
1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2899679, IEEE
Transactions on Industrial Informatics

Abstract—At present, smart manufacturing computing

framework has faced many challenges such as the lack of an

effective framework of fusing computing historical heritages

and resource scheduling strategy to guarantee the low latency

requirement. In this paper, we propose a hybrid computing

framework and design an intelligent resource scheduling

strategy to fulfill the real-time requirement in smart

manufacturing with edge computing support. First, a

four-layer computing system in a smart manufacturing

environment is provided to support the artificial intelligence

(AI) task operation with the network perspective. Then, a

two-phase algorithm for scheduling the computing resources

in the edge layer is designed based on greedy and threshold

strategies with latency constraints. Finally, a prototype

platform was developed. We conducted experiments on the

prototype to evaluate the performance of the proposed

framework with a comparison of the traditionally-used

methods. The proposed strategies have demonstrated the

excellent real-time, satisfaction degree and energy

consumption performance of computing services in smart

manufacturing with edge computing.

Index Terms—Industry 4.0, Smart Manufacturing, Edge

Computing, Resource Scheduling

I. INTRODUCTION

Recently, thanks for the great progress of information

and communication technologies in manufacturing domains,

Industrial Internet of Things (IIoT), Cyber-Physical System

(CPS) and other smart frameworks and systems have been

constructed and implemented to increase the flexibility and

enhance economic efficiency [1-5]. In this scenario, an

increasing attention from enterprises and academia has

been devoted to inventing and extending new computing

technology or framework, e.g., Industry 4.0, smart factory

and intelligent manufacturing [6-10]. However, traditional

manufacturing systems that are lacking of efficiency, in

terms of a slow computing speed on complicated task, are

not suitable for complicated manufacturing process and

dealing with big data analysis, especially for AI task. Hence,

an extended framework on top of traditional manufacturing

systems by introducing computing resources with different

levels of computing capabilities, like cloud and edge

computing platforms, can meet fundamental requirement

for resolving the aforementioned problems. However, cloud

computing platforms generally are far from the industrial

devices; it consequently increases the latency, leads to the

lag in data transmission, and cannot guarantee the real-time

performance.

Real-time feature of data flow of the whole industrial

system, directly affecting the production efficiency and

normal operation of the system, plays a critical role in a

smart factory and Industry 4.0 [11]. Therefore, reducing the

overhead of data processing and transmission in

computing-extensive tasks (e.g., AI and deep learning tasks)

is another aspect to guarantee the real-time performance.

The current latency-constraints methods concentrate on

network optimizations, data fusion, computing-task

simplification, and computing resource decentralization.

Edge/fog computing frameworks, close to producing

equipment consequently leading to the decrement of the

latency for data communications between servers and

machines, are good candidate strategies for smart

manufacturing to tackle the above problems [12]. In

pioneering works [13]-[16], the authors presented the edge

computing frameworks/strategies. Furthermore, the studies

[17, 18] point out that computing-resource scheduling is an

important factor to achieve the real-time performance and

realize the fusion among of edge computing, AI and smart

manufacturing in a manufacturing environment. Therefore,

strategies of scheduling computing resources are a

significant perspective for ensuring real-time AI task. The

paper will focus on optimizing the solution to this problem

and improve the efficiency of resources in a real-time

manner. In particular, we will develop a better strategy to

improving the efficacy of resources in a real-time manner,

reducing the power consumption, and enhancing the

reliability of the whole system.

Recent research achievements, such as the fog-assisted

manufacturing system (CAMS) [19], and the edge (fog)

computing producing system (ECPS) [20] have provided a

preliminary basis to enable the design of resource

scheduling for smart manufacturing and Industry 4.0.

Nevertheless, we should be aware that computing- resource

scheduling to ensure the real-time requirement in the

context of Industry 4.0 still faces many challenges. These

challenges can be summarized as two fundamental

problems: 1) how to propose a computing system to handle

A Hybrid Computing Solution and Resource

Scheduling Strategy for Edge Computing in

Smart Manufacturing

Xiaomin Li, Jiafu Wan, Hong-Ning Dai, Muhammad Imran, Min Xia, Antonio Celesti

Manuscript received November 30, 2018; revised February January 22,

2019; accepted February 11, 2019. Date of publication xx, 2019; date of

current version xx, 2019. The corresponding author: Jiafu Wan
X. Li is with the School of Mechanical Engineering, Zhongkai

University of Agriculture and Engineering, Guangzhou, China (e-mail:

lixiaomin@zhku.edu.cn).
J. Wan is with the School of Mechanical and Automotive Engineering,

South China University of Technology, Guangzhou, China (e-mail:

mejwan@scut.edu.cn).
H. Dai is with the College of Information Technology, Macau

University of Science and Technology, Macau, China (e-mail:

hndai@ieee.org).
M. Imran is with the College of Computer and Information Sciences,

King Saud University, Saudi Arabia (e-mail: dr.m.imran@ieee.org).
M. Xia is with the Department of Mechanical Engineering, University

of British Columbia, Vancouver, Canada. (e-mail: minxia@mech.ubc.ca)

A. Celesti is with the MIFT Department, University of Messina,
Messina, Italy. (e-mail: acelesti@unime.it)

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2899679, IEEE
Transactions on Industrial Informatics

and integrate the historical heritage of computing resources;

2) how to construct some novel and efficient strategies and

algorithms to ensure the real-time performance.

