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ABSTRACT
The recent advances in information and communication technology (ICT) have
promoted the evolution of conventional computer-aided manufacturing industry to
smart data-driven manufacturing. Data analytics in massive manufacturing data can
extract huge business values while can also result in research challenges due to the
heterogeneous data types, enormous volume and real-time velocity of manufacturing
data. This paper provides an overview on big data analytics in manufacturing In-
ternet of Things (MIoT). This paper first starts with a discussion on necessities and
challenges of big data analytics in manufacturing data of MIoT. Then, the enabling
technologies of big data analytics of manufacturing data are surveyed and discussed.
Moreover, this paper also outlines the future directions in this promising area.
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1. Introduction

The manufacturing industry is experiencing a paradigm shift from automated man-
ufacturing industry to “smart manufacturing” [Kusiak(2018)]. During this evolution,
Internet of Things (IoT) plays an important role of connecting the physical environ-
ment of manufacturing to the cyberspace of computing platforms and decision-making
algorithms, consequently forming a Cyber-Physical System (CPS). We name such in-
dustrial IoT dedicated to manufacturing industry as manufacturing IoT (MIoT) in
this paper.

MIoT consists of a wide diversity of manufacturing equipments, sensors, actuators,
controllers, RFID tags and smart meters, which are connected with computing plat-
forms through wired or wireless communication links. There is a surge of big volume of
data traffic generated from MIoT. The MIoT data is featured with large volume, het-
erogeneous types (i.e., structured, semi-structured, unstructured) and is generated in a
real-time fashion. The analytics of MIoT data can bring many benefits, such as improv-
ing factory operation and production, reducing machine downtime, improving product
quality, enhancing supply chain efficiency and improving customer experience [Zhong
et al.(2017),Lade, Ghosh, and Srinivasan(2017),Tao et al.(2018)]. However, there are
also many challenges in data analytics in MIoT in the different phases of the whole
life cycle of data analytics.

There are several surveys on data analytics in manufacturing industry. The work of
[Tao et al.(2018)] proposes a data-driven smart manufacturing framework and provides
several application scenarios based on this conceptual framework. The necessities of
big data analytics in smart manufacturing are summaried in [Kusiak(2017)]. The work
of [Lade, Ghosh, and Srinivasan(2017)] provides an overview on data analytics in
manufacturing with a case study. Tao and Qi presents an overview of service-oriented
manufacturing in [Tao and Qi(2019)]. However, most of the aforementioned studies lack
of the introduction of enabling technologies corresponding to the challenges, which are
of interest to both academic researchers and industrial practitioners.

Therefore, the aim of this paper is to provide an overview on data analytics in MIoT
from opportunities, challenges and enabling technologies. The main contributions of
this paper can be summarized as follows.

• We provide a summary on key characteristics of MIoT and a life cycle of big
data analytics for MIoT data. We also discuss necessities and challenges of big
data analytics in MIoT.

• We present an overview on enabling technologies of big data analytics for MIoT
from the aspects of data acquisition, data preprocessing and data analytics.

• We given an outline of future research directions in aspects of security, privacy,
fog computing and new data analytics methods.

The rest of this paper is organized as follows. Section 2 gives the discussion on
necessities and challenges of big data analytics in MIoT. Section 3 introduces enabling
technologies of big data analytics in MIoT. Section 4 discusses the future research
directions. Finally, this paper is concluded in Section 5.
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Table 1. Comparison between MIoT and CIoT

Manufacturing IoT Consumer IoT

Goal
Manufacturing-industry Cen-
tric

Consumer Centric

Devices
Machines, Sensors, Con-
trollers, Actuators, Smart
meters

Consumer devices and Smart
appliances

Working En-
vironment

Harsh (vibration, noisy, ex-
tremely high/low tempera-
ture)

Moderate

Data rate High (usually) Low or average

Delay Delay sensitive Delay tolerant

Mission Mission-critical Non-mission-critical

2. Necessities and challenges of big data analytics for Manufacturing
Internet of Things

In this section, we first introduce the key characteristics of Manufacturing Internet
of Things in Section 2.1. We then introduce the life cycle of big data analytics for
MIoT in Section 2.2. We next discuss the necessities of big data analytics for MIoT in
Section 2.3 and the challenges in Section 2.4.

2.1. Key characteristics of Manufacturing Internet of Things

In this paper, we roughly categorize IoT into consumer Internet of Things (CIoT)
and Manufacturing Internet of Things (MIoT). Table 1 compares MIoT with CIoT. In
contrast to MIoT, CIoT mainly serve for consumers. Hence, CIoT mainly consists of
consumer devices (e.g., smart phones, wearable electronics) and smart appliances (e.g.,
refrigerators, TVs, washing machines). CIoT mainly aims to improve user experience
while MIoT mainly focuses on improving factory operations and production, reducing
the machine downtime and improving product quality. Moreover, MIoT usually works
in harsh industrial environment (like vibrated, noisy and extremely high/low temper-
ature) while CIoT works in moderate environment. In addition, MIoT applications
usually require high data-rate network connection with low delay while CIoT appli-
cations have relaxed requirement on network connection. Furthermore, MIoT systems
are usually mission-critical and sensitive to system failure or machinery downtime
while CIoT systems are non-mission-critical.

