This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

A Rhombic Dodecahedron Topology for
Human-Centric Banking Big Data

Hao Wang™', Member, IEEE, Shenglan Ma™, and Hong-Ning Dai", Senior Member, IEEE

Abstract—Banks are collecting an unprecedentedly large
amount of data about their customers from difference sources,
considering their cyber, physical, social activities. The focus
of this paper is to study the problem of information sharing
and lower the communication overhead among different nodes
for a specific data mining approach in distributed big data
architectures. This problem can be abstracted as how to effi-
ciently search under a specific cluster node topology. This paper
proposes a new design rule for topologies including: 1) low
coordination number; 2) high packing density; and 3) having
a 3-D structure. According to this rule, a rhombic dodecahedron
topology is proposed. A distributed banking big data mining
framework based on the proposed topology is implemented. The
experiments based on multioptimization benchmark functions
show the excellent searching ability of the proposed topology;
and a banking customer feature reduction prototype has been
implemented to showcase the practicality of the data mining
framework.

Index Terms— Cyber-physical-social systems, financial big
data, rhombic dodecahedron, swarm optimization.

I. INTRODUCTION

INANCIAL organizations like banks are moving quickly

toward more human-centric financial services for their
customers. Therefore, these organizations are collecting an
unprecedentedly large amount of data about their customers
from difference sources, considering their cyber, physical,
social activities. Big data capabilities [1] are gradually becom-
ing the core competitiveness of banks. An important precon-
dition for realizing the value of big data is to be able to
reveal the truth and find valuable patterns and insights from
these vast amounts of data about their customers [2]. It is
difficult to accomplish this by relying solely on the experience
and wisdom of experts. It requires a variety of data mining
techniques [3]. For example, Citibank established a big data
analysis platform for its retail business. This approach has
greatly increased the capability to analyze and process data
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and has significantly influenced Citibank’s transforming and
upgrading [4]. Hongkong and Shanghai Banking Corporation
(HSBC) uses the data mining tool to find cross selling and
“roll” sales [5].

The technologies that currently have been involved in big
data systems [6] include massively parallel processing (MPP)
databases [7], data mining [8], distributed file systems [9], dis-
tributed databases [10], cloud computing platforms [11], [12],
and scalable storage systems [13]. Due to massive data volume
and various data dimensions, distributed computing platforms
are expected to be used [14]. For example, MapReduce [15] is
a well-established distributed platform, on top of which data
mining algorithms can be effectively executed. However, one
of the critical performance bottlenecks lies in optimizing the
search procedure in the large scale solution searching space,
especially in banking big data framework. Most of the current
studies mainly concentrate on the performance improvement
brought by computing devices.

Therefore, the focus of this paper is to investigate infor-
mation sharing and the communication overhead reduction
among different nodes for a specific data mining approach
in distributed big data platforms. The solution to this problem
can be redirected to the effective searching under a proper
topology of searching particles in swarm optimization [16].
The topological structure of the cluster nodes can be thought
of as a deep social network. The local neighborhood could
affect the behavior of each mining nodes and control the
whole cluster’s exploration (divergence) versus exploitation
(convergence) tendencies . With the relationship of nodes,
the searching ability of clusters is essentially affected by the
communication capacity of topologies.

In this paper, we propose using a Rhombic Dodecahedron
topology in swarm optimization to improve the searching
efficiency in banking big data mining on top of distributed
platforms. The contributions of the paper can be summarized
as follows:

1) We propose new design rules for selecting topologies
with consideration of the following metrics: the coor-
dination number, the packing density, and the 2-D/
3-D structure. We find the good topology should have a
low coordination number, high packing density, and 3-D
structure.

2) We propose a Rhombic Dodecahedron topology in
swarm optimization. The Rhombic Dodecahedron topol-
ogy can fulfill the above design rules. In particular,
compared with the existing topologies, the proposed
Rhombic Dodecahedron has lower coordination number,
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higher packing density, and a higher chance to reach
global optimum due to the usage of the 3-D structure.

3) We have implemented a prototype of banking big data

framework based on the proposed Rhombic Dodecahe-
dron topology, data mining algorithms, and distributed
computing platforms. In particular, we propose MapRe-
duce Searching Algorithm based on sphere packing
topology (essentially based on the Rhombic Dodecahe-
dron). Extensive experiment results verify the effective-
ness of the framework.

The rest of the paper is structured as follows. Section II
presents a typical banking big data mining framework and
related work. Section III reviews the concept of bond energy
on the topology, presents a new design rule for topologies, and
presents a Rhombic Dodecahedron topology with its searching
ability evaluated. Section IV uses the proposed topology to
design a banking big data mining framework. Section V
presents: 1) the experiments evaluating the searching ability of
the proposed topology based on multioptimization benchmark
functions and 2) a banking customer feature engineering
prototype to showcase the practicality of the data mining
framework based on the proposed topology. Finally, we draw
our conclusions in Section VI.