This article explores resource scheduling strategy for

manufacturing in edge computing to provide real-time

computing services, from the perspective of the

implementation of Industry 4.0. In summary, there are three

main contributions of this paper:

 From the AI task operation perspective, a four-level

computing system architecture for smart

manufacturing is designed for industrial

environments, which contributes to integration and

fully utilization of different computing resources.

 A two-phase scheduling strategy for the computing

resources strategy in edge computing is provided to

meet the performance requirement of different AI

tasks with consideration of low latency constraints.

 The proposed scheduling method and the traditional

algorithms are compared. The provided algorithm is

implemented in a smart manufacturing prototype

platform to validate its feasibility and effectiveness.

The remainder of this paper is organized as follows.

Section II introduces related work about edge computing,

real-time and computing resources scheduling in

manufacturing. Section III gives the four-level architecture

and the working process for manufacturing computing.

Section IV proposes the methods used for computing

resources scheduling for edge servers. In Section V, the

experiments for the proposed algorithms are undertaken.

Section VI concludes the paper.

II. RELATED WORK

The effective of computing resources control is a

necessity to guarantee the low latency and continuous

production in smart factories, consequently improving

production efficiency and bringing economic benefits.

Therefore, in this section, we briefly outline existing efforts

in aspects of edge computing, real-time methods and

resources scheduling strategies in manufacturing.

A. Edge/Fog Computing of Manufacturing

In [21], the authors proposed an architecture of edge

computing for IoT-based manufacturing and analyze the

function of edge computing in a manufacturing system. In

[22], a manufacture inspection system for the smart

industry was designed, while it adopted the deep learning

models to find out the defects based on fog computing. In

[23], the authors proposed a cyber-physical machine tool

system based on fog computing-based. Meanwhile, the

study gave the definitions and functions for computer

numerical control (CNC) machines. In [24], the authors

divided the data flows into ordinary and emergent streams

according to different latency constraints, then adopted the

edge computing the adaptive transmission strategies. In

[25], a multi-tier multi-access edge computing (mMEC)

framework was provided and its role in the Industry 4.0

was investigated for manufacturing computing performance.

In [26], an edge device capable of collecting, processing,

storing and analyzing data is constructed by using a

single-board computer and a sensor. All these studies

contribute to edge/fog computing in manufacturing.

However, these literatures cannot consider the resource

unbalance and differences among edge computing servers.

B. Real-time Schemes in Manufacturing

In [27], the authors discussed the importance of real-time

in the industrial system and pointed out that real-time is the

most significant evaluation indicator for industrial

automation applications. In [28], the wireless transmission

characteristics of wireless networks were obtained and

analyzed, then according to these characteristics, a

real-time big data gathering (RTBDG) algorithm for

wireless networks is proposed for industrial operations. In

[29], an industrial cyber-physical system based on the

emerging fog computing paradigm was provided. In the

system, machine learning models can be installed to

support factory operation. In [30], authors propose an

innovative multi-microprogrammed control unit (MCU)

system framework combining a field-programmable-

gate-array-based hardware bridge and multiple scalable

MCUs to realize an edge computing gateway to get low

latency performance of in industrial IoT. In [31], a ship

inspection system based on fog computing was introduced.

The system offers identifying and tracking of the pipe tasks,

consequently decreasing latency. These literatures mostly

focused on strategies of industry networks or adopted edge

computing to ensuring real-time performance. However,

there are few papers investigating resources scheduling to

support real-time in intelligent manufacturing.

C. Resource Scheduling Strategies for Edge Computing

In [32], a novel model for allocating computing

resources in an edge computing platform was proposed to

allow service providers to establish resource sharing

contracts with edge infrastructure. In [33], an intelligent

agent at the edge computing was designed to develop a

real-time adaptive policy for computational resource

allocation for offloaded tasks of multiple users in order to

improve the system reliability. In [34], the authors

formulated the computation offloading problem for mobile

edge computing into the system cost minimization problem

and present a distributed algorithm consisting of offloading

strategy selection by taking into account the completion

time and energy. In [35], the authors design a new

optimization framework by using an extended Lyapunov

technique. In [36], a resource allocation strategy for fog

computing based on priced timed Petri nets (PTPNs), by in

which the user can choose the satisfying resources

autonomously. These studies above-mentioned were not

suitable for manufacturing, as the real-time constraint was

not considered in these algorithms. Moreover, the literature

seldom solves the problem by considering the cooperation

of multiple computing servers.

III. SYSTEM ARCHITECTURE

This section presents the hybrid computing architecture

in manufacturing and the working process of

manufacturing computing.

A. Hybrid Computing Architecture in Manufacturing

 In the traditional framework, there are two layers to

complete the computing tasks: fog/edge and cloud. All the

tasks are transmitted into a cloud or edge, on top of the

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2899679, IEEE
Transactions on Industrial Informatics

Equipment FactoryProduction line

First

Second

Third

Developing a model
based on big data

Processing AI tasks
for device field

Finish the manufatruing
controlling

SDN Layer

SDN controller

Control flow

Cloud computing layer

HW servers
Computing cluster

Data servers

Edge computing layer

Device computing layer AI operation steps

Figure 1. Architecture for hybrid computing system

traditional environment, the main drawback of this

architecture lies in failing to fulfill the real-time requirement,

especially many tasks queuing in edge servers (ES). After

introducing smart networks nodes, agent devices with

limited computing capability, cloud-computing servers and

fog-computer servers, the traditional intelligent

manufacturing system can be transferred to the hybrid

computing architecture. Figure 1 shows the system

architecture for manufacturing computing using different

computing resources for the computational task.

