computing in manufacturing. 

However, these literatures cannot consider the resource 

unbalance and differences among edge computing servers.  

B. Real-time Schemes in Manufacturing 

In [27], the authors discussed the importance of real-time 

in the industrial system and pointed out that real-time is the 

most significant evaluation indicator for industrial 

automation applications. In [28], the wireless transmission 

characteristics of wireless networks were obtained and 

analyzed, then according to these characteristics, a 

real-time big data gathering (RTBDG) algorithm for 

wireless networks is proposed for industrial operations. In 

[29], an industrial cyber-physical system based on the 

emerging fog computing paradigm was provided. In the 

system, machine learning models can be installed to 

support factory operation. In [30], authors propose an 

innovative multi-microprogrammed control unit (MCU) 

system framework combining a field-programmable- 

gate-array-based hardware bridge and multiple scalable 

MCUs to realize an edge computing gateway to get low 

latency performance of in industrial IoT. In [31], a ship 

inspection system based on fog computing was introduced. 

The system offers identifying and tracking of the pipe tasks, 

consequently decreasing latency. These literatures mostly 

focused on strategies of industry networks or adopted edge 

computing to ensuring real-time performance. However, 

there are few papers investigating resources scheduling to 

support real-time in intelligent manufacturing. 

C. Resource Scheduling Strategies for Edge Computing 

In [32], a novel model for allocating computing 

resources in an edge computing platform was proposed to 

allow service providers to establish resource sharing 

contracts with edge infrastructure. In [33], an intelligent 

agent at the edge computing was designed to develop a 

real-time adaptive policy for computational resource 

allocation for offloaded tasks of multiple users in order to 

improve the system reliability. In [34], the authors 

formulated the computation offloading problem for mobile 

edge computing into the system cost minimization problem 

and present a distributed algorithm consisting of offloading 

strategy selection by taking into account the completion 

time and energy. In [35], the authors design a new 

optimization framework by using an extended Lyapunov 

technique. In [36], a resource allocation strategy for fog 

computing based on priced timed Petri nets (PTPNs), by in 

which the user can choose the satisfying resources 

autonomously. These studies above-mentioned were not 

suitable for manufacturing, as the real-time constraint was 

not considered in these algorithms. Moreover, the literature 

seldom solves the problem by considering the cooperation 

of multiple computing servers. 

III. SYSTEM ARCHITECTURE 

This section presents the hybrid computing architecture 

in manufacturing and the working process of 

manufacturing computing. 

A. Hybrid Computing Architecture in Manufacturing 

 In the traditional framework, there are two layers to 

complete the computing tasks: fog/edge and cloud. All the 

tasks are transmitted into a cloud or edge, on top of the 
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Figure 1. Architecture for hybrid computing system 

traditional environment, the main drawback of this 

architecture lies in failing to fulfill the real-time requirement, 

especially many tasks queuing in edge servers (ES). After 

introducing smart networks nodes, agent devices with 

limited computing capability, cloud-computing servers and 

fog-computer servers, the traditional intelligent 

manufacturing system can be transferred to the hybrid 

computing architecture. Figure 1 shows the system 

architecture for manufacturing computing using different 

computing resources for the computational task.  

Obviously, cloud servers have the strengths of data 

storage and computing power; edge servers are close to the 

industrial devices and equipment, thereby having benefits of 

real-time performance; device computing units can directly 

drive the mechanical structure; Software defined networking 

(SDN) can simply provide the cooperation of different 

network devices. Hence, from the network perspective, all 

computing resources are integrated into the hybrid 

computing architecture to meet the latency requirement. 

This hybrid architecture essentially contains four parts from 

the task-node perspective (such as manufacturing devices): 1) 

Device computing layer, 2) Edge computing layer, 3) Cloud 

server, and 4) SDN layer. All these elements are collected by 

the industrial networks (i.e., wired/wireless network). In the 

cloud layer, the servers are mainly used to resolve the 

computing-extensive tasks, in which AI model are 

developed based on different information and big data. In 

edge computing layer, the edge computing servers are 

explored to finish the real-time, AI works. Additionally, in 

the devices computing layer, the devices are mainly 

responsible for finishing the sensing and controlling works. 

Besides, the SDN layer is used to control and coordinate 

different computing layer. There are differences between 

traditional maintenance and hybrid manufacturing 

computing architecture. 