II. BANKING B1G DATA FRAMEWORK
AND RELATED WORK

In this section, we first introduce the typical banking big
data framework in Section II-A. We then present related work
on banking data mining in Section II-B and topologies in
swarm optimization in Section II-C.

A. Banking Big Data Framework

A typical banking big data framework consists of a data
access layer, a data exchange layer, a data service layer, and
a data application layer, as shown in Fig. 1. In particular,
the data access layer collects internal and external data which
have then been submitted to the data exchange layer for the
further preprocessing, consequently being saved at the data
service layer. It is worth mentioning that the data service
layer is composed of MPP databases, transactional databases,
the Hadoop platform [21] and Spark platform [22], [23] to
implement data storage and offer service interfaces. Specif-
ically, the transactional database mainly deals with online
business data and adapts to a large number of business
scenarios, in which business data require frequent operations
such as add, delete, and modify.

The MPP databases serving as a backend database engine
mainly for high-value-density structured data processing can
adapt to business scenarios such as batch data processing and
data query and analytics. The Hadoop platform is mainly
responsible for low-value-density data processing, such as
data collection from the Internet. The Hadoop platform can
exchange data with transactional databases and MPP databases
through high-speed data exchange channels. The Hadoop
platform is always used to conduct distributed data mining
tasks.
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Fig. 1. Banking big data mining framework.

The data service interface bus offers standard service inter-
faces internally and externally. It includes batch data services,
real-time data services, data view services, mobile analysis
services, and self-service analysis. The data service interface
bus allows the application layer to invoke the data mining
application of the data service layer. On the basis of the
hybrid architecture, the data service interface provides the
enterprise-level data applications for banks and enhances data
value. In addition, it also supports the external data applica-
tion layer via implementing customer management, business
analysis, risk management, and regulatory reporting.

B. Banking Data Mining

Data mining as an information processing technology is to
extract, transform, analyze, and model the data in the database
to obtain information that is beneficial to decision-making.
Banks have many ways to mine big data [24]. The most
common data mining methods can be categorized as follows.

1) Taxonomy: Banks classify data into different definite
categories according to the characteristics of them and
use them to analyze customer classification, customer
attributes, and customer satisfaction.

2) Regression Analysis Method [25]: This method includes
the trend characteristics of data series, the prediction of
data series and the correlation between data. According
to the regression analysis, the banks can forecast sales
trends and develop the targeted promotions by analyzing
customer needs and product life cycle.

3) Clustering Analysis [26]: According to the similarity
banking data samples, we can put the data samples
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in the same category if they are close to each other.
Clustering analysis can be applied to classify customer
groups, analyze customer background, predict customer
purchase trends, and conduct market segmentation.

4) Association Rules [27]: Through mining corporate cus-
tomer data, we can identify the existing relationships,
analyze the key factors affecting the effectiveness of
marketing, and provide product positioning price, risk
assessment, and fraud prediction in the customer rela-
tionship management system.

Data mining methods typically are involved with feature
analysis, deviation analysis, and swarm intelligence algo-
rithms [28]. In addition, banking data mining is typically based
on data warehouse and online analysis processing. Banding
data mining methods are also running on top of the Hadoop
platform or other large-scale data processing platforms (as
shown in Fig. 1). It uses data mining techniques combined with
multiple statistical analysis methods [29] to clean, convert,
load, and so on. Moreover, Spark is also used for real-time
data mining [30], [31].

The data processing method discovers the relationships and
trends, and completes tasks such as data analysis, knowl-
edge discovery, decision support, and financial intelligence.
Therefore, the banking data mining execution process has four
stages:

1) Business understanding stage, in which the needs of
the business department should be fully understood,
business problems, and pain points should be translated
into specific business requirements. This stage requires
a large number of interviews with business stakehold-
ers, and professional consultants are required to guide
business stakeholders to express their own ideas.

2) Data understanding stage, in which banking data should
be explored to obtain the manifestations of data and the
real hidden issues behind business issues with specific
business issues should be analyzed.

3) Data modeling stage, in which sampling is generally
used to divide the data set into the model training set and
test set. The training set is used for mining modeling,
and the test set is used to test the effectiveness of the
model.

4) Model evaluation stage, in which the performance of
the model should be evaluated based on the three
important indicators: accuracy, coverage, and degree of
improvement.

C. Topologies of Swarm Optimization

In recent works, many topologies (such as All, Ring, Four
clusters, Pyramid, and Square) are discussed [16], [17]. The
Von Neumann Structure or Square topology is recommended
for its good searching ability. However, they are just plain
lattice and 2-D packing, formed by arranging the spheres in
a grid, but not close-packing. Its 2-D structure makes it hard
to find the global optimum when the nodes are searching the
local optimum in a different direction. For “All” topology with
all vertexes connected to every other, its coordination number
is too big to let the nodes explore the new space, leading to

the phenomenon of nodes being easily trapped. This topology
is currently used in many Hadoop clusters [18], [19]. The
“Ring” topology is constructed by connecting every vertex to
two others. Its coordination number is too small to exploit the
local space efficiently.