Obviously, cloud servers have the strengths of data

storage and computing power; edge servers are close to the

industrial devices and equipment, thereby having benefits of

real-time performance; device computing units can directly

drive the mechanical structure; Software defined networking

(SDN) can simply provide the cooperation of different

network devices. Hence, from the network perspective, all

computing resources are integrated into the hybrid

computing architecture to meet the latency requirement.

This hybrid architecture essentially contains four parts from

the task-node perspective (such as manufacturing devices): 1)

Device computing layer, 2) Edge computing layer, 3) Cloud

server, and 4) SDN layer. All these elements are collected by

the industrial networks (i.e., wired/wireless network). In the

cloud layer, the servers are mainly used to resolve the

computing-extensive tasks, in which AI model are

developed based on different information and big data. In

edge computing layer, the edge computing servers are

explored to finish the real-time, AI works. Additionally, in

the devices computing layer, the devices are mainly

responsible for finishing the sensing and controlling works.

Besides, the SDN layer is used to control and coordinate

different computing layer. There are differences between

traditional maintenance and hybrid manufacturing

computing architecture.

B. Working Process of Manufacturing Computing

In this paper, we mainly focus on computing resource

allocation in the proposed framework. The working process

of manufacturing computing is briefly introduced. For the

hybrid computing system, all computing tasks are created on

the field devices, including producing machines, wireless

network nodes and mobile elements. Tasks are random

events which should usually be processed in real-time

manner. For scheduling a task, there are three factors to be

considered: compute capability, queueing time and data

communication latency. While according to the three factors,

the latency of the task during the special time window can

be computed, then in the hybrid computing system, in

accordance with the real-time requirement, the AI task can

be located at different computing layers.

For edge computing layer, the computing capability and

queueing time are the significant factors to determine the

task completion time. It is obvious that there are differences

for one edge computing layer from computing power,

storage power. Since the different servers may deal the task

with different complexity, they may have different values of

queueing time.

Actually, the historical legacy of computing resources and

the low system latency are considered in the presented

architecture. In particular, the computing framework can

integrate the different level computing resources in a smart

factory, such as device computing, edge servers and cloud

servers. Therefore, our framework has outstanding

performance in term of low latency with the comprehensive

utilization of various computing resources, especially for

device layer.

IV. RESOURCES SCHEDULING IN EDGE LAYER

This section mainly describes the resource scheduling in

the edge layer. We first give the architecture of the edge

layer, then present an algorithm for selecting edge

computing server and a cooperation strategy for multiple

edge servers.

A. Architectures of the Edge Layer

After the above analysis, the manufacturing edge layer

(MEL), cloud, device computing resources of devices

(LCRD) are constructed and connected to the manufacturing

computing system via SDN wired /wireless networks.

However, cloud servers are typically far from the devices

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2899679, IEEE
Transactions on Industrial Informatics

and the system has to spend more time in transmitting the

task data between devices and the cloud server. Meanwhile,

LCRD is limited by computing capability and responsible

for dealing with the necessary tasks with the supporting of

the local system normal operation. MEL that is close to the

manufacturing equipment, plays the most important role in

processing the real-time tasks. As shown in Figure 2, the

MEL consists of multiple edge server clusters (ESCs). Every

edge server (ES) is heterogeneous in the capacity of

computing, storage and task loads. In MEL, the ESs are

connected via the high-bandwidth networks, such as wired

links, optical fiber, etc. Therefore, ESs can form an edge

server cluster network with low delay. Therefore, every ES

is deployed collocating with the devices to fulfill real-time

computing tasks.

Hardware platform

Virtualized environment

Framework middleware

Hardware platform

VM VMVM VM

task tasktask task

Edge computing server

wireless
networks

wireled networks

Networked edge servers

Figure 2. Mechanism of tasks scheduling for edge computing layer

In order to achieve an efficient task process, ESs are

placed in approximation to the devices. The tasks randomly

are generated by the manufacturing equipment. They are

then arranged and transmitted to the near and suitable ESs to

ensure the real-time constraint. Obviously, there are two

cases: 1) Single ES can be qualified for the task; 2) Single

ES cannot be qualified. Therefore, there are two strategies

for computing resources scheduling: Selecting algorithms

for ES (SAE) and cooperation of edge computing cluster

(CEC) to fulfill real-time requirement. The former way can

be used to meet the low real-time requirement of computing

tasks. SAE scheduling algorithm undertakes to choose the

suitable ES from the edge server set (ESS) according to the

task load, communication time and computing power.

Moreover, CEC is adopted for low latency requirement, in

which one ES cannot qualify to guarantee the low latency.

B. Algorithm for Selecting Edge Computing Server

MEL has the direct impact on the computing

performances of the manufacturing task. It is indispensable

to propose the scheduling algorithms for MEL and ESS.

Scheduling for MEL contains two aspects: Selecting

algorithms for ES (SAE) and cooperation of edge computing

for low latency task (CEC). Based on the requirement of

specific application for manufacturing, the latency

requirement of getting computing results depends on

communication, computing and queuing time. In particular,

the task x processing time in single edge server es taskT can

be formulated as (1)

(,) (,) (,)

(,) (,)

quetask trans

process re

T x esc T x es T x es

T x es T x es

 

 
 (1)

where , , ,trans process rque eT T T T are the times of transmitting task

to edge server, queuing, processing and receiving,

respectively. Furthermore, assume that the data size of task

and results are ,  and the data rate is v, so ,trans reT T can

be described as (2), (3):

,

()
(,)

()
trans x esc

x
T x es k

v es


 (2)

,

()
(,) .