B. Working Process of Manufacturing Computing 

In this paper, we mainly focus on computing resource 

allocation in the proposed framework. The working process 

of manufacturing computing is briefly introduced. For the 

hybrid computing system, all computing tasks are created on 

the field devices, including producing machines, wireless 

network nodes and mobile elements. Tasks are random 

events which should usually be processed in real-time 

manner. For scheduling a task, there are three factors to be 

considered: compute capability, queueing time and data 

communication latency. While according to the three factors, 

the latency of the task during the special time window can 

be computed, then in the hybrid computing system, in 

accordance with the real-time requirement, the AI task can 

be located at different computing layers.  

For edge computing layer, the computing capability and 

queueing time are the significant factors to determine the 

task completion time. It is obvious that there are differences 

for one edge computing layer from computing power, 

storage power. Since the different servers may deal the task 

with different complexity, they may have different values of 

queueing time. 

Actually, the historical legacy of computing resources and 

the low system latency are considered in the presented 

architecture. In particular, the computing framework can 

integrate the different level computing resources in a smart 

factory, such as device computing, edge servers and cloud 

servers. Therefore, our framework has outstanding 

performance in term of low latency with the comprehensive 

utilization of various computing resources, especially for 

device layer.  

IV. RESOURCES SCHEDULING IN EDGE LAYER 

This section mainly describes the resource scheduling in 

the edge layer. We first give the architecture of the edge 

layer, then present an algorithm for selecting edge 

computing server and a cooperation strategy for multiple 

edge servers. 

A. Architectures of the Edge Layer 

After the above analysis, the manufacturing edge layer 

(MEL), cloud, device computing resources of devices 

(LCRD) are constructed and connected to the manufacturing 

computing system via SDN wired /wireless networks. 

However, cloud servers are typically far from the devices 
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and the system has to spend more time in transmitting the 

task data between devices and the cloud server. Meanwhile, 

LCRD is limited by computing capability and responsible 

for dealing with the necessary tasks with the supporting of 

the local system normal operation. MEL that is close to the 

manufacturing equipment, plays the most important role in 

processing the real-time tasks. As shown in Figure 2, the 

MEL consists of multiple edge server clusters (ESCs). Every 

edge server (ES) is heterogeneous in the capacity of 

computing, storage and task loads. In MEL, the ESs are 

connected via the high-bandwidth networks, such as wired 

links, optical fiber, etc. Therefore, ESs can form an edge 

server cluster network with low delay. Therefore, every ES 

is deployed collocating with the devices to fulfill real-time 

computing tasks.  

Hardware platform

Virtualized environment

Framework middleware

Hardware platform

VM VMVM VM

task tasktask task

Edge computing server

wireless 
networks

wireled networks

Networked edge servers 

Figure 2. Mechanism of tasks scheduling for edge computing layer 

In order to achieve an efficient task process, ESs are 

placed in approximation to the devices. The tasks randomly 

are generated by the manufacturing equipment. They are 

then arranged and transmitted to the near and suitable ESs to 

ensure the real-time constraint. Obviously, there are two 

cases: 1) Single ES can be qualified for the task; 2) Single 

ES cannot be qualified. Therefore, there are two strategies 

for computing resources scheduling: Selecting algorithms 

for ES (SAE) and cooperation of edge computing cluster 

(CEC) to fulfill real-time requirement. The former way can 

be used to meet the low real-time requirement of computing 

tasks. SAE scheduling algorithm undertakes to choose the 

suitable ES from the edge server set (ESS) according to the 

task load, communication time and computing power. 

Moreover, CEC is adopted for low latency requirement, in 

which one ES cannot qualify to guarantee the low latency. 

B. Algorithm for Selecting Edge Computing Server   

MEL has the direct impact on the computing 

performances of the manufacturing task. It is indispensable 

to propose the scheduling algorithms for MEL and ESS. 

Scheduling for MEL contains two aspects: Selecting 

algorithms for ES (SAE) and cooperation of edge computing 

for low latency task (CEC). Based on the requirement of 

specific application for manufacturing, the latency 

requirement of getting computing results depends on 

communication, computing and queuing time. In particular, 

the task x processing time in single edge server es taskT can 

be formulated as (1) 

( , ) ( , ) ( , )

( , ) ( , )

quetask trans

process re

T x esc T x es T x es

T x es T x es

 

 
       (1) 

where , , ,trans process rque eT T T T are the times of transmitting task 

to edge server, queuing, processing and receiving, 

respectively. Furthermore, assume that the data size of task 

and results are ,   and the data rate is v, so ,trans reT T can 

be described as (2), (3): 

,

( )
( , )

( )
trans x esc

x
T x es k

v es


               (2) 

,

( )
( , ) .