In this paper, we mainly focus on MIoT. The MIoT ensures the connection of various
things (smart objects) mounted with various electronic or mechanic sensors, actuators,
instruments and software systems which can sense and collect information from the
physical environment and then make actions on the physical environment. During this
procedure, the data analytics plays an important role in extracting informative values,
forecasting the coming events and predicting the increment/decrements of products.
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Figure 1. Life cycle of Big Data Analytics for MIoT

2.2. Life cycle of big data analytics for MIoT

We first introduce the life cycle of big data analytics for MIoT. Figure 1 shows that
the life cycle of big data analytics for MIoT consists of three consecutive stages: 1)
Data Acquisition, 2) Data Preprocessing and Storage, 3) Data Analytics. There are
other taxonomies [Hu et al.(2014), Casado and Younas(2015), Tao et al.(2018)]. We
categorize the life cycle of big data analytics into the above three stages since this
taxonomy can accurately capture the key features of big data analytics in MIoT.

1. Data acquisition consists of data collection and data transmission. Firstly, data
collection involves acquiring raw data from various data sources in the whole
manufacturing process via dedicated data collection technologies. For example,
RFID tags are scanned by RFID readers in product warehouse. Then, the col-
lected data will be transmitted to the data storage system through either wired
or wireless communication systems. Details about enabling technologies of data
acquisition are given in Section 3.1.

2. Data preprocessing and storage. After data collection, the raw data needs to be
preprocessed before keeping them in data storage systems because of the big
volume, redundancy, uncertainty features of the raw data [Lade, Ghosh, and
Srinivasan(2017)]. The typical data preprocessing techniques include data clean-
ing, data integration and data compression. Data storage refers to the process
of storing and managing massive data sets. We divide the data storage system
into two components: storage infrastructure and data management software. The
infrastructure not only includes the storage devices but also the network devices
connecting the storage devices together. In addition to the networked storage
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devices, data management software is also necessary to the data storage system.
Details about enabling technologies of data preprocessing and data storage are
given in Section 3.2.

3. Data analytics. In data analysis phase, various data analytical schemes are used
to extract valuable information from the massive manufacturing data sets. We
roughly categorize the data analytical schemes into four types: (i) statistic mod-
elling, (ii) data visualization, (iii) data mining and (iv) machine learning. Details
about enabling technologies of data analysis are presented in Section 3.3.

2.3. Necessities of big data analytics for MIoT

There is an enormous amount of data generated from the whole manufacturing chain
consisting of raw material supply, manufacturing, product distribution, logistics and
customer support, as shown in Figure 1. Such “big data” needs to be extensively
analysed so that some valuable and informative information can be extracted.

We summarize the reasons of big data analytics for MIoT as follows:

• Improving factory operations and production. The predictive analytics of manu-
facturing data and customer demand data can help to improve machinery uti-
lization consequently enhancing factory operations. For example, the demands
for certain products are often related to weather or seasonal conditions (e.g.,
down coats related to the cold weather). Forecasting a cold wave can be used
to make pro-active allocation of machinery resources and pre-purchasing raw
materials to fulfill the upsurge demands.

• Reducing machine downtime. The prevalent sensors deployed throughout the
whole product line can collect various data reflecting machinery status. For ex-
ample, the analysis of machinery health data can help to identify the root cause
of failure consequently reducing machine downtime [Lade, Ghosh, and Srini-
vasan(2017)]. Moreover, the sensory data from automatic assembly line can also
be used to determine excessive load of machines so as to balance the loads among
multiple machines [Wang et al.(2018a)].

• Improving product quality. On one hand, the analysis of market demand and
customer requirement can be used to improve the product design in reflecting
product improvements. During the product manufacturing procedure, the anal-
ysis of manufacturing data can help to reduce the ratio of defective goods by
identifying the root cause. As a result, the product quality can be improved.

• Enhancing supply chain efficiency. The proliferation of various sensors, RFID
and tags during supplier, manufacturing and transportation generates massive
supply chain data, which can be used to analyse supply risk, predict delivery
time, plan optimal logistic route, etc. Moreover, the analysis of inventory data
can reduce the holding costs and fulfill the dynamic demands by establishing
safety stock levels. In addition, big data analytics on IoT-enabled intelligent
manufacturing shops [Zhong et al.(2017)] can also help to make accurate logistic
plan and schedules. As a result, the system efficiency can be greatly improved.

• Improving customer experience. Companies can obtain customer data from var-
ious sources, such as sales channels, partner distributors, retailers, social media
platforms. Then, big data analytics on customer data offers descriptive, predic-
tive and prescriptive solutions to enable companies to improve product design,
quality, delivery, warrant and after-sales support. As a result, the customer expe-
rience can be improved. For example, the IoT data in the whole food supply-chain

5



is also beneficial to prevent mischievous actions and guarantee food safety [Leng
et al.(2018b)].

2.4. Challenges of big data analytics for MIoT

MIoT data has the following characteristics: (1) massive volume, (2) heterogeneous
data types, (3) being generated in real-time fashion and (4) bringing huge both business
value and social value. The unique features cause the research challenges in big data
analytics for MIoT. We summarize the challenges in the following aspects.

1. Challenges in data acquisition
Data acquisition addresses the issues including data collection and data transmis-

sion, during which there are the following challenges.

• Difficulty in data representation. MIoT data has different types, heteroge-
neous structures and various dimensions. For example, manufacturing data can
be categorized into structured data, semi-structured and un-structured data
[Tao et al.(2018)]. How to represent these structured, semi-structured and un-
structured data becomes one of major challenges in big data analytics for MIoT.

• Efficient data transmission. How to transmit the tremendous volumes of data to
data storage infrastructure in an efficient way becomes a challenge due to the fol-
lowing reasons: (i) high bandwidth consumption since the transmission of big data
becomes a major bottleneck of wireless communication systems [Hu et al.(2014)];
(ii) energy efficiency is one of major constraints in many wireless industrial sys-
tems, such as industrial wireless sensor networks [Azoidou et al.(2017)].