()
re x esc

x
T x es k

v es


 (3)

Meanwhile, let  be set of tasks in edge server, namely

1 2 | |{ , , , }x x x  . The set of computer instructions is

denoted by 1 2 | |{ , , , }N xn xn xn  , which is used to deal

with X. According to the [23], for the new tasks, the queuing

time can be formulated as (4)

| || |

1 1

(,)
ixn

j

i j
proce

que

ss

IN
T x es

V



 

   (4)

where jIN and processV are the j-th instruction of the i-th task

and the process speed of the edge server, respectively. In a

similar way, we can get the equation for processing this task

as follows,

| |

1

(,)
x

x
process

j
process

IN
T x es

V

  . (5)

According to formulations (1) to (5), the processing time of

task x demoted by taskT can also be formulated as

| |

,
1

(,) i
task x esc

i
process process

IN xn IN xn
T x es k

v V V





 
   . (6)

Algorithm1: pseudocode of Selecting single ES

Initialization: Input task x, xn, v, vprocess, X, XN, E, requrementt , Es 

Begin: Es E
for i←1 to |E|

()
icom i eT e k

v


 

// computing the communication time;

process

process

IN xn
t

V




// computing the process time of task x;

for j←1 to | |
ieX

// computing the queuing and process time;

()
ij

que

process

xn IN
t ij

V


 if (()que requrementt ij t)

\ iEs Es e

 //Selecting ES according with tque;

 else // Selecting ES with the total time of task x;

for f←1 to |Es|
//computing the total time

(,) () () ()
ftask f com f f processqueT x e T e T e T e  

if ((,)task f requrementT x e t)

\ fEs Es e

 //Selecting ES according with tque;

else

 Break;

End for

End if
End for

End for
Return Es

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2899679, IEEE
Transactions on Industrial Informatics

To ensure the real-time requirement of processing task x, the

edge computing server must be subject to the flowing

inequation (7):

(,) ()task reqT x es T x . (7)

Assume that there are multiple edge computing servers close

to the device which contains the task x. For easily

understanding, let E be the set of ESs, namely

1 2 | |{ , , }EE e e e .

So, we propose Algorithm 1 to fulfill the strategy of SAE.

In this algorithm, the selecting a single ES strategy can

mainly divide into three steps. Firstly, the system searches

the all ESs, and construct the set of E. Then, according to

the equation of (2)-(4), we can get the communication time

comT and queuing time processT of every ES in the set of E.

Thirdly, we evaluate the queuing time to determine whether

it is larger than the deadline time of task x. Moreover, we

update the candidate set Es of ES to processing the task.

Fourthly, in the light of the total time for resolving the task,

we update Es. Finally, the device randomly selects the ES

from Es for the task x.

C. Cooperation Strategy of Networked Edge Computing to

Achieve Low Latency

In Section 4-B, the low real-time requirement of

processing algorithm is given. It is obvious that Algorithm 1

may not deal with the computing-extensive task as there is

only one ES assigned for this task. Therefore, we propose a

method to cooperate multiple edge computing servers to

create ESC to fulfill the latency constraints of single ES.

Algorithm2: pseudocode of CES

Initialization

for k←1 to |E|

0() (() (,) ()) ()quk req com x k pr c ss ke o eIN e T x T ec device T e V e  

//getting the subtask instruction number in the constraints of

()reqT x

() ()kIN E IN e

' (())Es sort IN E

//sort () is the function for sorting the E according with the

()kIN e ;

_ (())main ESC Max IN E

//selecting the main ES

End for

for i←1 to |ES’|

Temp_sum= '()iIN es +Temp_sum

if (_Temp sum xn)

'/ iEs Es es

else

 break;

End if

End for

divided_task (x, Es) // divide the task x according with Es

processing_subtask () // processing subtask in selecting edge server

Return_subtask_result ()

//returning the subtask result from different edge server

(_)RES merge subresult

//the main edge server merging the results

Return RES

 Indeed, once the edge servers are placed into smart

factory, they are connected via industrial networks. Then, in

the industrial system, the edge servers are clustered with

cloud servers via SND controllers according to network

distance between edge servers and cloud servers. Hence, to

achieve low latency, the latter is adopted in the novel

framework. The main idea of the method is explained as

follows: 1) Selecting an edge server as the main server for

dividing task and merging the results; 2) Choosing other

edge servers to cooperate to finish the task according to the

latency.

Assume that the task x is be divided into N (1 | |N E )

subtasks, which are executed in parallel at an ESC to ensure

the real-time demands. We denote the set of sub-task by

0 1 2 1{ , , , , }.Nx sx sx sx sx 

Let 0 1 2 1{ , , , , }NEc ec ec ec ec  be the set for cooperating

to process the task x. For the subtask isx x (0 1)i N   ,

the communication time can be given as (8)

0 ,0

() ()
0

(,)

0

i

rough i result i

ec eccom i

D sx D sx
if i

VT ec ec

otherwise




 



 (8)

where ()rough iD sx and ()result iD sx are subtask rough and

data size of results, respectively. The term of
0 , iec ecV is the

average data rate between 0ec and iec . Furthermore, in

light of the literature [23], we can get the subtask processing

time in (9)

(,)
()

isx

process i i

process i

IN
T sx ec

V ec
 (9)

where
isxIN is the subtask instruction number, and

()process iV ec is the processing speed of the i-th ES of Ec. It

is worth mentioning that | |Ec N , while we can get the

formulation of _ (,)sub task i iT sx ec (0 1i N  ) as shown

in equation (10), according to formulations (1) and (6):

_ 0(,) (,) (,)

(,)

qusub task i i com i e i i

process i i

T sx ec T ec ec T sx ec

T sx ec

 


 (10)

where 0(,)com iT ec ec is the communication time between

0ec and iec , (,)que i iT sx ec and (,)process i iT sx ec are queuing

time and the process time for subtask isx in edge computing

server iec , respectively.