Therefore, a properly designed topological structure can
make cluster suitably balanced for both exploitation (i.e.,
convergence) and exploration (i.e., divergence).

III. RHOMBIC DODECAHEDRON

The focus of banking big data mining lies in the search-
ing capability of the distributed computing platforms (e.g.,
Hadoop). The searching capability essentially comes from the
information transmission capabilities of the topology among
nodes. To this end, this section will analyze the topology
information transmission capabilities from the perspective of
crystallology and propose a topological structure suitable for
banking big data mining clusters.

A. Design Rules of Good Topologies

This paper proposes the novel design rules inspired by the
concept of bond energy in the crystallology. Given the search-
ing space, the information communications among nodes
can be characterized by the bond link. In the crystallology,
the bond energy is the decisive factor for the exploitation
versus exploration tendencies. Although the direct bond energy
could not be easily computed in the crystallology, the coor-
dination number and packing density can implicitly reflect
the strength of bond energy. The coordination number usually
decides the energy to break the bond consequently charging the
exploration, and the packing density affects the exploitation by
influencing the searching efficiency in local space. Sometimes,
the fitness value imitates the external energy to break the bond
link or reconstruct the bond link. Higher fitness can break the
link in the crystals and make the search direction redirect to
the new space. We give a detailed description of these metrics
as follows.

1) Coordination Number: In the ionic crystal, the lattice
energy is usually used to represent the strength of bonds
in these ionic compounds. In other words, the larger lattice
energy will make a more stable ionic crystal. The message
transferred from one sphere (i.e., the swarm particle) to another
is influenced by the ionic bond. The essence of the ionic bond
is the electrostatic force between positive and negative ions.
If the two ions can be viewed as spheres, then we can conclude
that the higher electric quantity results in the smaller space
of two nuclear, and the stronger electrostatic interaction will
make the stronger ionic bond. Then, the ionic crystal turns out
to be a more stable structure according to Coulomb’s law:

F o qi-qo/r?

where g1 and ¢, are point charges and r is the separation
distance.

One important factor that reflects this bond energy is the
coordination number, which is the number of a central atom’s
nearest neighbors [32]-[34]. The radius ratio of the ions can
affect the coordination number consequently influencing the
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Fig. 2. Nodes of 2-D and 3-D structure flying toward local optimum.

stability of structures as in [35]. Since r*/r= > 0.414,
the coordination number is greater than 4, leading to a stable
crystal; while for r™/r~ < 0.414, the coordination number
becomes 4, resulting in an unstable crystal. As T continuously
grows larger, it can get 12 coordinators; on the contrary, if 7
grows smaller, it only contains three coordinators.

2) Sphere Packing and Close-Packing Density: In geometry,
a sphere packing is an arrangement of nonoverlapping spheres
within a containing space. The considered spheres are usually
in an identical size and can have a similar nature like nodes
in distributed platforms. In particular, the close-packing is
a dense arrangement of the equal sphere. Hexagonal close
packing and cubic close packing are known to be the densest
packing of equal spheres [36]. Every third layer overlying
one another arrangement gives the cubic close packing (also
called face-centered cubic) and spheres in alternating layers
overlying one another gives the hexagonal close packing [37].
The packing density of these two packing arrangements equals
7 /(3+/2) 2 0.74048 since sliding one sheet of spheres cannot
affect the volume that they occupy.

3) New Design Rule: Summing up the above analysis,
we then have the novel design rules to guarantee the com-
munication capacity: topologies should have the proper bond
energy, such as the low coordination number, the high packing
density, and 3-D structure.

Regarding the coordination number, nodes coordinated with
low neighbors have the flexibility to break the corresponding
links to search for the new space. The coordination number
4 could make the crystal unstable and then may have a good
exploration. The smaller coordination number may make the
crystal be fragile, while the larger of this number yields the
inflexibility.

With respect to the packing density, it can be used to
represent the probability of finding the global optimum. In a
2-D structure, it is hard to explore the global optimum space
when the whole topology tends to the upper area and the lower
area is blind to it. On the contrary, nodes in a 3-D structure
still have the chance to explore the global optimum in the
same condition. It can break the link of the lower plane to
attract the whole topology toward the new space as illustrated
in Fig. 2.

Therefore, the proper bond energy (i.e., the low coordination
number, the high packing density, and the 3-D structure) can
make topologies have better communication capacity. It always
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Fig. 3.

Rhombic dodecahedron topology.

Fig. 4. Square lattice and the hexagonal lattice in 2-D.

influences the timestamp to break the bond link in a specified
topology.

B. Rhombic Dodecahedron Topology

We next describe the proposed Rhombic Dodecahedron
topology.