( )
re x esc

x
T x es k

v es


                (3) 

Meanwhile, let  be set of tasks in edge server, namely

1 2 | |{ , , , }x x x  . The set of computer instructions is 

denoted by 1 2 | |{ , , , }N xn xn xn  , which is used to deal 

with X. According to the [23], for the new tasks, the queuing 

time can be formulated as (4)  

| || |

1 1

( , )
ixn

j

i j
proce

que

ss

IN
T x es

V



 

                 (4) 

where jIN and processV  are the j-th instruction of the i-th task 

and the process speed of the edge server, respectively. In a 

similar way, we can get the equation for processing this task 

as follows, 

 
| |

1

( , )
x

x
process

j
process

IN
T x es

V

  .            (5) 

According to formulations (1) to (5), the processing time of 

task x demoted by taskT can also be formulated as 

 
| |

,
1

( , ) i
task x esc

i
process process

IN xn IN xn
T x es k

v V V





 
   .     (6) 

Algorithm1: pseudocode of Selecting single ES 

Initialization: Input task x, xn, v, vprocess, X, XN, E, requrementt , Es   

Begin: Es E  
for i←1 to |E| 

( )
icom i eT e k

v


    

// computing the communication time; 

process

process

IN xn
t

V


  

// computing the process time of task x; 

for j←1 to | |
ieX   

// computing the queuing and process time; 

( )
ij

que

process

xn IN
t ij

V
  

 if ( ( )que requrementt ij t ) 

\ iEs Es e  

 //Selecting ES according with tque; 

 else // Selecting ES with the total time of task x; 

for f←1 to |Es| 
//computing the total time 

( , ) ( ) ( ) ( )
ftask f com f f processqueT x e T e T e T e    

if ( ( , )task f requrementT x e t )  

\ fEs Es e  

 //Selecting ES according with tque; 

else 

 Break; 

End for 

End if 
End for 

End for 
Return Es 
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To ensure the real-time requirement of processing task x, the 

edge computing server must be subject to the flowing 

inequation (7): 

( , ) ( )task reqT x es T x .               (7) 

Assume that there are multiple edge computing servers close 

to the device which contains the task x. For easily 

understanding, let E be the set of ESs, namely

1 2 | |{ , , }EE e e e .  

So, we propose Algorithm 1 to fulfill the strategy of SAE. 

In this algorithm, the selecting a single ES strategy can 

mainly divide into three steps. Firstly, the system searches 

the all ESs, and construct the set of E. Then, according to 

the equation of (2)-(4), we can get the communication time 

comT and queuing time processT of every ES in the set of E. 

Thirdly, we evaluate the queuing time to determine whether 

it is larger than the deadline time of task x. Moreover, we 

update the candidate set Es of ES to processing the task. 

Fourthly, in the light of the total time for resolving the task, 

we update Es. Finally, the device randomly selects the ES 

from Es for the task x. 

C. Cooperation Strategy of Networked Edge Computing to 

Achieve Low Latency 

In Section 4-B, the low real-time requirement of 

processing algorithm is given. It is obvious that Algorithm 1 

may not deal with the computing-extensive task as there is 

only one ES assigned for this task. Therefore, we propose a 

method to cooperate multiple edge computing servers to 

create ESC to fulfill the latency constraints of single ES. 

Algorithm2: pseudocode of CES 

Initialization  

for k←1 to |E|     

0( ) ( ( ) ( , ) ( )) ( )quk req com x k pr c ss ke o eIN e T x T ec device T e V e    

//getting the subtask instruction number in the constraints of

( )reqT x   

( ) ( )kIN E IN e   

' ( ( ))Es sort IN E   

//sort () is the function for sorting the E according with the

( )kIN e ; 

_ ( ( ))main ESC Max IN E   

//selecting the main ES  

End for 

for i←1 to |ES’|  

Temp_sum= '( )iIN es +Temp_sum 

if ( _Temp sum xn ) 

'/ iEs Es es  

else 

 break; 