Recall the fact that the main ES is responsible for

dividing task and merging the results. Therefore, the running

task time in main ES is formulated as (11)
1

0 0
1

_

(, ,) () (,)

((,)) (,)

N

main divide com i
i

sub task i i merge

T x sx Ec T x T ec ec

Max T sx ec T x Ec





  

 

 (11)

where ()divideT x and (,)mergeT x Ec are the dividing time and

the merging-result time for task x in edge computing servers

set Es, respectively. Therefore, the total time for task x

running at Ec is decided by the communication time

between main edge computing server and the device of task

x and the running time 0(, ,)mainT x sx Es (as given in equation

(11)). It is formulated as (12):

0 0(,) (, ,) (,)task main com xT x Es T x sx Ec T ec device  (12)

It is worth noting that divideT , mergeT , com processT T , so

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2899679, IEEE
Transactions on Industrial Informatics

according to equation of (11), the equation can be simplified

into (13):

_ 0(,) ((,)) (,)task sub task i i com xT x Es Max T sx ec T ec device  (13)

Equation (7) gives the time constraints for processing the

task. Therefore, we can get the inequation (14):

_ 0

_ 0

_ 0

((,)) (,) ()

((,)) () (,)

(,) () (,)

sub task i i com x req

sub task i i req com x

sub task i i req com x

Max T sx ec T ec device T x

Max T sx ec T x T ec device

T sx ec T x T ec device

 

 

 

 . (14)

According to the (9) and (14), it is easy to get the task

instruction number of the i-th ES. It is described as (15)

0(() (,) (,)) ().
isx req com x i iq prue ocess iIN T x T ec device T sx ec V ec  

(15)

Furthermore, task time (,)taskT x Es is determined by the

maximum .processT Therefore, in light of the above

discussion, we propose the strategy of cooperating edge

computing servers for the extensive task as shown in

Algorithm 2.

In Algorithm 2, the steps can be mainly described as

followings: Firstly, according to the referenced equations,

we compute subtask instruction number IN(E) in the

constraints of ()reqT x for every ES in the set of E. Then, we

sort IN(E) in the descending order (i.e., from largest to

smallest), and create the sorted ES set Es’. Thirdly, we sum

the subtask instruction number, temp_sum and evaluate

whether the temp_sum meets the requirement of task x.

Finally, the main ES divides the task x and finishes the

processing task x by Es, and returns the result of the task

(RES).

V. ANALYSIS AND EXPERIMENT

This section mainly evaluates the performance of the

proposed framework based on an implementation of a

prototype in a realistic manufacturing platform.

A. Prototyping Platform and Experiment Installment

For analyzing our proposed strategies of scheduling edge

computing resources, a prototyping platform with edge

computing servers and industrial internet of things is

constructed. As demonstrated in Fig.3, the prototyping

platform is composed of four parts: device field, edge

computing layer, industrial private cloud servers, and

industrial networks (with SDN).

The device field contains multiple types of equipment

mobile robots, products processing machines, conveyor

belts, and manipulators. To construct the edge computing

layer, multiple single-board computers connected with

wireless/wired local area network (LANs) and Bluetooth

(i.e., Raspberry Pi 3 Model B) are adopted to sever as edge

servers. Each single-board computer is equipped with a

quad-core 1.2GHz Broadcom BCM2837 64bit central

processing unit (CPU) and 1GB random-access memory

(RAM). For linking with other edge servers, we exploit the

Ethernet with 100Mbps bandwidth and adopt servers switch

hubs. In addition, wireless communications (Wi-Fi or

Bluetooth) are responsible for connection to the devices.

From the software aspects, every edge server is installed

with operating systems (Linux) and OpenCV framework to

support image processing tasks for mobile robots or

machines. Based on the XenServer and Hadoop cloud

ecosystem, we construct a private cloud platform supporting

big data processing platform. Meanwhile, the wired ethernet

and wireless communication system are used to data

interaction between the different layers of smart

manufacturing. In a word, an industrial manufacturing

prototype platform with edge servers has been constructed.

Then based on the prototype platform, an experiment is

constructed to evaluate the performance of the proposed. In

the experiment, a mobile robot equipped with an industrial

camera moved along with a fixed trajectory to monitor the

operation of equipment of the constructed industry 4.0

platform. The robot periodically captured pictures and then

to calculate the images boundary for the next work process.

Then, the running state of the equipment is judged by a

neural network. So, to assess the performance of different

methods, these pictures are sent to different computing layer

via industrial networks. Then, the related parameters are

measured during the experiment.

In this experiment, a task for processing an image with

the average size of 10Mb~20Mb was executed at the edge

computing server (in which typical OpenCV algorithms

were executed). The different edge servers communicate

with each other via Ethernet with bandwidth 100Mbps. An

edge server connects with the mobile robot with bandwidth

1~54Mbps. Moreover, the data is transmitted to the cloud

server in four hops via industrial networks. Assume that the

communication energy consumption is 1J/s and the

computing energy consumption rate is 0.8J/s.

Figure 3. Prototyping Platform for smart manufacturing with edge

computing

Meanwhile, we use the computing latency, satisfaction

degree and the energy consumption as the evaluation metrics

to assess the provided strategies via selecting algorithms for

ES (SAE) and cooperating edge computing servers (CEC).