1) Features of Rhombic Dodecahedron Topology: Using
the above design rules, the paper proposes the Rhombic
Dodecahedron topology in swarm optimization. In particular,
the Rhombic Dodecahedron topology consists of 12 congruent
rhombuses, 24 edges and 14 vertices. There are two types of
vertices: one is made of four rhombic acute angles and the
other is made of three rhombic obtuse angles, and the latter is
an intersection of three rhombuses. The same type of vertexes
is impossible to appear on one edge. A total of 14 vertices
of the Rhombic Dodecahedron are joined by 12 rhombuses as
shown in Fig. 3. The long diagonal of each face is exactly
/2 times the length of the short diagonal so that the acute
angles on each face measures approximately 70.53°.

This cumulated structure satisfies close packing [38] in the
3-D space with 74.05% packing density that makes the full use
of space to reach the maximum space utilization. The Rhombic
dodecahedron can fill the space seamlessly with copies of it,
gluing faces together as shown in Fig. 4, and the average
coordination number is 3.43, which is close to 4. Therefore,
this topology satisfies the design rules.

2) Comparisons Among Different Topologies: The square
topology with Von Neumann structure is solely a plane lattice
with 2-D packing and is formed by arranging the spheres in
a grid. However, it is not close-packing in the 2-D space
since 2-D close-packing means one sphere surrounded with
six spheres in the plane (i.e., the hexagonal lattice). Fig. 4
shows the square lattice and the hexagonal lattice.

The unit cell of the square lattice contains four 1/4-spheres,
then the area is

2
Aspheres in the unitcell = 7.

Meanwhile, the area of the unit cell is

2
Aunit cell = 4r°.
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Then, the packing density is
n=mn/4=0.7854.
The area of the unit cell of the hexagonal lattice is
Aunit cell = 6[1/2 % (2r)(v/3 )] = 63/3 12

The unit cell contains six 1/3-spheres and one midpoint
sphere, then the area is

Ajsphere in unit cell = (6x1/3+1) = nr?
and the packing density is
n=m/2v3 =0.9069.

Therefore, in 2-D circumstance, the packing density of
square topology is lower than the Rhombic Dodecahedron.
Moreover, the square cannot have a 3-D view in searching.

We will then discuss the situation that the global optimum
is outside topology. The ability to handle this situation can
indirectly reflect the design rules as the proper bond energy
can also charge the timestamp to break the bond link to explore
the new space. If one node of the Rhombic Dodecahedron
tends to fly to the global area, it will transfer its message
to the other three nodes by two runs. Then, all nodes can
determine whether to break the link or not. Now, the energy
to break the link is judged by all these four nodes. After the
link breaks, the newly passed message would spread to another
11 nodes by the central sphere. In this way, the whole Rhombic
Dodecahedron topology will gradually move to the new space.
Note that the Rhombic Dodecahedron has rhombus-searching
features and needs four decision-makers and two-run delays
to break one atomic link to explore the new space. Hence,
the structure is, by nature, a little sluggish but makes the local
space search effective.

In the square topology, each node is exactly equal to the
sphere. Then, if one node tends to fly toward the global opti-
mum, it should first inform four neighbors in one run. Then,
the neighbors break the link together to let the node explore
the new space. The square also needs five decision-makers and
one-run delay to break four atomic links to explore the new
space. This topology has quick response toward new space
with enough decision makers while breaking too many links
also results in instability.

In summary, the 2-D structure limits the communication
capacity of square topology. In addition, for “All” topology,
one node needs N (i.e., the number of nodes) decision-makers
to break N links to explore the new space, so it makes this
topology hard to explore the new space. In the banking big data
mining task, the structure has the significant time consumption.
Moreover, the “Ring” topology easily breaks the links for
demanding only two decision-makers to break only two links,
consequently, the weak exploitation arising.

As discussed above, the 3-D structure of the Rhombic
Dodecahedron is superior to other topologies in big data
mining framework. To verify this conclusion, this paper
compares the Square topologies and Rhombic Dodecahedron
topologies in multioptimization problems. For comparison
purpose, we define two types of topologies by the population

g

Fig. 5. Square-16, Square-20, Square-24, rhombic dodecahedron, and
two-rhombic dodecahedron.

TABLE I
GRAPH STATISTICS OF THE TOPOLOGIES

Topology Average Diameter | Distribution Sequence
Distance

Square-16 2.13 4 <4,6,4, 1>

Square-20 2.32 4 <4,7,6,2>

Square-24 2.61 5 <4,7,7,4, 1>

Rhombic 2.15 4 <3.43,5.14,3.43, 1>

Dodecahedron

2-Rhombic 2.77 6 <3.67, 6.67, 6.33, 4.33,

Dodecahedron 1.67,0.33>

size: 16-Square, 20-Square, and 1-Rhombic Dodecahedron are
“Single Topologies’; 24-Square and 2-Rhombic Dodecahedron
are “Complex Topologies” as shown in Fig. 5.

