
XBlock-ETH: Extracting and Exploring Blockchain
Data From Etherem

Peilin Zheng
School of Data and Computer Science

Sun Yat-sen University
Guangzhou, China

zhengpl3@mail2.sysu.edu.cn

Zibin Zheng∗
School of Data and Computer Science

Sun Yat-sen University
Guangzhou, China

zhzibin@mail.sysu.edu.cn

Hong-Ning Dai
Faculty of Information Technology

Macau University of Science and Technology
Macau, SAR

hndai@ieee.org

Abstract—Blockchain-based cryptocurrencies have received ex-
tensive attention recently. Massive data has been stored on
permission-less blockchains. The analysis on massive blockchain
data can bring huge business values. However, the lack of
well-processed up-to-date blockchain datasets impedes big data
analytics of blockchain data. To fill this gap, we collect and
process the up-to-date on-chain data from Ethereum, which is one
of the most popular permission-less blockchains. We name these
well-processed Ethereum datasets as XBlock-ETH, which consists
of the data of blockchain transactions, smart contracts, and
cryptocurrencies (i.e., tokens). The basic statistics and exploration
of these datasets are presented. We also outline the possible
research opportunities. The datasets with the raw data and codes
have been publicly released online.

I. INTRODUCTION

Blockchain has attracted extensive attention from both
academia and industry in the recent years. Among the diverse
blockchain systems, substantial efforts have been made on the
permission-less blockchain (or public blockchain) due to its
decentralization [1]. The idea of permission-less blockchain
was firstly proposed and implemented on Bitcoin [2]. In a
blockchain system, each peer holds a ledger being considered
as a public tally that is essentially temper-resistant. Ethereum
[3] is another most popular permission-less blockchain system
that enables Turing-complete smart contracts.

The proliferation of blockchain systems has lead to the
generation of massive amount of blockchain data. Take
Bitcoin as an example. There are nearly 242 GB Bitcoin
data by the third quarter of 2019 as reported by Statista
(https://www.statista.com/). In this paper, we focus on the
data of Ethereum rather than Bitcoin, since Ethereum provides
richer data. For another example, more than 16,000,000 smart
contracts are deployed on Ethereum. As the Ethereum commu-
nity has published two token protocol to enable easier Initial
Coin Offerings (so-called ICO) for users [4], over 100,000
kinds of ERC20 token and 1,600 kinds of ERC721 token are
available to be transferred on Ethereum where ERC stands for
Ethereum Request for Comments.

The massive blockchain data provides researchers with
both huge business values and great opportunities [5] due to
openness, decentralization and temper-resistance of blockchain
systems. Take business trading data as an example. In the
past, it is difficult for researchers to obtain the real business

trading data because of the privacy or ownership concerns of
data owners. However, all the data in incumbent blockchain
systems are all publicly available. Meanwhile, the blockchain
data in permission-less blockchains can be accessed almost
everywhere due to the decentralization of blockchain systems.
Moreover, distributed consensus of blockchains also guaran-
tees the temper-resistance of blockchain data. In addition to
blockchain transactions, Ethereum (or its alternatives) also
consists of both smart contracts and cryptocurrencies. Big data
analytics of blockchain data can advance the developments in
fraud detection of transactions, vulnerability detection of smart
contracts and software development of smart contracts, etc.

However, there are a number of challenges in big data
analytics of blockchain data, especially in Ethereum: (1)
Difficulty in data synchronization at Blockchain peer. Due
to the bulky size of blockchain, it takes a long period to
fully synchronize entire blockchain data at a node (i.e., a
peer) newly connected with the blockchain. For example, it
takes more than one week and over 500 GB storage space
to fully synchronize the entire Ethereum at a peer. The high
expenditure of massive storage space and network bandwidth
due to blockchain data synchronization impedes the analysis
of blockchain data. (2) Challenge in blockchain data ex-
traction and procession. Blockchain data is stored at clients
in heterogeneous and complex data structures, which cannot
be directly analyzed. Meanwhile, the underlying blockchain
data is either binary or encrypted. Thus, it is a necessity to
extract and process binary and encrypted blockchain data so
as to obtain valuable information. However, it is non-trivial
to process heterogeneous blockchain data since conventional
data analytic methods may not work for this type of data.
(3) Absence of general data extract tools for blockchains.
Although many studies provide open source data extraction
tools of blockchain data, most of them can only support to
extract partial blockchain data (not all the data). Moreover,
most of existing tools can only fulfil specific research tasks.
(4) Absence of basic data explorations for blockchains. Ex-
isting studies only focus on specific data analysis of blockchain
data, e.g., transaction graph [6], contract security [7]. However,
the basic data explorations like statistic analysis, text analysis
and data visualization are missing in most of existing tools.

To address the above challenges, we propose a blockchain

ar
X

iv
:1

91
1.