2. Challenges in data preprocessing and storage
Data generated from MIoT leads to the following research challenges in data pre-

processing.

• Data integration. Data generated in MIoT has the various types and hetero-
geneous features. It is necessary to integrate the various types of data so that
efficient data analytics schemes can be implemented. However, it is quite chal-
lenging to integrate different types of MIoT data.

• Redundancy reduction. The raw data generated from MIoT is characterized by
the temporal and spatial redundancy, which often results in the data inconsis-
tency consequently affecting the subsequent data analysis. How to mitigate the
data redundancy in MIoT data becomes a challenge.

• Data cleaning and data compression. In addition to data redundancy, MIoT data
is often erroneous and noisy due to the defected machinery or errors of sensors.
However, the large volume of the data makes the process of data cleaning more
challenging. Therefore, it is necessary to design effective schemes to compress
MIoT data and clean the errors of MIoT data.

Data storage plays an important role in data analysis and value extraction. However,
designing an efficient and scalable data storage system is challenging in MIoT. We
summarize the challenges in data storage as follows.

• Reliability and persistency of data storage. Data storage systems must ensure the
reliability and the persistency of MIoT data. However, it is challenging to fulfill
the above requirements of big data analytics while balancing the cost due to the
tremendous amount of data [Guerra et al.(2011)].
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• Scalability. Besides the storage reliability, another challenging issue lies in the
scalability of storage systems for big data analytics. The various data types, the
heterogeneous structures and the large volume of massive data sets of MIoT lead
to the in-feasibility of conventional databases in big data analytics. As a result,
new storage paradigms need to be proposed to support large scale data storage
systems for big data analytics.

• Efficiency. Another concern with data storage systems is the efficiency. In order
to support the vast number of concurrent accesses or queries initiated during the
data analytics phase, data storage needs to fulfill the efficiency, the reliability
and the scalability requirements together, which is extremely challenging.

3. Challenges in data analytics
It is quite challenging in big data analytics for MIoT due to the tremendous volume,

the heterogeneous structures and the high dimension. The major challenges in this
phase are summarized as follows.

• Data temporal and spatial correlation. Different from conventional data ware-
houses, MIoT data is usually spatially and temporally correlated. How to man-
age the data and extract valuable information from the temporally/ spatially-
correlated MIoT data becomes a new challenge.

• Efficient data mining schemes. The tremendous volume of MIoT data leads to the
challenge in designing efficient data mining schemes due to the following reasons:
(i) it is not feasible to apply conventional multi-pass data mining schemes due
to the huge volume of data, (ii) it is critical to mitigate the data errors and
uncertainty due to the erroneous features of MIoT data.

• Privacy and security. It is quite challenging to pertain the privacy and ensure
the security of data during the analytics process. Though there are a number
of conventional privacy-preserving data analytical schemes, they may not be
applicable to the MIoT data with the huge volume, heterogeneous structures,
and spatio-temporal correlations. Therefore, new privacy-preserving data mining
schemes need to be proposed to address the above issues.

3. Enabling Technologies

In this section, we discuss the enabling technologies of big data analytics in MIoT.
According to the three phases in the life cycle of big data analytics in MIoT, we
roughly categorize these technologies into data acquisition, data preprocessing and
storage, data analytics. In particular, we first discuss the data acquisition related
technologies in Section 3.1. We then describe the data preprocessing and storage in
Section 3.2. In Section 3.3, we discuss the data analytics in MIoT.

3.1. Data acquisition

As shown in Figure 1, the whole manufacturing chain involves with multiple parties
such as suppliers, manufacturers, distributors, logistics, retailers and customers. As
a result, different types of data sources generate from each of these sectors. Take a
manufacturing factory an example. Sensors deployed at the production line can collect
device data, product data, ambient data (like temperature, humidity, air pressure),
electricity consumption, etc. In the product warehouse, RFID or other tags can help
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to identify and track products. RFID tags attached at products can be read in a short
distance by a RFID reader in a wireless manner.

The collected data can then be transmitted to the next stage via either wired or wire-
less manner. Industrial Ethernet is one of the most typical wired connections in man-
ufacturing. When Ethernet is applied to an industrial setting, more rugged connectors
and more durable cables are often required to satisfy harsh environment requirements
(like vibration, noise and temperature). Compared with wired communications, wire-
less communications do not require communication wiring and related infrastructure
consequently saving the cost and improving scalability. The major obstacle of the wide
deployment of wireless communications in industrial systems is the lower throughput
and the higher delay than wired communications. However, the recent advances in
wireless communications make wireless connections feasible in industrial components.

Various sensors, RFIDs and other tags can connect with IoT gateways, WiFi Access
Points (APs), small base station (BS) and macro BS to form an industrial wireless
sensor networks (IWSN) [Chi et al.(2014)]. It is worth mentioning that different wire-
less technologies have different coverage and bandwidth capabilities. Figure 2 gives
the comparison of various wireless technologies regarding to coverage and bandwidth.
In particular, it is shown in Figure 2 that conventional wireless technologies like Near
Field Communications (NFC), RFID, Bluetooth Low Energy (LE), wireless body sen-
sor networks (WBAN), Internet Protocol (IPv6), Low-power Wireless Personal Area
Networks (6LoWPAN) and Wireless Highway Addressable Remote Transducer (Wire-
lessHART) [Petersen and Carlsen(2011)] are suffering from short communication range
(i.e., most of them can typically cover less than hundreds of meters). As a result, they
cannot support the wide-coverage industrial applications, like smart metering, smart
cities and smart grids [Xu et al.(2017)]. It is true that other wireless technologies
such as WiFi (IEEE 802.11) and mobile communication technologies (such as 2G, 3G,
4G networks) can provide longer coverage range while they often require high energy
consumption at handsets, whereas most of sensor nodes have the limited energy (i.e.,
supplied by batteries). Therefore, WiFi and other mobile communication technologies
may not be feasible in IWSN due to the high energy consumption.