There are three parameters that can be used to evaluate
the searching ability of these topologies. Table I lists these
three statistics (i.e., the average distance, the diameter, and
the distribution sequence). The first parameter represents the
average number of iterations to broadcast throughout the
entire topology, and the second diameter shows the maximum
iterations. The third parameter can measure the delay in the
information spreading through the topology. Note that the first
value of the distribution sequence is the average degree of the
graph; it can be regarded as an average coordination number.

As shown in Table I, we can find that, in Rhombic-
Dodecahedron-based topologies, the average number of
reachable nodes via directly traversing (i.e., the average
coordination number) is lower than the square-based topolo-
gies, but the middle traversing process influences more neigh-
bors. This makes the Rhombic Dodecahedron a little sluggish,
while it uses enough decision-making nodes to break the key
link to explore the new space. This result also verifies the
properties of the Rhombic Dodecahedron.

IV. PROTOTYPE OF BIG DATA MINING FRAMEWORK

This section uses the Rhombic Dodecahedron topology to
establish a logical relationship in the Hadoop cluster at the
data service layer of the bank big data framework (as shown
in Fig. 6, corresponding to the data service layer in Fig. 1).
We then propose a data mining algorithm for MapReduce
components based on the proposed prototype.

Fig. 6 shows the Hadoop data mining platform in the big
data framework. For the bank’s internal structured data, change
data capture, Flume, and the Sqoop [39] technologies are used
to collect customer transaction information from core system
log information in real time, including transaction information
such as transaction channels, transaction amounts, and counter-
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parties. The information cached in Kafka message middleware
is then loaded into the big data processing engine and finally
stored in the MPP database using the data warehouse cleaning
process. The external unstructured data [40] are processed
by the Spark stream calculation engine. The customer tag
system is built and stored in the MPP database. Hadoop data
mining platform extracts data from MPP and conducts mining
based on business models to form customer marketing and risk
management [41].

Hadoop data mining platform consists of TaskTracker and
JobTracker clusters as shown in Fig. 7.

TaskTracker is a Hadoop computing process running on
the DataNode of the Hadoop cluster. The main task of
TaskTracker is to run the actual computation tasks assigned
by the JobTracker, such as running Map and Reduce func-
tions. When the TaskTracker receives a task assigned by the
JobTracker, each map and the reduced task are run in a
separated Java virtual machine process. The TaskTracker will

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

send heartbeat messages to the JobTracker during the running
of the task. The heartbeat message also contains information
such as the number of currently free slots. The role of the
JobTracker process is to run and monitor MapReduce jobs.
NameNode will initially initialize the logic relationship of the
TaskTrackernodes, i.e., a Rhombic Dodecahedron topology.

Regarding the solving process of the data mining search
problem, the solution of each Reduce function is sent to
the logically connected TaskTracker nodes by the JobTracker
when each iteration task is completed. Algorithm 1 gives the
details on MapReduce Searching procedure based on sphere
packing topology.

Algorithm 1 MapReduce Searching Procedure Based on
Sphere Packing Topology
Input: Job, logic topology
Output: Global Optimal Solutions, Job
1. Client in data application layer call for data mining job.
JobTracker receives Job request;
2. The JobTracker requests the list of nodes by NameN-
ode, retrieves the sphere packing topology.

. Initialize each node’s local optimal solution data set S;;

4. The JobTracker determines the execution plan of the
Job. It calculates the number of tasks for Map and
Reduce functions that execute the job. According to the
logic topology, the | J jSj is allocated to the logically
connected nodes;

5. JobTracker submits all tasks to each TaskTracker node.
The TaskTracker will periodically send a heartbeat to
the JobTracker. If the heartbeat is not received within
a certain period of time, the JobTracker will consider
the TaskTracker node as failed. The JobTracker will
then redistribute the task on this node to other nodes
to reconstruct the topology;

6. Each TaskTracker internally uses |J jSj to perform
data mining calculations (Map function), and then
through compute optimal search results R; of node i
(Reduce function) among the local topology based on
the sphere packing topolgoy;

7. Once all the tasks have been executed, the JobTracker
will update the status of the job in the current round.
If a certain number of tasks fail to execute, the job will
be marked as failed,;

8. JobTracker calculates the optimal solution G of all
nodes, if the threshold is satisfied, step 9 is performed,
otherwise S; = R;, step 4 is performed;

9. JobTracker sends optimal solution G and runs status
of Job to Client.

W

V. EVALUATION

We conduct extensive experiments to evaluate the perfor-
mance of the proposed approach. In particular, we divide the
experiments into two groups: the first group is to evaluate
the topologies with optimization problems via particle swarm
optimization (PSO); the second group is to evaluate the
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TABLE 11
STANDARDIZED PERFORMANCES OF THE TOPOLOGIES AND ALGORITHMS

()] @ (€)] “) 3)
C -0.5574 -0.5786 | -0.5631 | -0.4273 | -0.5263
FI -0.5112 -0.5120 | -0.4171 | -0.4177 | -0.4008
wFI -0.5116 -0.5523 | -0.5234 | -0.4625 | -0.5712
wdFI -0.3856 -0.7173 | -0.5583 | -0.5706 | -0.5819
S -0.4716 -0.4797 | -0.3980 | -0.6243 | -0.5984
wS -0.4166 -0.6010 | -0.5727 | -0.6849 | -1.0167
C-asym -0.5886 -0.4863 | -0.5535 | -0.6355 | -0.6147
Fl-asym -0.4558 -0.4843 | -0.6671 | -0.5607 | -0.6257
wFI-asym -0.5016 -0.5787 | -0.5223 | -0.4052 | -0.4942
(1)- Square-16

(2)- Square-20

(3)- Square-24

(4)- Rhombic Dodecahedron
(5)- 2-Rhombic Dodecahedron

performance of the proposed sphere packing topology on top
of big data framework.