00
16

9v
1

 [
cs

.C
R

]
 1

 N
ov

 2
01

9

data analytics framework namely XBlock-ETH to analyze
Etherium data. In particular, we extract raw data consisting
of 8,100,000 blocks of Ethereum. The raw data includes
three types of blockchain data: blocks, traces, and receipts.
Since the analysis on the raw blockchain data is difficult, we
process and categorize the obtained Etherium Blockchain data
into six datasets: (1) Block and Transaction, (2) Internal
Ether Transaction, (3) Contract Information, (4) Contract
Calls, (5) ERC20 Token Transactions, (6) ERC721 Token
Transactions. It is non-trivial to process the raw since it
requires substantial efforts in extracting useful information
from raw data and associating with six datasets. We then
conduct statistic analysis on the six refined datasets. We
also outlook the potential applications of XBlock-ETH, such
as blockchain system analysis, smart contract analysis, and
cryptocurrency analysis.

In summary, we highlight the major contributions of this
paper as follows:

• The XBlock-ETH data contain the comprehensive on-
chain data in contrast of previous works (only cover par-
tial Etherium data). In particular, it includes blockchain
data, smart contract data, and cryptocurrency data. More-
over, the well-processed datasets can be easily used for
data exploration. Furthermore, XBlock-ETH data for-
mally released online1 has been periodically updated.

• The XBlock-ETH framework also offers basic statis-
tic and exploration functions to analyze blockchain
datasets.This paper also outlines the research opportuni-
ties brought by XBlock-ETH. In particular, we discuss the
applications of XBlock-ETH in aspects of blockchain sys-
tem analysis, smart contract analysis and crytocurrency
analysis.

The rest of this paper is organized as follows. Section
II first gives an overview of blockchain and smart contract
technologies. Sections III, IV then present raw data acquisition
from Ethereum and data exploration of six datasets. Section
V discusses the applications of XBlock-ETH data. Section VI
surveys related work. Finally, the paper is concluded in Section
VII.

II. BACKGROUND

Figure 1 presents an overview of Ethereum blockchain,
which consists of a number layers from bottom to top: peers,
blockchain, smart contracts, and tokens. We next review basic
concepts of each layer in Ethereum.

A. Peer and Blockchain

In a nutshell, a blockchain is essentially a chain-like data
structure consisting of a number of consecutively-connected
blocksblocks. The chain has been maintained by all the peers
in a peer-to-peer blockchain network. In a period of time,
only one block can be confirmed by the entire blockchain
network through a consensus protocol. The block containing
the confirmed transactions at that time and the hash value

1http://xblock.pro/dataset

Peers

Block
N-1

Block
N

Block
N+1

Blockchain

Contract
0X01…

Contract
0Xe2…

Contract
0X1a…

Contract
0Xf3…

Smart Contract

Token

Fig. 1. Overview of Ethereum Blockchain

of the previous block has been generated by a peer (a.k.a.
miner). After being generated, the block will be validated
independently by the other peers. Once the block is validated
and confirmed by most of peers in the blockchain network,
the transactions in the block will be considered as completed.
In this way, each peer can trust the whole blockchain (a.k.a.
ledger) since the transactions have been validated by all the
peers. In other words, blockchain enhances trustworthiness of
transactional data through duplicating computation and storage
at all the peers.

Thanks to the completeness of the blockchain data in each
permission-less blockchain peer, researchers can obtain the
entire blockchain data via connecting a blockchain peer the
blockchain network. The blockchain data that consists of all
the operations done by the users and miners in the blockchain
contains substantial business values. For example, the trans-
actional records are essentially operations done by different
business parties. The analysis on the blockchain data can help
to understand user behaviours in a real-world economic system
(e.g., money transferring). Meanwhile, there is a rapid growth
of blockchain data, especially in Bitcoin and Ethereum, with
the proliferation of blockchain users and transactions. The
analysis on blockchain data can be also beneficial to predict
the economic trend.

B. Smart Contract

Smart contract that was proposed even earlier than
blockchain [8] is a promising technology to reshape the mod-
ern industry. Blockchain-based smart contracts are essentially
computer programs, in which the execution states are stored
on top of blockchain. The blockchain transactions are the
messages representing the deployment or invocations of smart
contracts. Therefore, blockchain guarantees the trustworthiness
of smart contracts.

The incumbent blockchain systems have enable smart con-
tracts. For example, Bitcoin enables users to run a simple
script program during the execution of transactions. This script
can be regarded as a simple blockchain-based smart contract.
However, the Bitcoin script is not Turing-complete so that it
cannot enables complex logic expressions in the contract. In
contrast, Ethereum enables Turing-complete smart contracts.
In Ethereum, smart contract is executed in the environment
called Ethereum Virtual Machine (EVM). EVM reads and
writes the states (stored in the key-value like database) as the
actions defined in a smart contract. During the contract execu-
tion, a miner uses “Gas” as a unit to evaluate the consumption
of one smart contract. After running the contract , the contract
user is charged by the “GasUsed” and “GasPrice”. The
more “GasPrice” that the users promise to pay for the miner,
the faster the contract executes. After the transactions (i.e.,
operations) are done, EVM will generate a hash value of the
state and record it into the blockchain. Therefore, we can learn
from Figure 1 that smart contracts on Ethereum are not directly
stored on blockchain. They are essentially stored in the states
that have been operated by the blockchain.