We evaluate the performance of the proposed strategies with

the comparison with traditional strategies such as cloud

server computing (CSC), ordinary edge computing without

scheduling (OEC).

In particular, computing latency (CL) is the time between

devices transmission data task from devices to the cloud

server and receiving results at device. Satisfaction degree

(SD) is the QoS lever performance metric. Satisfaction

degree is expressed as the ratio between requirement

computing service time and the computing latency. The

higher SD implies the better performance.

Cloud

servers

Mobile

Robot with

camera

Sensor Nodes and

PLC

Device computing

elements

Edge computing

server

Sensor node

Industrial network node

Edge computing

server

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2899679, IEEE
Transactions on Industrial Informatics

B. Analysis and Results

Fig. 4 show the average of computing latency of different

methods with their best performance. In particular, Fig.4(a)

shows that with an increment of the task data size, the

computing latency increases for all these methods. It is

obvious that our proposal (SAE_CEC) outperforms other

strategies, as SAE_CEC will select the better edge server to

complete the task. Moreover, with the increase the data size,

the single edge server cannot meet the deadline, SAE_CEC

will call Algorithm 2 and exploit multiple edge servers

together to process the computing-extensive task to ensure

the real-time constraints. It is worth mentioning that OEC

gets better performance than CSC, as OEC adopts edge

computing servers to finish the tasks. Meanwhile, the

computing servers far away the device and system have to

spend more time in data transmission. Hence, the CSC gets

the worst computing latency performance.

Fig. 4(b) demonstrates the results the latency of different

methods with the same task data size 10Mb in varied data

rate between devices and server. Similarly, SAE_CEC

shows a better performance than other algorithms. This

because SAE_CEC method can dynamically select the better

edge servers according to the deadline of the task.

Furthermore, with the increase of data rate the latency of

CSC decreases dramatically, as data rate has a great impact

on CSC.

(a) Computing latency in different data size of task

(b) Computing latency in different data rate

Figure 4. Comparison of computing latency

In addition, the satisfaction degree is useful to evaluate

the computing services with the consideration of the latency

constraints. In particular, in Fig.5(a) gives the results of

satisfaction degree with different deadline requirements and

the same data rate and the data size of the task. It is shown

that when the data size of the task is less than 14Mb,

satisfaction degrees of three methods are more than 100%.

However, when the data size of the task is larger than 14Mb,

only satisfaction degree of SAE_CEC can get 100%. That is

to say, our proposal can meet the real-time requirement for

processing the task. Fig. 5 (b) shows the satisfaction degree

in different communication bandwidths and data amount of

the task with different deadlines (I: 2s, II: 3s, III: 3s). Fig.

5(b) shows the similar results to Fig. 5(a). In summary, the

proposals can adapt to different environments and different

real-time constraints. The traditional methods cannot be

adopted in the industrial maneuvering system due to the

failure of fulfilling the real-time requirement.

(a) Satisfaction degree in different data size of task

(b) Satisfaction degree in different time constraints

Figure 5. Comparison of satisfaction degree

 Moreover, Fig 6 shows the average energy consumption

of different methods in different data rate and task data size.

Fig. 6(a) gives the results of energy consumption for

different strategies. It is demonstrated that with the

increment of data rate, the energy consumption will reduce,

as all the methods spend less energy in communication.

Meanwhile, the proposed scheme outperforms other

strategies in terms of energy consumption because of edge

server being close to device. In particular, when the data rate

is 10Mpbs, our proposal can reduce more than 50% energy

consumption. Fig. 6(b) shows the energy consumption in

different task data size (I: 10, II, 15, III: 20, VI: 20 (Mb))

with same data rate. Similarly, when the data size increases,

the energy consumption will be added. Fig. 6(b) also shows

the advantage of our method in energy consumption.

(a) Energy consumption in different data rate

0

0.5

1

1.5

2

2.5

10 11 12 13 14 15 16 17 18 19 20

C
o

m
p

ut
in

g
la

te
nc

y
(s

)

Data size of task (Mb)

SAE_CEC

CSC

OEC

0.5

1.5

2.5

3.5

4.5

10 12 14 16 18 20 22 24 26 28 30

C
o

m
p

ut
in

g
la

te
nc

y
(s

)

Data rate (Mbps)

SAE_CEC

CSC

OEC

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10 11 12 13 14 15 16 17 18 19 20

S
at

is
fa

ct
io

n
 d

eg
re

e

Data size of task (Mb)

SAE_CEC

CSC

OEC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

I II III

S
ta

ti
fa

ct
io

n
 d

eg
re

e

Differnt latency constraits

SAE_CEC

CSC

OEC

0

1

2

3

4

5

10 20 30

E
n

e
rg

y
 c

o
n

su
m

p
ti

o
n

 (
J)

data rate (Mbps)

SAE_CEC CSC OEC

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2899679, IEEE
Transactions on Industrial Informatics

(b) Energy consumption in different task data size

Figure 6. Comparison of energy consumption

VI. CONCLUSIONS

In this paper, we have focused on resources scheduling to

ensure the real-time requirement of smart manufacturing

with consideration of integrating different computing

resources. First, according to the feature of smart factories,

AI task operations and network perspective, we provide the

four-layer architecture with integration of historical heritage

of computing resources. Then, we focus on the edge

computing layer and propose a two-phase scheduling

strategy to allocate the computing resources to meet the

latency constraint. In the first phase, different factors are

considered to select the edge computing server for

supporting the computing services for the task with the low

real-time constraint. Moreover, the second phase is explored

for resolving cooperation of multiple ESs to construct a task

of ESC operating the lower latency computing services.