A. Topologies Performances on Some Optimization Problems

1) Three Dependent Variables Comparisons: Three depen-
dent variables were used to test the performance of the
specified topologies of the PSO [16]. The first dependent
variable is the standardized performance for the speed of
finding the best part of a locally optimal region. The second
dependent variable is the median number of iterations required
to reach a criterion to indicate the speed. The third dependent
measure gives the proportion of successes that meet the criteria
within 10 000 iterations. The tested function and five kinds
of algorithm types in this part are defined in the paper.
Tables II-IV show the results of three parameters. In particu-
lar, the best results of each algorithm are highlighted in bold.
In order to briefly address the results, we mark the algorithm
“Canon” as “C,” “FIPS” as “FI,” “wFIPS” as “wFL,” “wdFIPS”
as “wdFL” “Self” as “S,” “wSelf” as “wS,” “Canonasym” as
“C-asym,” “FIPSasym” as “Fl-asym,” and “wFIPSasym” as
“wFIl-asym.”

The single topologies find the fitness peaks quicker than
the complex topologies because of small structures. Table II
illustrates that the Rhombic Dodecahedron shows very good
performance when using FIPS, Self, wSelf, Canonasym, and
wFIPSasym among all compared algorithms. This result
implies that Rhombic Dodecahedron topology is suitable to
get on a fitness peak.

As shown in Table III, we observe that Square-based
topologies are rather fast, and Rhombic-Dodecahedron-based
topologies are slower because of having to search one
more dimension but not crucial. As analyzed in Section IV,
the Rhombic Dodecahedron is able to find a good point on a
local optimum within a limited time.

Table IV shows that 2-Rhombic Dodecahedron finds the
global optimum with a higher proportion than other topologies.
In particular, for those difficult asymmetric searching tasks,
Rhombic Dodecahedron based model is good at solving them
with strong searching ability. Therefore, Rhombic Dodecahe-
dron gets better solutions than Square with only little longer
searching time.

TABLE III
MEDIAN NUMBER OF ITERATIONS TO CRITERIA

[09) Q@) A3) () ()]

C 542.83 | 489.33 | 567.50 | 566 515
FI 321.50 | 301.00 | 368.83 | 408.33 430.17
wFI 309.67 | 281.83 | 326.17 | 379.33 361.67
wdFI 328.33 | 305.67 | 366.67 | 419.67 404.33
S 336.50 | 307.83 | 366.33 | 429.83 445
wS 424.67 | 461.50 | 824.33 | 1317.33 | 1395.83
C-asym 0 o0 o0 o] *e]
Fl-asym o0 547.83 | 528.00 | 627.67 546.67
wFI-asym | « 461.00 | 421.83 | 428.00 425.67

(1)- Square-16

(2)- Square-20

(3)- Square-24

(4)- Rhombic Dodecahedron

(5)- 2-Rhombic Dodecahedron

TABLE IV

PROPORTION OF EXPERIMENTS REACHING CRITERIA

@ 2) 3 (O] 3
C 94.17 96.25 | 95.83 | 95.42 | 97.92
FI 95.83 99.17 | 99.17 | 97.50 | 100
wFI 97.08 97.92 | 98.75 | 97.92 | 99.68
wdFI 99.58 99.58 | 99.58 | 98.33 | 99.58
S 97.92 97.92 | 100 98.33 | 99.58
wS 98.75 100.0 | 99.17 | 97.50 | 95.67
C-asym 76.67 83.33 | 84.17 | 76.25 | 83.75
Fl-asym 82.08 92.50 | 97.92 | 94.17 | 98.33
wFI-asym 84.17 92.50 | 96.25 | 92.08 | 98.33

(1)- Square-16

(2)- Square-20

(3)- Square-24

(4)- Rhombic Dodecahedron
(5)- 2-Rhombic Dodecahedron

2) Detailed Comparisons Between Square and Rhombic
Dodecahedron: We then give more detailed comparisons
between these two types of topologies in the fully informed
model. Tested functions details could be found in [42]. Table V
shows the major details of the tested functions and Table VI
shows the average results in 40 runs in these functions.