C. Tokens and clients

It is worth mentioning that Ethereum has two standard token
protocols (a.k.a. templates) of smart contracts [4], [9]. These
token protocols define the standard variables, functions, and
interfaces in the smart contract. With the protocols, users
can issue tokens (or so-called cryptocurrencies) based on
smart contracts on top of Ethereum. There are four typical
tokens USDT2, Cryptokitties [10], Kyber [11], MarkerDAO3

as shown in Figure 1 (i.e., the top layer). For an example,
a user can publish an ERC20 contract on Ethereum issuing
tokens to others. After that, any other users (even contracts)
can receive or send the token without a centralized authority
(e.g., stock exchange). The standard token protocols greatly
enrich the ecosystem of Ethereum so as to make Ethereum
become a more flexible financial system. In Section IV-E and
IV-F, we will explore the data of tokens in Ethereum.

Ethereum allows that any computer programs can join into
the network if they meet the requirement of the protocol just
like P2P protocols (e.g., BitTorrent). As a result, there are
a number of diverse Ethereum clients that can validate the
blocks and transactions. Among most of Ethereum clients,
Go-Ethereum (Geth) and Parity have been the most widely
used according to the statistic from Ether nodes4. Both of
them provide JSON-RPC interfaces for users to interact with
Ethereum blockchain. Through the JSON-RPC interfaces, user
can obtain the blockchain data from Ethereum. Geth has been
generally used in many previous studies while the interfaces
designed in Geth is not suitable for data acquisition. Even
though many researchers attempted to modify source codes of
Geth to obtain the detailed run-time data, the whole procedure
of the code modification is time consuming and complex. In

2https://tether.to/
3https://makerdao.com/
4https://ethernodes.org

Block

Block N

Transaction 1
Transaction 2

...

Blockchain Peer

Block Header

Receipt Trace

Ethereum Virtual Machine

Commit

Execute

Receipt

Contract A

Contract B

① Create ② Call

③ Suicide ④ Reward

Fig. 2. Raw data collection during Ethereum transaction flow

addition, the obtained data is not absolutely accurate in some
cases. Different from Geth, Parity better designs the interfaces
so that it can obtain the index of each block corresponding
to each piece of the data that we need. The details on data
acquisition of blockchain data will be described in Section III.

III. RAW DATA EXTRACTION FROM ETHEREUM

This section describes the procedure how the raw data was
obtained from Ethereum blockchain. Figure 2 illustrates the
typical Ethereum transaction execution flow from Block N
to EVM through Blockchain peer. During this procedure, we
collect the three types of blockchain raw data: Block, Receipt
and Trace. We next describe the details on the composition
and acquisition of each kind of raw data.

A. Block

Block data is directly stored in Ethereum blockchain. Each
block consists of two components:

• Block Header: Block header is the basic information
of a block, including the miner’s address, timestamp, gas
limit, etc.

• Block Transactions: Block transactions constructs the
body of the block. Each transaction consists of the fields:
From, To, Value, Input, etc. If the transaction is used to
deploy a contract, the To field is “null” in the block
transaction.

Almost all the Ethereum clients including Geth and Par-
ity offer the interfaces to query the blocks. For example,
“eth_getBlock” is available in both Geth and Parity with
the similar efficiency.

However, we can only obtain little information about the
blockchain users through analyzing the block data. This is
because the input of block transaction only represents op-
erations to EVM in the contract deployment phase while
the contract code will be stored only at the end of the
transaction execution and it is not the same as the input of
the transaction. Thus, we cannot obtain the exact contract
code in the block transaction. Meanwhile, in the contract
invocation phase, we cannot know whether the transaction is
executed successfully or what kinds of error thrown during
the transaction execution since sometimes a contract will send
messages or cryptocurrencies to other contracts.

B. Trace
Trace data is essentially the detailed run-time data that was

generated in EVM (e.g., internal contract calls, transferring
money from the contract to a person). Trace data cannot be
directly obtained or observed from the block data, but can
be recorded during the contract execution. In this paper, trace
data is referred to the data that cannot be obtained before or
after the transaction execution, but only appears during the
execution. Trace data includes the following types:

• Create is the trace including the creator, code, and initial
balance when a smart contract is deployed. The creator
of a contract can be a person or another smart contract.

• Call occurs when money or messages are transferred
through different Ethereum addresses. Contract call or
Ether transferring is shown as a “Call” trace.

• Suicide is the trace that smart contract “suicide”
deletes its code, and refunds the value to a specific
account.

• Reward is the trace that miners get the Ether reward
when they mine a block. The reward value varies de-
pending on the contribution of the miners.

In Geth, the interface of trace is
“debug_traceTransaction”. However, this interface
returns all the operations during the transaction, resulting in
large resource consumption and low efficiency. Thus, many
previous studies attempt to modify the source codes of Geth
to obtain the detailed run-time data, while this procedure is
extremely time consuming.