Recently, Low Power Wide Area Networks (LPWAN) essentially provide a solution
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to the wide coverage demand while saving energy. Typically LPWAN technologies
include Sigfox, LoRa, Narrowband IoT (NB-IoT) [Mekki et al.(2018)]. LPWAN has
lower power consumption than WiFi and mobile communication technologies. Take
NB-IoT as an example. It is shown in [Xu et al.(2017)] that an NB-IoT node can
have a ten-year battery life. Moreover, LPWAN has a longer communication range
than RFID, bluetooth and 6LoWPAN. In particular, LPWAN technologies have the
communication range from 1km to 10 km. Furthermore, they can also support a large
number of concurrent connections (e.g., NB-IoT can support 52,547 connections as
shown in [Xu et al.(2017)]). However, one of limitations of LPWAN technologies is
the low data rate (e.g., NB-IoT can only support a data rate upto 250 kps). There-
fore, LPWAN technologies should complement with conventional RFID, 6LoWPAN
and other wireless technologies so that they can support the various data acquisition
requirements.

3.2. Data preprocessing and storage

3.2.1. Data preprocessing

Data acquired from MIoT has the following characteristics:

• Heterogeneous data types. The whole manufacturing chain generates various data
types including sensory data, RFID readings, product records, text, logs, audio,
video, etc. The data is in the forms of structured, semi-structured and non-
structured.

• Erroneous and noisy data. The data obtained from industrial environment is
often erroneous and noisy mainly due to the following reasons: (a) interference
during the process of data collection especially in industrial environment, (b) the
failure and malfunction of sensors or machinery, (c) intermittent loss or outage
of wireless or wired communications [Siddiqa et al.(2016)]. For example, wireless
communications are often susceptible to harsh industrial environmental factors
like blockage, shadowing and fading effects. Moreover, data transmission may
fail in industrial WSNs due to the depletion of batteries of sensors or machinery.

• Data redundancy. Data generated in MIoT often contain excessively redundant
information. For instance, it is shown in [Ertek, Chi, and Zhang(2017)] that
there are excessive duplicated RFID readings when multiple RFID tags were
scanned by several RFID readers at different time slots. The data redundancy
often results in data inconsistency.

Data preprocessing approaches on MIoT data include data cleaning, data integration
and data compression as shown in Figure 3. In industrial environment, sensory data
is usually uncertain and erroneous due to the depletion of battery power of sensors,
imprecise measurement of sensors and communication failures. There are several ap-
proaches proposed to address these issues. For example, [Zhong et al.(2015)] proposed
RFID-Cuboids approach to remove redundant readings and eliminate the missing val-
ues. Moreover, an Indoor RFID Multi-variate Hidden Markov Model (IR-MHMM) was
proposed to determine uncertain data and remove duplicated RFID readings as shown
in [Baba et al.(2017)]. Furthermore, a machine-learning based method was proposed
to filter out the invalid RFID readings [Ma, Wang, and Wang(2018)]. In addition, the
study of [Bhandari et al.(2017)] proposed an auto-correlation based scheme to remove
duplicated time-series temperature data. In [Tasnim, Pissinou, and Iyengar(2017)], a
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novel data cleaning mechanism was proposed to clean erroneous data in environmen-
tal sensing applications. Besides duplicated readings, there also exist missing values
in MIoT data. In [Zheng et al.(2018)], an interpolation method was proposed to re-
cover the missing values of smart grids data. Moreover, energy-saving is a critical issue
in data-cleaning algorithms used in MIoT. In [Deng et al.(2018)], an energy-efficient
data-cleaning scheme was proposed.

3.2.2. Data storage

Data storage plays an important role in big data analytics for MIoT. We summarize
the solutions of data storage in two aspects: 1) storage infrastructure and 2) data
management software.

Storage infrastructure consists of a number of interconnected storage devices. Stor-
age devices typically include: magnetic Harddisk Drive, Solid-State Drives, magnetic
taps, USB flash drives, Secure Digital (SD) cards, micro SD cards, Read-Only-Memory
(ROM), CD-ROMs, DVD-ROMs, etc. These storage devices can be connected together
(via wired or wireless connections) to form the storage infrastructure for MIoT in in-
dustrial environment.

Besides storage infrastructure, data management software plays an important role
in constructing the scalable, effective, reliable storage system to support big data
analytics in MIoT. As shown in Figure 1, the data management software consists of
three layered components:

• Distributed file systems. Google File System (GFS) was proposed and developed
by Google [Ghemawat, Gobioff, and Leung(2003)] to support the large data
intensive distributed applications such as search engine. Moreover, Hadoop Dis-
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tributed File System (HDFS) was proposed by Apache [Shvachko et al.(2010)]
as an alternative to GFS. In addition, there are other distributed file systems,
such as C# Open Source Managed Operating System (Cosmos) proposed by
Microsoft [Chaiken et al.(2008)], XtreemFS [Hupfeld et al.(2008)] and Haystack
proposed by Facebook [Beaver et al.(2010)]. Most of them can partially or fully
support the storage of large scale data sets. Therefore, most of them can offer
the support for large scale data storage of MIoT data.