Finally, for verifying the feasibility of our proposal, a

prototype platform is implemented. In particular, we conduct

experiments to compare the traditionally-used methods with

the proposed computing-resource scheduling strategy. The

proposed computational resources allocation strategies have

ensured the real-time for smart manufacturing with edge

computing. In summary, the proposed frameworks and

computing resources scheduling can accelerate the

implementation of Industry 4.0 and smart factory.

ACKNOWLEDGMENT

This work was supported in part by the National Key

Research and Development Project of China (No.

2017YFE0101000), the Joint Fund of the National Natural

Science Foundation of China and Guangdong Province (No.

U1801264), the Key Program of Natural Science

Foundation of Guangdong Province (No. 2017B030311008),

and the Science and Technology Program of Guangzhou,

China (No. 201802030005). Imran's work is supported by

the Deanship of Scientific Research, King Saud University

through research group number RG-1435-051.

REFERENCES

[1] J. Wan, S. Tang, D. Li, M. Imran, C. Zhang, C. Liu and Z.

Pang, "Reconfigurable Smart Factory for Drug Packing in

Healthcare Industry 4.0," IEEE Transactions on Industrial

Informatics, vol. 15, no. 1, pp. 507-516, 2019.

[2] B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee and B. Yin,

"Smart Factory of Industry 4.0: Key Technologies,

Application Case, and Challenges," IEEE Access, vol. 6, pp.

6505-6519, 2018.

[3] M. Wollschlaeger, T. Sauter and J. Jasperneite, "The Future of

Industrial Communication: Automation Networks in the Era

of the Internet of Things and Industry 4.0," IEEE Industrial

Electronics Magazine, vol. 11, no. 1, pp. 17-27, March 2017.

[4] J. He, G. Jia, G. Han, H. Wang and X. Yang, "Locality-Aware

Replacement Algorithm in Flash Memory to Optimize Cloud

Computing for Smart Factory of Industry 4.0," IEEE Access,

vol. 5, pp. 16252-16262, 2017.

[5] W. Zhang, Y. Liu, G. Han, Y. Feng and Y. Zhao, "An Energy

Efficient and QoS Aware Routing Algorithm Based on Data

Classification for Industrial Wireless Sensor Networks," IEEE

Access, vol. 6, pp. 46495-46504, 2018.

[6] Y. Bi, G. Han, C. Lin, Q. Deng, L. Guo and F. Li, "Mobility

Support for Fog Computing: An SDN Approach," IEEE

Communications Magazine, vol. 56, no. 5, pp. 53-59, May

2018.

[7] X. Li, D. Li, J. Wan, A. V. Vasilakos, C. F. Lai and S. Wang,

"A review of industrial wireless networks in the context of

industry 4.0," Wireless Networks, vol. 23, no. 1, pp. 23-41,

2017.

[8] J. Wan, B. Yin, D. Li, A. Celesti, F. Tao and Q. Hua, "An

Ontology-based Resource Reconfiguration Method for

Manufacturing Cyber-Physical Systems," IEEE/ASME

Transactions on Mechatronics, vol. 23, no. 6, pp. 2537-2546,

2018.

[9] P. K. Illa and N. Padhi, "Practical Guide to Smart Factory

Transition Using IoT, Big Data and Edge Analytics," IEEE

Access, vol. 6, pp. 55162-55170, 2018.

[10] G. Han, M. Guizani, J. Lloret, S. Chan, L. Wan and W.

Guibene, "Emerging Trends, Issues, and Challenges in Big

Data and Its Implementation toward Future Smart Cities: Part

2," IEEE Communications Magazine, vol. 56, no. 2, pp. 76-77,

Feb. 2018.

[11] E. Shellshear, R. Berlin and J. S. Carlson, "Maximizing Smart

Factory Systems by Incrementally Updating Point Clouds,"

IEEE Computer Graphics and Applications, vol. 35, no. 2, pp.

62-69, 2015.

[12] D. Georgakopoulos, P. P. Jayaraman, M. Fazia, M. Villari and

R. Ranjan, "Internet of Things and Edge Cloud Computing

Roadmap for Manufacturing," IEEE Cloud Computing, vol. 3,

no. 4, pp. 66-73, July-Aug. 2016.

[13] M. Marjanović, A. Antonić and I. P. Žarko, "Edge Computing

Architecture for Mobile Crowdsensing," IEEE Access, vol. 6,

pp. 10662-10674, 2018.

[14] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta and D.

Sabella, "On Multi-Access Edge Computing: A Survey of the

Emerging 5G Network Edge Cloud Architecture and

Orchestration," IEEE Communications Surveys & Tutorials,

vol. 19, no. 3, pp. 1657-1681, 2017.

[15] H. Li, K. Ota and M. Dong, "Learning IoT in Edge: Deep

Learning for the Internet of Things with Edge Computing,"

IEEE Network, vol. 32, no. 1, pp. 96-101, 2018.

[16] Y. Sun, S. Zhou and J. Xu, "EMM: Energy-Aware Mobility

Management for Mobile Edge Computing in Ultra Dense

Networks," IEEE Journal on Selected Areas in

Communications, vol. 35, no. 11, pp. 2637-2646, 2017.

[17] J. Xu, B. Palanisamy, H. Ludwig and Q. Wang, "Zenith:

Utility-Aware Resource Allocation for Edge Computing,"

2017 IEEE International Conference on Edge Computing

(EDGE), Honolulu, HI, 2017, pp. 47-54.