In this paper, we adopt “parity_trace” in Parity to
obtain the trace data. This interface is provided and maintained
by the official developer so that the correctness is guaran-
teed in contrast to Geth. Meanwhile it also provides enough
information that we need, such as the basic trace types and
errors. Moreover, another advantage of Parity is the updating
convenience as the data is indexed by blocks.

C. Receipt
After the transaction is executed, some of the Ethereum

states have been changed (e.g., the balance of the account
in a token contract). Then the clients need to know what
have been changed. To reduce the query overhead of clients,
many contracts leave a kind of outputs called “Event” in the
execution. For example, a standard token contract will output
a “Transfer(from,to,value)” event to let the clients
know what happens during the execution. This kind of outputs
is an one-way output, as it is just written in the receipt of the
transaction, and can be read by external clients or persons but
cannot be read by internal EVMs.

Section IV will then give the statistics of Ethereum data.
In particular, there are over 100,000 kinds of cryptocurrencies
using smart contracts on Ethereum. As for these token con-
tracts, the receipt data is the important source to learn about the
holders, owners, and the user behaviors. Thus, it is necessary
to obtain receipt data.

Both Geth and Parity provide the interfaces to get the
transaction receipts. The main difference between Geth

Block

Receipt

Trace

Block and Transaction

Internal Ether Transaction

Contract Info

Contract Calling

ERC20 Token Transaction

ERC721 Token Transaction

Raw Data Processed Datasets

Fig. 3. Mapping from raw data to datasets

TABLE I
STATISTICS OF DATASET 1

Statistics Values
No. of Blocks 8,100,000
No. of Transactions 491,562,222
No. of Miner Addresses 5,122
Mean of Transaction Counts per Block 60.68
Mean of Block Time 15.33 seconds
Mean of Block Size 11,457 bytes

and Parity interfaces lies in the query index of the re-
ceipts. In particular, the receipt of the interface of Geth
is “eth_getTransactionReceipt” that is indexed by
the transaction hash, while the interface of Parity is
“parity_getBlockReceipts” that is indexed by block
number. In this way, Parity is much more efficient than Geth
since it can return a batch of receipts in one query.

In summary, there are three kind of raw datasets that can be
obtained in Ethereum: block, trace, and receipt. Because of the
massive volume and redundant information of the raw data,
data procession is necessary to simplify data representation
and fasten data analysis for the further study. After compres-
sion, the size of the data is about 313 GBytes.

IV. DATA EXPLORATION OF ETHEREUM

In this section, we process the obtained raw data from
Ethereum and divide it into six datasets: (1) Block and
Transaction, (2) Internal Ether Transaction, (3) Contract Info,
(4) Contract Call, (5) ERC20 Token Transaction, (6) ERC721
Token Transaction. The relationship from the raw data to the
processed datasets is shown in Figure 3. We can easily observe
that the trace data has been the most widely used in the
data process. This section will introduce how the datasets are
generated, with statistics and observations.

A. Dataset 1: Block and Transaction

To investigate the basic statistics of Ethereum, we ex-
tract the information about the blocks and the transactions

(a) Word Cloud of Miners’ Text

0 100 200 300 400 500 600 700 800
Per 10000 Block

0

500000

1000000

1500000

2000000

2500000

T
ra

n
sa

ct
io

n
sC

o
u
n
t

(b) Transaction Count

0 100 200 300 400 500 600 700 800
Per 10000 Block

18

20

22

24

26

28

30

lo
g
(G

a
sP

ri
ce

)

MIN

MAX

AVG

(c) Macro view of GasPrice

0 200 400 600 800 1000
Per 20 Block

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G
a
sP

ri
ce

1e10

MIN

AVG

(d) Micro view of GasPrice

Fig. 4. Visualization of Dataset 1

inside the blocks. In particular, there are 8,100,000 blocks
and 491,562,222 transactions generated from the block data.
For each block, we also obtain the statistic values of the
“gasPrice”: minimum, average, and maximum. Meanwhile,
corresponding to the hash of each transaction, the fields of
“minerReward”, “gasUsed” and “error” are extracted
from the receipt and trace.

Regarding the miners of the Ethereum blockchain, there
are 5,122 unique addresses of miners as shown in Table I.
It implies that there are no more than 5,122 peers that serve
as miners since one peer may own more than one addresses.
Meanwhile, each miner has the right to write extra texts in
the block. So, we also use the word cloud to analyze the texts
of miners. Figure 4(a) shows the visualization of the texts of
the word cloud. The results show that there are texts left by
the mining pool, since most miners are in the mining pool
and they have left their names in the blocks to promote their
mining capability.

As shown in Table I, the mean of transaction counts per
block is 60.68, and the block time is 15.33 seconds. In
other words, the average throughput of Ethereum is about
4 transactions per second. Even when most of the network
is active, as shown at 4,900,000 blocks in Figure 4(b), the
throughput is about 16.7 transactions per second. This result
implies that Ethereum still has a long way to go to support
real-time Internet applications.