• Database management systems (DBMS). DBMS offers a solution to organize the
data in an efficient and effective manner. DBMS software tools can be roughly
categorized into two types: traditional relational DBMS (aka SQL databases)
and non-relational DBMS (aka Non-SQL databases). SQL databases have been
a primary data management approach, especially useful to Material Require-
ments Planning (MRP), Supply Chain Management (SCM), Enterprise Resource
Planning (ERP) in the whole manufacturing chain. Typical SQL databases in-
cluding commercial databases, such as Oracle, Microsoft SQL server and IBM
DB2, and open-source alternatives, such as MySQL, PostgreSQL and SQLite.
SQL databases usually store data in tables of records (or rows). This storage
method neverthless leads to the poor scalability of databases. For example, when
data grows, it is necessary to distribute the load among multiple servers. One of
benefits of SQL databases is that most of SQL databases can guarantee ACID
(Atomicity, Consistency, Isolation, Durability) properties of database transac-
tions, which is crucial to many commercial applications (e.g., ERP and inventory
management). Different from SQL databases, NoSQL databases support various
types of data, such as records, text, and binary objects. Compared with tradi-
tional relational databases, most of NoSQL databases are usually highly scalable
and can support the tremendous amount of data. Therefore, NoSQL databases
are promising in managing sensory data, device data, RFID trajectory data in
MIoT [Lade, Ghosh, and Srinivasan(2017)].

• Distributed computing models. There are a number of distributed computing
models proposed for big data analytics. For example, Google MapReduce [Dean
and Ghemawat(2008)] is one of the typical programming models used for pro-
cessing large data sets. Hadoop MapReduce [Apache(2014)] is the open source
implementation of Google MapReduce. MapReduce is suffering from the lack
of iterations or recursions, which are however required by many data analyt-
ics applications, such as data mining, graph analysis and social network analy-
sis. There are some extensions to MapReduce to address this concern, includ-
ing HaLoop [Bu et al.(2010)], Berkeley Orders of Magnitude (BOOM) Analy-
sis [Alvaro et al.(2010)], Twister [Ekanayake et al.(2010)], iHadoop [Elnikety,
Elsayed, and Ramadan(2011)] and iMapReduce [Zhang et al.(2012)]. In addition
to MapReduce, there are other alternatives such as Dryad [Isard et al.(2007)],
Nephele/PACTs system [Battré et al.(2010)], Spark [Zaharia et al.(2010)], Pregel
[Malewicz(2010)], Hive [Thusoo et al.(2010)], GraphLab [Low et al.(2012)].

• Virtual machines and containers. Virtual machines (VMs) have been widely
used to support cloud computing. Through virtualization, multiple VMs can be
emulated on a single computer system. VMs can help to achieve the isolation
of multiple virtual operating systems, on top of which multiple applications can
be supported. Different from VMs, containers run on top of a single operating
system and a single hardware while containers separate the applications as well
as the underneath binary and library files. Therefore, containers can achieve the
lightweight virtualization, consequently resulting the super fast booting speed,
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small size, less resource consumption (compared with VMs). The lightweight
features of containers lead to the feasibility to edge computing scenarios (to be
illustrated in Section 3.4).

3.3. Data analytics

3.3.1. Typical data analytics approaches

Typical data analytics approaches include: 1) Statistical modeling schemes, 2) Data
mining schemes, 3) Machine learning schemes and 4) Data visualization.

Statistical modeling methods are mainly based on statistical theory. There are three
types of statistical methods: (i) descriptive statistics that is used to quantify relation-
ships in data [Trochim, Donnelly, and Arora(2016)]; (ii) inferential statistics that is
used to to deduce generalizations from the sample data sets [Bandyopadhyay and
Forster(2011)]; (iii) stochastic modeling methods can capture the dynamic features of
data traffic, predict user mobility and track objects [Newson and Krumm(2009),Liao
et al.(2018)].

Data mining is the process of extracting useful information from massive data sets.
There are a wide variety of data mining algorithms that can be used in MIoT such as
Apriori algorithm, Frequent Pattern Growth (FP-Growth) algorithm, Density-based
spatial clustering of applications with noise (DBSCAN), Generalized Sequential Pat-
tern (GSP), Sequential Pattern Discovery Using Equivalent Class (SPADE) and Prefix-
Projected Sequential Pattern Mining (PrefixSpan) [Han, Kamber, and Pei(2012)].

Machine learning explores to construct self-adaptive algorithms that can learn
from existing data and perform predictive analysis. As one of typical applications
of machine learning, data mining has emphasis on extracting valuable information
from data. Typical Machine learning algorithms include support vector machines
(SVMs) [Vapnik(1995)], naive Bayes [Wu et al.(2008)], Decision tree learning [Rus-
sell and Norvig(2009)], k-Nearest Neighbors (k-NN) [Altman(1992)], hidden Markov
model, Bayesian networks [Qiu et al.(2016)], neural networks [Zhang(2000)], Ensemble
methods [Zhou(2012)], k-means [Kanungo et al.(2002)], singular value decomposition
(SVD), Principal Component Analysis (PCA) [Jolliffe(2002)] and reinforcement learn-
ing algorithms such as Q-learning [Russell and Norvig(2009)].

3.3.2. Taxonomy of data analytics approaches in MIoT

We next present an overview of data analytics in MIoT in the aspect of MIoT ap-
plications. In particular, data analytics methods in MIoT can be roughly categorized
into: 1) Descriptive analytics, 2) Diagnostic analytics, 3) Predictive analytics, 4) Pre-
scriptive analytics. This classification can better represent the data analytics in MIoT
applications in different levels of complexity and extracted values. Figure 4 depicts
different levels of data analytics methods in MIoT applications. Both descriptive and
diagnostic analytics methods are reactive while predictive and prescriptive analytics
approaches are proactive. Moreover, prescriptive and predictive analytics approaches
are more complicated than descriptive and diagnostic analytics methods though they
can bring more values than descriptive and diagnostic analytics. We then present an
overview of existing studies in the four levels of data analytics.