End if  

End for 

divided_task (x, Es)  // divide the task x according with Es 

processing_subtask ()  // processing subtask in selecting edge server 

Return_subtask_result () 

//returning the subtask result from different edge server 

(_  )RES merge subresult   

//the main edge server merging the results 

Return RES 

 Indeed, once the edge servers are placed into smart 

factory, they are connected via industrial networks. Then, in 

the industrial system, the edge servers are clustered with 

cloud servers via SND controllers according to network 

distance between edge servers and cloud servers. Hence, to 

achieve low latency, the latter is adopted in the novel 

framework. The main idea of the method is explained as 

follows: 1) Selecting an edge server as the main server for 

dividing task and merging the results; 2) Choosing other 

edge servers to cooperate to finish the task according to the 

latency.  

Assume that the task x is be divided into N (1 | |N E  ) 

subtasks, which are executed in parallel at an ESC to ensure 

the real-time demands. We denote the set of sub-task by

0 1 2 1{ , , , , }.Nx sx sx sx sx   

Let 0 1 2 1{ , , , , }NEc ec ec ec ec  be the set for cooperating 

to process the task x. For the subtask isx x (0 1)i N   , 

the communication time can be given as (8) 

0 ,0

( ) ( )
0

( , )

0

i

rough i result i

ec eccom i

D sx D sx
if i

VT ec ec

otherwise




 



  (8)   

where ( )rough iD sx  and ( )result iD sx  are subtask rough and 

data size of results, respectively. The term of 
0 , iec ecV is the 

average data rate between 0ec  and iec . Furthermore, in 

light of the literature [23], we can get the subtask processing 

time in (9) 

( , )
( )

isx

process i i

process i

IN
T sx ec

V ec
          (9) 

where 
isxIN  is the subtask instruction number, and

( )process iV ec is the processing speed of the i-th ES of Ec. It 

is worth mentioning that | |Ec N , while we can get the 

formulation of _ ( , )sub task i iT sx ec  ( 0 1i N   ) as shown 

in equation (10), according to formulations (1) and (6): 

_ 0( , ) ( , ) ( , )

( , )

qusub task i i com i e i i

process i i

T sx ec T ec ec T sx ec

T sx ec

 


     (10) 

where 0( , )com iT ec ec  is the communication time between 

0ec and iec , ( , )que i iT sx ec and ( , )process i iT sx ec  are queuing 

time and the process time for subtask isx in edge computing 

server iec , respectively. 

Recall the fact that the main ES is responsible for 

dividing task and merging the results. Therefore, the running 

task time in main ES is formulated as (11) 
1

0 0
1

_

( , , ) ( ) ( , )

( ( , )) ( , )

N

main divide com i
i

sub task i i merge

T x sx Ec T x T ec ec

Max T sx ec T x Ec





  

 

    (11) 

where ( )divideT x and ( , )mergeT x Ec  are the dividing time and 

the merging-result time for task x in edge computing servers 

set Es, respectively. Therefore, the total time for task x 

running at Ec is decided by the communication time 

between main edge computing server and the device of task 

x and the running time 0( , , )mainT x sx Es (as given in equation 

(11)). It is formulated as (12): 

0 0( , ) ( , , ) ( , )task main com xT x Es T x sx Ec T ec device    (12) 

It is worth noting that divideT , mergeT , com processT T , so 
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according to equation of (11), the equation can be simplified 

into (13): 

_ 0( , ) ( ( , )) ( , )task sub task i i com xT x Es Max T sx ec T ec device   (13)  

Equation (7) gives the time constraints for processing the 

task. Therefore, we can get the inequation (14): 

_ 0

_ 0

_ 0

( ( , )) ( , ) ( )

( ( , )) ( ) ( , )

( , ) ( ) ( , )

sub task i i com x req

sub task i i req com x

sub task i i req com x

Max T sx ec T ec device T x

Max T sx ec T x T ec device

T sx ec T x T ec device

 

 

 

 .  (14) 

According to the (9) and (14), it is easy to get the task 

instruction number of the i-th ES. It is described as (15) 

0( ( ) ( , ) ( , )) ( ).
isx req com x i iq prue ocess iIN T x T ec device T sx ec V ec      

(15) 

Furthermore, task time ( , )taskT x Es is determined by the 

maximum .processT Therefore, in light of the above 

discussion, we propose the strategy of cooperating edge 

computing servers for the extensive task as shown in 

Algorithm 2. 