In Ethereum, a miner has a higher priority to package the
transactions with higher “gasPrice” into the block. The vi-
sualization of “gasPrice” is shown in Figures 4(c) and 4(d).
In a macro view, the “gasPrice” is gradually decreasing
with the development of the Ethereum community, except for
several peaks caused by extremely frequent transaction when
the network is congested. In a micro view, we extract the
time from 8,000,000 to 8,020,000 blocks and find that such
fluctuations of “gasPrice” can be observed by the tidal law.

TABLE II
STATISTICS OF DATASET 2

Statistics Values
No. of Ether Transactions 329,020,692
No. of Addresses 54,720,018
Mean of Amount of Ethers 22.30
Maximum of Amount of Ether 11,901,464.24

0 100 200 300 400 500 600 700 800
Per 10000 Block

0.0

0.2

0.4

0.6

0.8

1.0

E
th

e
r/

w
e
i

1e26

(a) Ether Transferred Amount

0-0
.0

01

0.0
01-0

.0
1

0.0
1-0

.1
0.1

-1
1-1

0

10-1
00

100-1
000

1000-1
0000

10000-

Value/Ether

0.0

0.2

0.4

0.6

0.8

1.0

C
o
u
n
t

1e8

(b) Ether Transaction Distribution

Fig. 5. Visualization of Dataset 2

This observation implies that the fluctuations of “gasPrice”
can potentially be predicted.

B. Dataset 2: Internal Ether Transaction

Ether is the native cryptocurrency of Ethereum. The transac-
tions of Ether not only happen in the transactions recorded in
the block, but also occur during the smart contract execution.
For example, if someone asks a smart contract to send 10
Ethers to another one, the Ether transaction from the contract
will not be observed in the block. In some blockchain explorers
such as Etherscan5, this kind of transactions is also called “In-
ternal Transaction”. To investigate all the Ether transactions,
we process the block and trace data to conduct the internal
Ether transaction dataset. As shown in Table III, 329,020,672
Ether transactions which occur among 54,720,018 addresses
are collected.

The values of Ether have a large variance, as the maximum
is 11,901,464.24 Ethers (about 2 billions dollars now) but
the mean is only 22.30 Ethers. Figure 5(a) presents statistics
on the total transaction amount of every 10,000 blocks. It is
shown that the most active time for Ether transaction is the
time during 4,000,000 to 4,300,000 blocks, matching with the
most active time of Initial Coin Offering (ICO). Regarding the
Ether distribution as shown in Figure 5(b), we find that most
of Ether transactions fall in the range from 0.1 Ether to 1
Ether, indicating that most of transactions only transfer small
amounts of Ethers.

C. Dataset 3: Contract Info

Ethereum can be considered as a platform for smart con-
tracts. To investigate all the smart contracts on Ethereum, we
process the trace data to get the basic information of smart
contracts, including the creator, created-time, initial value,

5http://etherscan.io

TABLE III
STATISTICS OF DATASET 3

Statistics Values
No. of Created Contracts 16,609,273
No. of Creator Addresses 133,484
No. of Deleted Contracts 5,564,823
No. of Refunded Addresses 19,133,481
Mean of Contract Hex Code Size 958.20

0 1000 2000 3000 4000 5000
ContractCodeHexSize

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

C
o
u
n
t

(a) Contract size distribution

0 100 200 300 400 500 600 700 800
Per 10000 Block

0

50000

100000

150000

200000
C

re
a
te

d
C

o
n
tr

a
ct

C
o
u
n
t

(b) Count of created contracts

Fig. 6. Visualization of Dataset 3

contract code, creation code. Some smart contracts can be
deleted and refund Ethers to someone if they set a “SUICIDE”
operation code inside a function. Therefore, we can observe
the actions of contract deletions. According to the statistics
in Table III, there are 16,609,273 smart contracts created by
133,484 addresses. It implies that there should be a number
of users who create multiple contracts.

An abnormal phenomenon observed from Table III is that
5,564,823 contracts are deleted while they refund the Ether
balance to 19,133,481 addresses. Generally, a smart contract
will not refunds Ethers to multiple addresses during deletion.
The reason behind this abnormal phenomenon is that Ethereum
has suffered from a Denial of Service (DoS) attacks, in which
attackers use a vulnerability of the price of “SUICIDE” to
create accounts in Ethereum. Before the vulnerability is fixed,
a great amount of contracts are deleted to direct to empty
address, leading to many Ethereum peers shutting down as
indicated in previous work [12].

Regarding the contract code, we translate the bytecode into
hexadecimal code. Figure 6(a) gives the statistics of contract
size. Particularly, the mean of contract size is 958.20, indi-
cating that the smart contracts take up little space of storage.
The contract size distribution also implies that the sizes of
most contracts have focused on some clusters. This indicates
that many smart contracts may look similar. This similarity
will be further investigate in Dataset 4. Figure 6(b) presents
the count of created contracts. It is shown in Figure 6(b) that
the number of new smart contracts is increasing, especially at
the time after the concept of “ICO” [13] comes out.