[18] L. Yin, J. Luo and H. Luo, "Tasks Scheduling and Resource

Allocation in Fog Computing Based on Containers for Smart

Manufacturing," IEEE Transactions on Industrial Informatics,

vol. 14, no. 10, pp. 4712-4721, 2018.

[19] T. M. Fernándezcaramés, P. Fragalamas, M. Suárezalbela and

M. Vilarmontesinos, "A fog computing and cloudlet based

augmented reality system for the industry 4.0 shipyard,"

Sensors, vol. 18, no. 6, 2018.

[20] M. Aazam, S. Zeadally and K. A. Harras, "Deploying Fog

Computing in Industrial Internet of Things and Industry 4.0,"

IEEE Transactions on Industrial Informatics, vol. 14, no. 10,

0

2

4

6

8

10

12

SAE_CEC OEC CSC

E
n

er
g
y

 c
o

n
su

m
p
ti

o
n

 (
J)

Different methods

I II III IV

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2899679, IEEE
Transactions on Industrial Informatics

pp. 4674-4682, 2018.

[21] B. Chen, J. Wan, A. Celesti, D. Li, H. Abbas and Q. Zhang,

"Edge Computing in IoT-Based Manufacturing," IEEE

Communications Magazine, vol. 56, no. 9, pp. 103-109, 2018.

[22] L. Li, K. Ota and M. Dong, "Deep Learning for Smart

Industry: Efficient Manufacture Inspection System with Fog

Computing," IEEE Transactions on Industrial Informatics, vol.

14, no. 10, pp. 4665-4673, 2018.

[23] Z. Zhou, J. Hu, Q. Liu, P. Lou, J. Yan and W. Li, "Fog

Computing-Based Cyber-Physical Machine Tool System,"

IEEE Access, vol. 6, pp. 44580-44590, 2018.

[24] X. Li, D. Li, J. Wan, C. Liu and M. Imran, "Adaptive

Transmission Optimization in SDN-Based Industrial Internet

of Things with Edge Computing," IEEE Internet of Things

Journal, vol. 5, no. 3, pp. 1351-1360, 2018.

[25] N. Dao, Y. Lee, S. Cho, E. Kim, K. Chung and C. Keum,

"Multi-tier multi-access edge computing: The role for the

fourth industrial revolution," 2017 International Conference

on Information and Communication Technology Convergence

(ICTC), Jeju, 2017, pp. 1280-1282.

[26] D. Park, S. Kim, Y. An and J. Y. Jung, "Lired: a light-weight

real-time fault detection system for edge computing using

LSTM recurrent neural networks," Sensors, vol. 18, no. 7,

2018.

[27] V. C. Gungor and G. P. Hancke, "Industrial Wireless Sensor

Networks: Challenges, Design Principles, and Technical

Approaches," IEEE Transactions on Industrial Electronics, vol.

56, no. 10, pp. 4258-4265, 2009.

[28] X. Ding, Y. Tian and Y. Yu, "A Real-Time Big Data Gathering

Algorithm Based on Indoor Wireless Sensor Networks for

Risk Analysis of Industrial Operations," IEEE Transactions on

Industrial Informatics, vol. 12, no. 3, pp. 1232-1242, 2016.

[29] P. O'Donovan, C. Gallagher, K. Bruton and D. T. J. O,

'Sullivan," A fog computing industrial cyber-physical system

for embedded low-latency machine learning industry 4.0

applications," Manufacturing Letters, vol. 15, pp. 139-142,

2018.

[30] C. Chen, M. Lin and C. Liu, "Edge Computing Gateway of

the Industrial Internet of Things Using Multiple Collaborative

Microcontrollers," IEEE Network, vol. 32, no. 1, pp. 24-32,

2018.

[31] F. Tiago, P. Fragalamas, S. Manuel and D. Manuel, "A fog

computing based cyber-physical system for the automation of

pipe-related tasks in the industry 4.0 shipyard," Sensors, vol.

18, no. 6, 2018.

[32] J. Xu, B. Palanisamy, H. Ludwig and Q. Wang, "Zenith:

Utility-Aware Resource Allocation for Edge Computing,"

2017 IEEE International Conference on Edge Computing

(EDGE), Honolulu, HI, 2017, pp. 47-54.

[33] T. Yang, Y. Hu, M. C. Gursoy, A. Schmeink and R. Mathar,

"Deep Reinforcement Learning based Resource Allocation in

Low Latency Edge Computing Networks," 2018 15th

International Symposium on Wireless Communication

Systems (ISWCS), Lisbon, 2018, pp. 1-5.

[34] H. Yu, Q. Wang and S. Guo, "Energy-Efficient Task

Offloading and Resource Scheduling for Mobile Edge

Computing," 2018 IEEE International Conference on

Networking, Architecture and Storage (NAS), Chongqing,

2018, pp. 1-4.

[35] X. Wang, K. Wang, S. Wu, S. Di, H. Jin, K. Yang and S. Ou,

"Dynamic Resource Scheduling in Mobile Edge Cloud with

Cloud Radio Access Network," IEEE Transactions on Parallel

and Distributed Systems, vol. 29, no. 11, pp. 2429-2445, 2018.

[36] L. Ni, J. Zhang, C. Jiang, C. Yan and K. Yu, "Resource

Allocation Strategy in Fog Computing Based on Priced Timed

Petri Nets," IEEE Internet of Things Journal, vol. 4, no. 5, pp.

1216-1228, 2017.