In Algorithm 2, the steps can be mainly described as 

followings: Firstly, according to the referenced equations, 

we compute subtask instruction number IN(E) in the 

constraints of ( )reqT x  for every ES in the set of E. Then, we 

sort IN(E) in the descending order (i.e., from largest to 

smallest), and create the sorted ES set Es’. Thirdly, we sum 

the subtask instruction number, temp_sum and evaluate 

whether the temp_sum meets the requirement of task x. 

Finally, the main ES divides the task x and finishes the 

processing task x by Es, and returns the result of the task 

(RES). 

V. ANALYSIS AND EXPERIMENT 

This section mainly evaluates the performance of the 

proposed framework based on an implementation of a 

prototype in a realistic manufacturing platform. 

A. Prototyping Platform and Experiment Installment  

For analyzing our proposed strategies of scheduling edge 

computing resources, a prototyping platform with edge 

computing servers and industrial internet of things is 

constructed. As demonstrated in Fig.3, the prototyping 

platform is composed of four parts: device field, edge 

computing layer, industrial private cloud servers, and 

industrial networks (with SDN). 

The device field contains multiple types of equipment 

mobile robots, products processing machines, conveyor 

belts, and manipulators. To construct the edge computing 

layer, multiple single-board computers connected with 

wireless/wired local area network (LANs) and Bluetooth 

(i.e., Raspberry Pi 3 Model B) are adopted to sever as edge 

servers. Each single-board computer is equipped with a 

quad-core 1.2GHz Broadcom BCM2837 64bit central 

processing unit (CPU) and 1GB random-access memory 

(RAM). For linking with other edge servers, we exploit the 

Ethernet with 100Mbps bandwidth and adopt servers switch 

hubs. In addition, wireless communications (Wi-Fi or 

Bluetooth) are responsible for connection to the devices. 

From the software aspects, every edge server is installed 

with operating systems (Linux) and OpenCV framework to 

support image processing tasks for mobile robots or 

machines. Based on the XenServer and Hadoop cloud 

ecosystem, we construct a private cloud platform supporting 

big data processing platform. Meanwhile, the wired ethernet 

and wireless communication system are used to data 

interaction between the different layers of smart 

manufacturing. In a word, an industrial manufacturing 

prototype platform with edge servers has been constructed. 

Then based on the prototype platform, an experiment is 

constructed to evaluate the performance of the proposed. In 

the experiment, a mobile robot equipped with an industrial 

camera moved along with a fixed trajectory to monitor the 

operation of equipment of the constructed industry 4.0 

platform. The robot periodically captured pictures and then 

to calculate the images boundary for the next work process. 

Then, the running state of the equipment is judged by a 

neural network. So, to assess the performance of different 

methods, these pictures are sent to different computing layer 

via industrial networks. Then, the related parameters are 

measured during the experiment.  

In this experiment, a task for processing an image with 

the average size of 10Mb~20Mb was executed at the edge 

computing server (in which typical OpenCV algorithms 

were executed). The different edge servers communicate 

with each other via Ethernet with bandwidth 100Mbps. An 

edge server connects with the mobile robot with bandwidth 

1~54Mbps. Moreover, the data is transmitted to the cloud 

server in four hops via industrial networks. Assume that the 

communication energy consumption is 1J/s and the 

computing energy consumption rate is 0.8J/s. 

 
Figure 3. Prototyping Platform for smart manufacturing with edge 

computing  

Meanwhile, we use the computing latency, satisfaction 

degree and the energy consumption as the evaluation metrics 

to assess the provided strategies via selecting algorithms for 

ES (SAE) and cooperating edge computing servers (CEC). 

We evaluate the performance of the proposed strategies with 

the comparison with traditional strategies such as cloud 

server computing (CSC), ordinary edge computing without 

scheduling (OEC).  