D. Dataset 4: Contract Call

In EVM, a smart contract can call another one to invoke
some codes or functions. To investigate the calls among
the Ethereum contracts (which are represented as addresses),

TABLE IV
STATISTICS OF DATASET 4

Statistics Values
No. of Contract Calls 1,148,572,009
No. of Calls with Inputs 639,336,722
No. of Calls with Errors 169,463,261

we extract Contract Calls in the execution from the trace
dataset. The contract call dataset includes the caller, called
address, calling function. As shown in Table IV, it consists
of 1,148,572,009 Contract Calls, among which 639,336,722
contain input codes and 169,463,261 contain errors.

Figure 7 gives the visualization of Contract Calls. In par-
ticular, Figure 7(a) and Figure 7(c) show that, during the
time from 2,300,000 to 2,460,000 blocks, contract calls and
errors occur very frequently. This is caused by the DoS
attacks mentioned in the above subsection, as the attackers
invoked a large number of contracts in batches and some of
them throw errors. Figure 7(b) gives the distribution of call
types. In particular, Figure 7(b) shows that most of devel-
opers prefer to use “call” and “delegatecall” rather
than “staticcall” and “callcode”, since the logic of
“call” and “delegatecall” is clearer and more practical
than other two calls. Figure 7(d) shows the error types during
calling contract, indicating that most of errors are caused
by “Out of gas”, which is mainly resulted from the wrong
settings of message senders. The second most common error
is “Reverted”, which is a manually-thrown exception by the
developers. Moreover, other errors such as “Bad instruction”
and “Bad jump destination” are often caused by the contract
codes themselves.

Generally, the compiler of smart contracts will use
the hash value of function name and parameters as the
entry of the function. In other words, in Ethereum smart
contracts, the identical function in source code will have
the identical entry in the complied contract code. We then
count the calling contract functions to see what functions
are the most common ones. The distribution of top-10
functions is shown in Figure 7(e). The results show that
most of the calling functions concentrated on some types
of them. For example, top-10 functions have occupied
46.32% of the contract calls. Moreover, after verifying the
hash values of functions with the open-source contracts,
we obtain the functions in source code. We then have the
top-3 functions: “transfer(address,uint256)”,
“balanceOf(address)” and
“transferFrom(address,address,uint256)”.
This result implies that the most common contract calls are
about tokens and there might be a great similarity among the
contracts due to the similar calls.

E. Dataset 5: ERC20 Token Trasnaction

From the above analysis, we observe that the most active
smart contracts on Ethereum now are the token contracts. We

0 100 200 300 400 500 600 700 800
Per 10000 Block

0

5

10

15

20
lo

g
(C

o
n
tr

a
ct

C
a
lli

n
g
T
im

e
s)

(a) Count of Contract Call

callcode call delegatecall staticcall
CallTypes

105

106

107

108

109

C
o
u
n
t

(b) Call Type Distribution

0 100 200 300 400 500 600 700 800
Per 10000 Block

0

5

10

15

20

lo
g
(C

o
n
tr

a
ct

E
rr

o
tT

im
e
s)

(c) Count of Contract Error

Out o
f g

as

Reverte
d

Bad in
str

ucti
on

Bad ju
mp'

Stack underflo
w

Out o
f s

tack

Mutable Call'

ErrorTypes

101

102

103

104

105

106

107

108

109

C
o
u
n
t

(d) Error Type Distribution

0xa9059cb
b

0x70a08231

0x23b872dd

0x00000000

0x8da5cb
5b

0x64c6
6395

0x6ea056a9

0x18160ddd

0xdd62ed3e

0x672815c2

Top10Functions

106

107

108

109

C
o
u
n
t

26.60%

4.03% 3.88% 3.88%

1.60% 1.53% 1.40% 1.26% 1.08% 1.06%

(e) Calling Count of Top 10 Contract Function

Fig. 7. Visualization of Dataset 4

next further investigate the token contracts. In order to collect
the information of tokens, we process the receipt dataset to
extract the standard events, which are defined in the standard
ERC20 protocol of Ethereum community [4]. Additionally,
each ERC20 token contains basic information like name,
symbol, total supply, etc. We then send calls to the local
Ethereum peers to collect such basic information of ERC20
tokens.

As shown in Table V, 106,683 smart contracts are con-
sidered as ERC20 contracts, since they output the events
that are defined as the standard ERC20 token transactions.
There are 227,698,645 ERC20 transactions among 42,146,575
holder addresses. Generally, the number of holder addresses
could be much more larger than that of exact human holders
because a user may own several addresses. Meanwhile some
token issuers will send the tokens to other users without their
permissions (also called token air-drop [14]).