(1) Descriptive analytics
Descriptive analytics is an exploratory analysis of historical data to tell what hap-

pened. During this stage, most of data mining and statistic methods can be used to
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reveal the data characteristics, recognize patterns and identify relationships of data
objects. Descriptive analytics can be used in the whole life cycle of manufacturing data.
In particular, a real-time monitoring system was proposed in [Zhang et al.(2015)] to
track the different manufacturing resources. Zhong et al. [Zhong et al.(2016)] proposed
RFID-Cuboid framework to integrate production logistic data with RFID data and
offered a system prototype to visualize logistic trajectory data. Moreover, the study
of [Zuo, Tao, and Nee(2018)] presented a cloud-based approach to evaluate the energy
consumption during product manufacturing process. In addition, air-qualtiy monitor-
ing system based on wireless sensor networks at a logistics shipping base was proposed
in [Molka-Danielsen, Engelseth, and Wang(2018)].

(2) Diagnostic analytics
Diagnostic analytics is a deeper look at data to attempt to understand the causes

of events and behaviours. The diagnostic analysis of machines and other equipments
can help to identify the possible faults and predict the failures to reduce the ma-
chine down-times. For example, a method of integrating SVM and artificial neural
network (ANN) was presented to detect and diagnose machinery faults of centrifu-
gal pumps [Azadeh et al.(2013)]. The study of [Wang et al.(2016)] proposed fault
detection methods for propeller ventilation of vessels based on Kalman filter. Wuest
et al. put forth a surpervised maching learning method to monitor product quality
in [Wuest, Irgens, and Thoben(2014)]. Compared with supervised machine learning
methods, unsupervised learning methods require less feature engineering efforts in ob-
taining features consequently saving the time and the labor. In [Lei et al.(2016)], a
two-stage unsupervised learning method was proposed to conduct diagnostic analysis
of machine faults. In addition to fault diagnosis, anomaly detection (or outlier detec-
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tion) is to identify data objects that do not comply with an expected pattern as given.
In [Zheng et al.(2018)], a deep learning based method was proposed to detect electric
theft via anomaly detection of electricity consumption data in smart grids.

(3) Predictive analytics
Predictive analytics mainly utilizes historical data to anticipate the trends of data

(i.e., what will occur in the future). In [Wu et al.(2017a)], a random forests (RFs)
based method was proposed to predict the tool (machine) wear in manufacturing
cycle. It is also shown in [Wu et al.(2017a)] that RFs method outperforms ANN and
SVMs in terms of prediction accuracy. One of challenges in data analytics of MIoT
data is the imbalanced number of negative and postive samples [Lade, Ghosh, and
Srinivasan(2017)]. The study of [Kim et al.(2017)] proposed a cost-sensitive decision
tree ensemble algorithm to address this issue. Extensive experimental results show that
the proposed method outperforms other existing baseline methods. Moreover, in [Ren,
Hung, and Tan(2018)], a deep-learning based method was proposed to predict product
surface defects. In addition, consumer behaviour prediction plays an important role
in manufacturing business stage, e.g., to improve the consumers’ purchase decision-
makeing predictions. In [Zuo(2016)], a Bayesian network based approach was proposed
to predict the customer purchase behaviour. In particular, the analysis is based on
massive RFID data, which was collected through RFID tags attached at customers.

(4) Prescriptive analytics
Prescriptive analytics extends the results of descriptive, diagnostic and predictive

analytics to make right decisions in order to achieve predicted outcomes (i.e., what
should we do to achieve the goal?). The prescriptive methods typically include simula-
tion, decision-making, optimization and reinforcement learning algorithms. In partic-
ular, in [Gerlach, Hass, and Mandenius(2015)], a conceptual design approach was pro-
posed to simulate the configuration and procedural training in a bio-ethanol plant. The
study of [Mourtzis et al.(2016)] presents a novel method for manufacturing-networks
design via intelligent decision-making on selecting suppliers to fulfill the requirements
of frugal innovation. In [Kluczek(2016)], an analytic hierarchy process (AHP) based
method was proposed to evaluate manufacturing sustainability performance. More-
over, in [Drakaki and Tzionas(2017)], a novel method with the integration of Timed
Colored Petri Nets (CTPNs) and reinforcement learning (RL) was proposed to solve
the problem of manufacturing scheduling.

Table 2 summarizes data analytics methods used for MIoT. We categorize them into
four types according to different levels in terms of complexity and extracted values.
Moreover, we also enumerate representative data analytics methods in each category.
In addition, we also list representative application cases in each category.

3.3.3. Data visualization in MIoT

In addition to the aforementioned data analytics, data visualization is also an im-
portant tool in MIoT data. Effective data visualization procedure can help to ex-
tract and interpret the informative values from complex and high-dimensional MIoT
data [Telea(2014)]. Typical data visualization methods include information visualiza-
tion, exploratory data analysis, statistic plots. The typical quantitative messages that
are conveyed by data visualization include: time-series, ranking, frequency distribu-
tion, deviation, correlation, part-to-whole, geographic [Post(2003)]. The basic data
visualization techniques include: 1) various statistic plots (e.g., bar chart, histogram,
pie diagram, scatter plots), 2) word clouds of text data, 3) correlation coefficient ma-
trices/functions, 4) network/graph diagrams of non-structural data, 5) heat map of
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(a) System Prototype (b) Realistic deployment of system prototype

Figure 5. Case study for distributed computing models for MIoT

geographic data.
Typical data visualization toolboxes include Matlab plot (https://it.mathworks.

com/help/matlab/ref/plot.html), gnuplot (http://www.gnuplot.info/),
Python’s Seaborn (https://seaborn.pydata.org/), Pandas plot (https:
//pandas.pydata.org/), Matplotlib (https://matplotlib.org/). Moreover,
web-based visualization tools have also been wide used. Representative web-
based data visualization tools include Tableau (https://www.tableau.com/),
Plotly (https://plot.ly/), Sisense (https://www.sisense.com/), D3.js
(https://d3js.org/).