In Single Topologies, compared with Canon, Square-20, and
Square-16, Rhombic Dodecahedron PSO has the lowest aver-
age values in function 1, 2, 6, 16, 17, 18, and 19. Compared
with Square-16, this topology yields the closer results with
minimum results in function 1-6, 8-13, 15-19 and 21-22,
only except for Function 7, 14 and 20. In complex topologies,
two-Rhombic Dodecahedron could find better results than
Square-24 in most functions. Figs. 8 and 9 show the graphs
of the comparisons based on the average normalized results.
In normalized situation, where “Performance” in the vertical
axis means the lower value means better performance.

Fig. 8 shows that functions 7 and 14 of the Rhombic
Dodecahedron PSO are at the highest level. However, from
the raw results, the average results are very close to the
minimum results. We also find that Square-20 has a lower
line, which shows that the number of nodes influences the
searching ability distinctly. However, when compared with
Square-16 and Rhombic Dodecahedron only, the latter line is
lower than the former line. Although the number of Square-16
is larger, the searching ability is poorer than that of the
Rhombic Dodecahedron.
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The Normalized Performance Comparisons
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Fig. 8. Performance comparisons of single topologies.
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Fig. 9. Performance comparisons of complex topologies.

As shown in Fig. 9, 2-Rhombic Dodecahedron is slightly
weaker in function 3, 14, and 20. In other functions, it is close
to the optimized results and better than Square-24.

Based on the above discussions, we can conclude that
the Rhombic Dodecahedron topology has a strong searching
ability and yields a good fitness peak. If the number of nodes is
not a considerably influencing factor and the task is focused on
the ability, the Rhombic Dodecahedron topology is preferred.
When the number of nodes also matters (in complex topolo-
gies), 2-Rhombic Dodecahedron is recommended. In banking

big data framework, the nodes of the Hadoop platform are
quite huge so that 2-Rhombic can be widely used to improve
the performance. Therefore, the proposed topology is suitable
for the banking Hadoop cluster.

B. Banking Customer Information Feature Reduction

Bank customer segmentation has far-reaching significance
for business marketing. Customer information has the char-
acteristics of a large amount of data, high dimensionality,
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TABLE V

BENCHMARK FUNCTIONS, WHERE n IS THE DIMENSION OF THE
FUNCTION, fpin IS THE MINIMUM VALUE OF THE
FUNCTION AND S C R"

No. | Name N S Sonin
1 Sphere Model 30 [-100,100]" 0
2 Schwefel’s Problem 2.22 30 [-10,10]" 0
3 Schwefel’s Problem 1.2 30 [-100,100]" 0
4 Schwefel’s Problem 2.21 30 [-100,100]" 0
5 Generalized Rosenbrock’s | 30 [-30,30]" 0
Function
6 Step Function 30 [-100,-100]" 0
7 Quartic ~ Function ie. | 30 [-1.28,1.28]" 0
Noise
8 Generalized  Rastrigin’s | 30 [-5.12,5.12]" 0
Function
9 Ackley’s Function 30 [-32,32]" 0
10 Generalized Griewank | 30 [-600,600]" 0
Function
11 Generalized Penalized | 30 [-50,507" 0
Functions
12 Generalized Penalized | 30 [-50,5071" 0
Functions
13 Shekel’s Foxholes | 2 [-65.536,65,536]" | 1
Function
14 Kowalik’s Function 4 [-5,5]" 0.0003075
15 Six-Hump  Camel-Back | 2 [-5,5]" -1.0316285
Function
16 | Branin Function 2 [-5,10] X [0,15] 0.398
17 Goldstein-Price Function 2 [-2,2]" 3
18 Hartman’s Family 3 [0,17" 3.86
19 Hartman’s Family 6 [0,17" -3.32
20 Shekel’s Family 4 [0,10]" -10
21 Shekel’s Family 4 [0,101" -10
22 Shekel’s Family 4 [0,10]" -10
TABLE VI
RESULTS ON TEST FUNCTIONS
No. | M (€] 3 “@ Q) (©
1 0.000000 | 0.000000 | 0.000000 | 0.000000 0.000000 | 0.000000
2 0.019040 | 0.000000 | 0.000000 | 0.000000 0.000000 | 0.000000
3 0.000026 | 0.070089 | 0.006347 | 0.026043 0.001593 | 0.003675
4 0.023242 | 7.185275 | 3.879214 | 5.505371 0.686878 | 0.012820
5 29.08267 | 35.84351 | 38.95277 | 32.71579 34.36853 | 28.08084
6 38.77500 | 1.450000 | 0.675000 | 0.600000 0.125000 | 0.050000
7 0.015168 | 0.035187 | 0.017541 | 0.037777 0.009584 | 0.006362
8 77.33296 | 23.10791 | 16.11833 | 21.73983 12.86362 | 12.31764
9 4.338334 | 0.168574 | 0.000000 | 0.104322 0.000000 | 0.000000
10 0.126343 | 0.004974 | 0.002402 | 0.004053 0.001355 | 0.001296
11 0.462860 | 0.038874 | 0.015550 | 0.015550 0.005182 | 0.002591
12 0.515549 | 0.134939 | 0.003570 | 0.041584 0.089936 | 0.000274
13 1.220578 | 3.236172 | 2.203886 | 1.468004 1.022854 | 0.998003
14 0.000603 | 0.000713 | 0.000674 | 0.000805 0.000810 | 0.000826
15 -1.03162 | -1.03162 | -1.03162 | -1.031628 | -1.03162 | -1.031628
16 0.397887 | 0.397888 | 0.397887 | 0.397887 0.397887 | 0.397887
17 3.000000 | 3.000000 | 3.000000 | 3.000000 3.000000 | 3.000000
18 -3.86278 | -3.86278 | -3.86278 | -3.862782 | -3.86278 | -3.862782
19 -3.15700 | -3.20985 -3.20697 | -3.211554 | -3.21057 | -3.211272
20 -4.95820 | -6.13099 | -7.59478 | -6.110486 | -7.87306 | -7.487201
21 -6.48784 | -9.27994 | -10.0441 -9.968637 | -10.2116 | -10.23596
22 -6.23700 | -9.97293 | -10.3335 | -10.00982 | -10.3336 | -10.34477
(1)- Canon