Figure 8(a) shows the transaction count distribution for each
ERC20 token. We can easily observe the Matthew effect [15]
from Figure 8(a) as most of token transactions happen in few
token contracts. Figure 8(b) presents the word cloud of names
of ERC20 tokens. It is shown in Figure 8(b) that the most
common words are “Chain”, “Coin”, and “Share”, on which
the most ERC20 tokens focus. In addition, another common

TABLE V
STATISTICS OF DATASET 5

Statistics Values
No. of ERC20 Contracts 106,683
No. of ERC20 Transactions 227,698,645
No. of Holder Addresses 42,146,575

0-10
10-100

100-1000

1000-10000
10000-

TokenTransactons

0

10000

20000

30000

40000

50000

60000

70000

80000

T
o
ke

n
C

o
u
n
t

(a) ERC20 Popularity Distribution (b) Word Cloud of ERC20 Tokens

Fig. 8. Visualization of Dataset 5

word is “Test”, implying that many ERC20 contracts deployed
on Ethereum are just for the testing purpose.

F. Dataset 6: ERC721 Token Trasnaction

ERC721 token is another contract protocol proposed by
Ethereum community [9]. Different from ERC20 token,
ERC721 token is indivisible. In the contract function, the
parameter is not the value of token but the token ID. For
example, a virtual pet in smart contract could be a ERC721
token, which is not separable but can be transferred.

Table VI presents the statistics of ERC721 contracts. We
find that 1,954 ERC721 contracts contain 7,524,827 token
transactions and 414,829 holder addresses. It is worth men-
tioning that some of the collected contracts do not follow the
standard ERC721 protocol exactly. These contracts are also
included in the dataset since they output the token transferred
events in the receipt. Figure 9(a) shows the popularity distri-
bution of ERC721 tokens. Compared with ERC20 tokens, the
amount of ERC721 tokens is much lower. The major reason
is that ERC721 applications require much more workloads
on visualization at each token, consequently improving the
development difficulty.

We also investigate a popular ERC721 token contract called
CryptoKitties. It is one of the most famous ERC721 token
contracts, selling the virtual cats as tokens. Each cat is
represented as a token in the ERC721 contract. We count
the turnover times distributed by birth block of the cats, as
shown in Figure 9(b). Figure 9(b) also shows that the cats
that were born in 4,500,000 to 5,000,000 blocks have the
higher turnover times than others. At that time, the type of
CryptoKitties reaches the peak. The time to obtain the peak
in Figure 9(b) is almost the same as that in Figure 4(b) and
Figure 4(c), implying that the popularity of CryptoKitties leads
to the congestion of Ethereum.

TABLE VI
STATISTICS OF DATASET 6

Statistics Values
No. of ERC721 Contracts 1,954
No. of ERC721 Transactions 7,524,827
No. of Holder Addresses 414,829

0-10
10-100

100-1000

1000-10000
10000-

TokenTransactons

0

200

400

600

800

1000

1200

T
o
ke

n
C

o
u
n
t

(a) ERC721 Popularity Distribution

0 100 200 300 400 500 600 700 800
Per 10000 Block

0

20000

40000

60000

80000

100000

120000

140000

C
re

a
te

d
C

a
tT

ra
n
sa

ct
io

n

(b) CryptoKitties Turnover Times

Fig. 9. Visualization of Dataset 6

V. APPLICATIONS OF XBLOCK-ETH

This section presents applications of XBlock-ETH frame-
work. As shown in Figure 1, the architecture of Ethereum con-
sists of peers, blockchain, smart contracts and tokens. Thus,
we also categorize the applications according to top-3 layers
(i.e., blockchains, smart contracts and tokens). Meanwhile, we
also discuss the research opportunities in each layer.

A. Blockchain System Analysis

Since XBlock-ETH processes data from realistic blockchain
systems, it can be used to support the following applications.

1) Decentralization Analysis: The decentralization is one
of the key features of blockchain systems. However, there
are few studies on the decentralization evaluation of the
blockchain systems. In particular, the work of [16] presents
the measurement of the mining pool for Bitcoin. Although
Gencer et al. [17] present a measurement study on the de-
centralization level of Bitcoin and Ethereum, their study only
consider several metrics such as network bandwith, mining
power and fairness. In contrast, our XBlock-ETH data offers
a more comprehensive measurement on Ethereum. Moreover,
our work can be used to analyze the decentralization of users,
contract owners and miners. In addition, our XBlock-ETH
can also be used to make comparison with other blockchain
systems, such as Bitcoin, EOS or other blockchain systems.

2) Gasprice Prediction: Since the transaction fees are equal
to “gasPrice” times “gasUsed”, the users can control
the “gasUsed” in a reasonably low range to minimize the
transaction fees charged by miners. Meanwhile, we can learn
from Section IV-A that there is always a gap between the
minimum “gasPrice” and the average “gasPrice” in a
block, leading to the opportunity to save fees. Recent studies
such as Other-tech [18], Gitcoin [19], Majuri [20] analyze
the “gasPrice” of Ethereum while several Ethereum web-

sites (e.g., Etherscan6, Etherchain7) provide tools to predict
the “gasPrice” in a short time. However, those tools are
essentially black boxes and the accuracy of them cannot be
assured. In summary, the prediction of “gasPrice” has great
economic value such that the user of Ethereum can save the
money or shorten waiting time through the “gasPrice”
prediction while it is worthwhile to conduct an in-depth study
in the future.