In particular, computing latency (CL) is the time between 

devices transmission data task from devices to the cloud 

server and receiving results at device. Satisfaction degree 

(SD) is the QoS lever performance metric. Satisfaction 

degree is expressed as the ratio between requirement 

computing service time and the computing latency. The 

higher SD implies the better performance. 
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B. Analysis and Results 

Fig. 4 show the average of computing latency of different 

methods with their best performance. In particular, Fig.4(a) 

shows that with an increment of the task data size, the 

computing latency increases for all these methods. It is 

obvious that our proposal (SAE_CEC) outperforms other 

strategies, as SAE_CEC will select the better edge server to 

complete the task. Moreover, with the increase the data size, 

the single edge server cannot meet the deadline, SAE_CEC 

will call Algorithm 2 and exploit multiple edge servers 

together to process the computing-extensive task to ensure 

the real-time constraints. It is worth mentioning that OEC 

gets better performance than CSC, as OEC adopts edge 

computing servers to finish the tasks. Meanwhile, the 

computing servers far away the device and system have to 

spend more time in data transmission. Hence, the CSC gets 

the worst computing latency performance.  

Fig. 4(b) demonstrates the results the latency of different 

methods with the same task data size 10Mb in varied data 

rate between devices and server. Similarly, SAE_CEC 

shows a better performance than other algorithms. This 

because SAE_CEC method can dynamically select the better 

edge servers according to the deadline of the task. 

Furthermore, with the increase of data rate the latency of 

CSC decreases dramatically, as data rate has a great impact 

on CSC. 

 
(a) Computing latency in different data size of task 

 

 
(b) Computing latency in different data rate 

Figure 4. Comparison of computing latency 

In addition, the satisfaction degree is useful to evaluate 

the computing services with the consideration of the latency 

constraints. In particular, in Fig.5(a) gives the results of 

satisfaction degree with different deadline requirements and 

the same data rate and the data size of the task. It is shown 

that when the data size of the task is less than 14Mb, 

satisfaction degrees of three methods are more than 100%. 

However, when the data size of the task is larger than 14Mb, 

only satisfaction degree of SAE_CEC can get 100%. That is 

to say, our proposal can meet the real-time requirement for 

processing the task. Fig. 5 (b) shows the satisfaction degree 

in different communication bandwidths and data amount of 

the task with different deadlines (I: 2s, II: 3s, III: 3s). Fig. 

5(b) shows the similar results to Fig. 5(a). In summary, the 

proposals can adapt to different environments and different 

real-time constraints. The traditional methods cannot be 

adopted in the industrial maneuvering system due to the 

failure of fulfilling the real-time requirement. 

 
(a) Satisfaction degree in different data size of task 

 

 
(b) Satisfaction degree in different time constraints 

Figure 5. Comparison of satisfaction degree 

 Moreover, Fig 6 shows the average energy consumption 

of different methods in different data rate and task data size. 

Fig. 6(a) gives the results of energy consumption for 

different strategies. It is demonstrated that with the 

increment of data rate, the energy consumption will reduce, 

as all the methods spend less energy in communication. 

Meanwhile, the proposed scheme outperforms other 

strategies in terms of energy consumption because of edge 

server being close to device. In particular, when the data rate 

is 10Mpbs, our proposal can reduce more than 50% energy 

consumption. Fig. 6(b) shows the energy consumption in 

different task data size (I: 10, II, 15, III: 20, VI: 20 (Mb)) 

with same data rate. Similarly, when the data size increases, 

the energy consumption will be added. Fig. 6(b) also shows 

the advantage of our method in energy consumption. 

 
(a) Energy consumption in different data rate 
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(b) Energy consumption in different task data size 

Figure 6. Comparison of energy consumption 

VI. CONCLUSIONS  

In this paper, we have focused on resources scheduling to 

ensure the real-time requirement of smart manufacturing 

with consideration of integrating different computing 

resources. First, according to the feature of smart factories, 

AI task operations and network perspective, we provide the 

four-layer architecture with integration of historical heritage 

of computing resources. Then, we focus on the edge 

computing layer and propose a two-phase scheduling 

strategy to allocate the computing resources to meet the 

latency constraint. In the first phase, different factors are 

considered to select the edge computing server for 

supporting the computing services for the task with the low 

real-time constraint. Moreover, the second phase is explored 

for resolving cooperation of multiple ESs to construct a task 

of ESC operating the lower latency computing services. 

Finally, for verifying the feasibility of our proposal, a 

prototype platform is implemented. In particular, we conduct 

experiments to compare the traditionally-used methods with 

the proposed computing-resource scheduling strategy. The 

proposed computational resources allocation strategies have 

ensured the real-time for smart manufacturing with edge 

computing. In summary, the proposed frameworks and 

computing resources scheduling can accelerate the 

implementation of Industry 4.0 and smart factory.  
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