(2)- Square-16

(3)- Square-20

(4)- Rhombic Dodecahedron
(5)- Square-24

(6)- 2-Rhombic Dodecahedron

and frequent changing requirements. Therefore, a fast attribute
reduction algorithm needs to be introduced to meet the rapid
extraction of key attributes and then build it. Using the

TABLE VII
MINIMUM SET OF REDUCTIONS

No. Attributes

1 Customer Age

2 Education

3 Industry

4 Position

5 Income

6 Cross-sell Score

7 Financial Term Preferences

8 Debit Card Spending Preferences
9 Credit Card Spending Preferences
10 Loan Potential Customer

11 Credit Card Potential Customer
12 Debit Card Potential Customer

13 Forex Potential Customer

14 Credit Card High Frequency Transactions
15 Loyalty

16 Investment Preferences

rough set [43] can maintain the semantic characteristics of
the customer data itself, so this section will build a rough
set-based feature selection search test based on the proposed
sphere packing topology on big data mining model.

The testing data set selects customer information in a
bank’s enterprise customer information factory. The condi-
tional attributes are fetched by customer portrait tags through
experience knowledge. This data set consists of 71 attributes
such as customer age, gender, education, marital status,
industry, position, hobbies and interests, income attributes,
living status, car status, aging, activity, loyalty, possession
of card products, wage inefficient reserving, large-value idle
customers, individual loan risk, post-loan inspection, financial
risk, fund risk, and so on. Customer value level is selected as
the decision attributes. Customers, whose total bank income
is greater than 0, can be divided into three levels: the top
20% of the revenue are defined as “high-value customers”;
the 20%-80% of revenues are defined as “medium-value
customers”; and the latter 20% of profit ranking are defined
as “low-value customers.”

In the bank test environment, 3 000 000 desensitized cus-
tomer data samples were selected, PSO was used as a search
algorithm [44], and the evaluation function was based on [45].
In addition, the feature selection experimental parameters of
the proposed algorithm are defined as:

S: (key, value) (particle index, particle state: including
adjacent nodes, position coordinates, velocity, position value,
personal optimal position, individual optimal value)

R: (key, value) (optimal particle index, optimal particle
state: including adjacent nodes, position coordinates, velocity,
position value, personal optimal position, personal optimal
value)

The minimum set of reductions calculated through the
Hadoop cluster is shown in Table VII.

From this result, we observe that the attributes of the
risk warning class and the customer retention class in the
condition attribute are reduced because of the customer value
marketing used as a decision attribute. These key attributes of
the customer can be used as a customer recommendation and
other systems [46], [47], and effectively solve the problem of
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excessive calculation cost caused by too many attributes of the
marketing system.

VI. CONCLUSION

To process a large number of attributes and large amounts
of data in banking systems, a distributed strategy for big data
mining architectures is necessary. The bond energy, featured
by the low coordination number, the high packing density,
and the 3-D structure, is introduced to evaluate the explo-
ration and exploitation of cluster nodes in banking big data
framework. We propose novel design rules for topologies in
particle optimization. It bases on exploiting the local searching
space efficiently and exploring a new space when needed.
Based on these rules, this paper presents a Rhombic Dodec-
ahedron topology for cluster nodes to take the exploration
and exploitation into account simultaneously. The Rhombic
Dodecahedron topology satisfies 3-D-close packing structure
and has low average coordination number. The experimental
results showed that the Rhombic Dodecahedron topology
has a better performance in finding fitness peak and global
optimum. A complete prototype of big data mining framework
of the Rhombic Dodecahedron topology is implemented with
a detailed MapReduce searching procedure. Finally, a feature
reduction search experiment based on big data mining frame-
work is tested, and the computed minimum reduct proves the
practicality of the framework.
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