3.4. Case studies

To demonstrate the feasibility of distributed computing models in MIoT, we developed
a system prototype. Figure 5(a) shows that the system framework consists of a pro-
duction line, industrial devices and computing units. In particular, the production line
consists of various manufacturing devices, instruments, sensors, actuators and robot
arms, all of which are connected through wired or wireless links consequently forming
the MIoT. In addition to the production line and industrial devices, there are a number
computing units supporting diverse data processing tasks. For example, edge comput-
ing servers with equipped with embedded computers are deployed in the proximity to
MIoT. Moreover, the computing-intensive tasks may be uploaded to the remote cloud
servers while the latency-sensitive tasks may be processed at edge servers.

In the computing perspective, we develop a distributed computing platform with
the orchestration of remote cloud computing and local edge computing. In particu-
lar, we deploy Xen hypervisor at remote cloud servers and Docker container at edge
servers. On top of virtual machines, we further utilize Hadoop distributed comput-
ing platforms to support big data processing tasks. In order to coordinate the edge
and cloud computing tasks, we design and implement a hybrid edge/cloud computing
framework (details can be referred to the work [Li et al.(2019)]).

Figure 5(b) gives the realistic prototype of a printed circuit board (PCB) produc-
tion line based on our proposed system framework. This production line consists of
conveyor belts, product feeding machines, robot arms, sensors and cameras. We choose
industrial WLANs as the wired connections and 6LoWPAN as the wireless connections.
In addition, we adopt 4 edge servers, each of which has the identical configurations:
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a single-board computer with a quad-core Broadcom BCM2837 CPU, 1GB memory
and 64GB SSD storage. Furthermore, there is a remote cloud server (i.e., IBM X3650
M3) with 2 Intel Xeon Processors, 24 GB memory and 1TB SSD storage.

We then evaluate the performance of the proposed hybrid edge/cloud computing
framework on top of the prototype. In particular, we consider a pure cloud computing
framework and a pure edge computing framework as baseline models. Moreover, image
recognition tasks with varied image size were chosen to be executed at edge and cloud
servers. We further adopt OpenCV frameworks on both edge and cloud servers to
support the image recognition tasks.

Table 3. Performance evaluation

10 MB 12 MB 14 MB 16 MB 18 MB 20 MB

Cloud Computing Only (second) 1.20 1.48 1.67 1.82 2.08 2.45

Edge Computing Only (second) 0.61 0.86 0.97 1.15 1.26 1.43

Hybrid Cloud and Edge (second) 0.75 0.93 0.98 0.86 0.97 0.96

Table 3 shows the latency values of three computing frameworks versus varied image
sizes. In particular, the latency is calculated via averaging results with 100 images,
each with the same image size (e.g., 10 MB). It is shown in Table 3 that the average
latency is increased with the increased image size; this effect may owe to the increased
computational complexity of image recognition algorithms with the increased image
size. We also observe from Table 3 that the proposed hybrid cloud and edge scheme
outperforms pure cloud computing scheme and pure edge computing scheme with
larger image size (e.g., 16 MB, 18 MB and 20 MB). It can be explained as follows:
1) pure cloud computing has the strength in processing large images while suffering
from the long end-to-end latency; 2) pure edge computing scheme can complete the
computing tasks with smaller image size (e.g., 12 MB) and achieve the short end-to-
end latency due to the deployment proximity; 3) hybrid edge/cloud computing scheme
can not only exploit the strength of cloud computing to process the complicated tasks
but also harness the benefit of edge computing in short latency, consequently obtaining
the better performance in the cases with larger image size.

4. Future research directions

In this section, we discuss open issues as well as future directions in big data analytics
for MIoT. Figure 6 summarizes the future directions in big data analytics in MIoT.

4.1. Security and Privacy Concerns

Privacy and security are becoming an arising challenge of big data analytics for MIoT.
Privacy concerns the proper utilization of the data with the preservation of enterprise
private information, whereas security is to ensure data confidentiality, integrity and
availability [Wang et al.(2018b)]. We next summarize the research issues related to
privacy and security in big data analytics for MIoT.

• Security assurance in data acquisition. The proliferation of wireless connections
in manufacturing industry results in the challenges in security assurance during
data acquisition because of the openness of wireless medium susceptible to ma-
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Figure 6. Future directions in big data analytics of MIoT

licious attacks like passive eavesdropping attacks [Li et al.(2018)]. The typical
countermeasure is to apply encryption schemes in wireless networks [Hennebert
and Santos(2014)]. However, it may not be feasible to apply cryptography-based
techniques in all IoT networks due to the following constraints: the inferior com-
putational capability and the limited battery power of some smart objects like
RFID and sensors. Therefore, new protection schemes without strong computa-
tional complexity and high energy consumption shall be developed for MIoT in
the future.

• Privacy preservation and security assurance in data preprocessing and storage.
After data acquisition, MIoT data will be preprocessed and stored locally (at
servers of factories or other departments) or remotely (at remote cloud servers)
[Wang, Gao, and Fan(2015)]. However, the distribution of MIoT data throughout
the enterprise consisting of multiple manufacturing sites across different regions
often results in the vulnerability to various malicious attacks from insiders and
outsiders of the enterprise. It is challenging to offer a solution against malicious
attacks. There are several possible directions in solving this issue: 1) Proper
key management [Esposito et al.(2016)] including proper key distribution and
key validation period, 2) authentication mechanism including accessing control
of files and data records, 3) traceability of data accessing allowing any data
accessing or modification to be identifiable so that the malicious behaviours can
be avoided or revoked.

• Privacy preservation in data analytics. In order to protect data privacy, the data
is often encrypted and stored at a server (or at a cloud). Before data analytics,
the data needs to be decrypted. However, the decryption process is often time-
consuming consequently resulting in the inefficiency of data analytics in MIoT.
How to design a privacy-preservation scheme of balancing the efficiency and
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privacy becomes a challenge [Wang et al.(2018b),Babar et al.(2019)].

4.2. Edge Computing for big data analytics in MIoT

The integration of cloud computing with manufacturing brings the opportunities in
saving the capital investments of information and communication technologies (ICT),
providing flexibility of ICT resources to small and medium enterprises [Wang, Gao,
and Fan(2015), Esposito et al.(2016)]. However, there are also limitations with cloud
computing such as high latency, performance bottleneck, single-point-to-failure and
privacy leakage [Liu et al.(2017)]. Recently, mobile edge computing (or fog computing)
has become a new complement to cloud computing by offloading both computational
and storage tasks from remote cloud servers to local edge servers [Tran et al.(2017),Wu
et al.(2017b),Wang et al.(2017)]. In this manner, the computing-intensive and delay-
tolerant tasks will be executed at remote cloud servers while the delay-critical and
computing less-intensive tasks will be offloaded to edge servers. As a result, the real-
time tasks like sensing, monitoring and controlling can be enabled in the proximity to
factories and enterprises. The case study in Section 3.4 also demonstrates the effec-
tiveness of hybrid edge and cloud computing in MIoT.

However, there are many challenges in edge computing for big data analytics in
MIoT.

• Collaboration between cloud and edge servers. There are diversity of computing
resources in manufacturing networks. For example, remote cloud servers usually
have superior computing capability than local edge servers while there is a longer
delay to upload the tasks to the remote cloud servers than to upload the tasks to
the local edge servers Therefore, it is necessary to determine how to allocate the
computational tasks at cloud servers or at edge servers. For example, the com-
puting intensive and delay-tolerant tasks should be uploaded to remote cloud
servers while the computing less-intensive and delay-critical tasks can be exe-
cuted locally at edge servers. In this sense, edge servers can be deployed within
factories and remote clouds can be deployed outside factories (even if they can
be provided by third parties). To the best of our knowledge, there are few stud-
ies on investigating collaboration between cloud and edge servers, especially in
the whole manufacturing network. In the future, research efforts should be done
in allocating and coordinating various computing resources distributed in cloud
and edge servers in manufacturing.

• Design lightweight data analytics methods for MIoT. Many data analytics tasks
that are delay-critical should be executed locally at edge servers (or at manu-
facturing devices). However, due to the resource limitation of edge severs, the
conventional data analytics methods might be too complicated to be executed
at edge servers. Therefore, the models of the data analytics methods need to
be trained at remote cloud servers first and be transferred at local edge servers.
However, it can result in huge communication cost to transmit this model from
the remote cloud servers to the edge servers. For example, the study of [Lin
et al.(2018)] shows that AlexNet (i.e., a typical deep learning method) has the
model size of 240MB, which is so large that it can cause extra delay from the
cloud server to the edge server. Therefore, it is necessary to design lightweight
data analytics schemes which can be deployed locally at edge servers approxi-
mate to users [Leng et al.(2018a)].
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4.3. New data analytics methods for MIoT data

Although a lot of efforts have been done in developing data analytics methods for
MIoT data, there are still many open research issues in this area.

• Imbalanced data samples. Different from data analytics in traditional fields (e.g.,
commercial database systems), manufacturing data has the imbalanced num-
ber of data samples between positive and negative samples. For example, it is
shown in [Lade, Ghosh, and Srinivasan(2017)] that the ratio of positive sam-
ples to negative samples (vice versa) can be 99,000,000 to 1. It is challenging to
apply conventional data analytics methods to analyse the imbalanced dataset.
Therefore, new data analytics methods should be developed to solve this issue.
To the best of our knowledge, there are few studies [Kim et al.(2017)] proposed
to address this issue.

• Stream data processing. In MIoT, there is a tremendous volume of real-time data
generated (e.g., sensory data from industrial wireless sensor networks) [Wang
et al.(2018a)]. It is impossible to store and process the entire data in the memory
of computers. Consequently, the conventional methods requiring saving the whole
data sets in memory cannot work in this scenario. It is challenging to analyse the
massive data-stream of MIoT. It is worthwhile to investigate new data analytics
approaches to process the data-stream of MIoT.

5. Conclusion

This paper presents an in-depth survey on big data analytics in manufacturing In-
ternet of Things (MIoT). This paper first presents a life cycle of big data analytics
in MIoT and discusses the necessities as well as challenges of big data analytics in
MIoT. Then, the enabling technologies of big data analytics in MIoT are summarized
according to three phases in the life cycle of big data analytics: data acquisition, data
preprocessing and storage, and data analytics. Moreover, this paper also outlines the
future directions and discusses the open research issues. We believe big data analytics
will play an important role in promoting manufacturing industry to evolve into smart
manufacturing in the foreseeable future.
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