3) Performance Benchmark: Performance is crucial to
blockchain systems. There are a number of studies on
blockchain performance optimizations, such as Omniledger
[21], Algorand [22] and RapidChain [23]. Meanwhile, some
optimized blockchain systems (e.g., Monoxide [24]) adopt
the realistic blockchain transaction data to conduct perfor-
mance evaluation for blockchain systems. To compare the
performance of different optimization methods, a common
benchmark of real-world user cases for blockchain systems
is needed. Zheng et al. [25] and BlockBench [26] propose
the performance evaluation of blockchain systems. The per-
formance benchmark requires simulating the user behaviors
and obtaining data similar to real-world blockchain systems.
In this aspect, the XBlock-ETH framework can be regarded
as a benchmark since the source data is generated exactly by
the real-world users.

B. Smart Contract Analysis

As one of the most popular smart contract platforms,
Ethereum has attracted a large number of software devel-
opers as well a huge number of smart contracts. Therefore,
Ethereum has a more active developer community compared
with other smart contract platforms such as EOS and Tron,
which claim to have the higher throughput and lower latency
than Ethereum. Consequently, our XBlock-ETH framework
(on top of Ethereum) can be used in the studies of smart
contracts. We summarize the potential applications of XBlock-
ETH as follows.

1) Contract Similarity and Recommendation: As indicated
in Section IV, there is a great similarity between the smart
contract codes and call of smart contracts. Code similarity
evaluation is a traditional research topic in software engineer-
ing as a number of studies concentrate on code similarity
detection [27] [28] [29]. Several recent studies focus on
similarity analysis of smart contracts. In particular, Etherscan6

provides the query system based on similar contracts. Finding
the similar contracts is beneficial to the developers during de-
veloping new contracts. For example, developers can estimate
the user behaviors before the publishing the contract. Mean-
while, Huang et al. [30] propose the method to recommend
differentiated codes to update smart contracts based on the
existing codes of smart contracts. In addition, in the aspect
of users, recommending the similar smart contract will help
users to find the contracts suitable for themselves.

6http://etherscan.io
7http://etherchain.org

2) Contract Developer Analysis: Developer analysis that
is another traditional research topic in software engineering
includes developer network analysis [31], behavior analysis
[32], fault prediction [33], and so on. With respect to de-
veloper analysis, XBlock-ETH also includes a large network
of smart contract developers. For example, there some on-
chain libraries deployed and provided by different developers;
these libaries can be invoked by others. Each developer can be
identified by his/her own Ethereum address. Thus, the contract
calling network can be also regarded as the collaboration
network of contract developers. The network and structure of
developer collaboration may inform us about the reliability of
the contract codes. For example, the developer who develops
a smart contract with vulnerabilities will have a higher risk
to develop new contracts with vulnerabilities than others. In
this sense, our XBlock-ETH can be beneficial to the developer
analysis after analyzing smart contracts of developers.

3) Contract Vulnerability Detection: The security of smart
contracts has been a hot research topic in blockchain research
community. In particular, the vulnerability of smart contracts
has attracted extra attentions. A number of malicious attacks
on Ethereum (e.g., TheDAO attack) have already resulted in
huge loss (in terms of tens of millions of dollars) [34]. To
prevent smart contracts from malicious attacks, the vulnera-
bility detection on contracts is a critical step. There are some
recent attempts in vulnerability detection. For example, Oyente
[7], Zeus [35], teEther [36], S-gram [37], ContractFuzzer [38]
propose the tools of vulnerability detection on smart contracts.
In some cases, the vulnerability detection methods of smart
contracts can be inspired and motivated by traditional software
vulnerability detection methods as they are essentially equiv-
alent to the verification of the codes. In this aspect, several
studies focus on verifying contract codes on blockchains; these
contract codes are also called “bytecode” or “opcode”. Our
XBlock-ETH that essentially includes the data of contract
codes can be applied to contract vulnerability detection.

4) Fraud Detection: Due to the huge economic value and
the popularity of smart contracts, smart contracts can be
exploited by malicious users as scams. For example, crowd-
funding contracts with a promised huge return to attract
victims for investment. It is reported in [39] that Ponzi
scam contracts can defraud others’ cryptocurrencies. Several
approaches [39]–[42] have been proposed to detect the fraud
contracts on Ethereum. Most of the methods are mainly based
on the codes and transaction records of smart contracts while
they are included in XBlock-ETH data. Thus, XBlock-ETH
data can be further leveraged in fraud detection.

C. Cryptocurrency Analysis

Blockchain-based cryptocurrency has become a hot topic
recent years due to the decentralization and the reduced cost.
There are a large amount of cryptocurrencies in Ethereum,
including the Ether, ERC20 tokens and ERC721 tokens. It
is shown in the CoinMarketCap8 that more than 2,000 kinds

8https://coinmarketcap.com/all/views/all/

of tokens can be used in third-party exchange. Therefore,
cryptocurrency analysis based on blockchain data can bring
huge financial values. We roughly categorize the cryptocur-
rency analysis into cryptocurrency transferring analysis, cryp-
tocurrency price analysis and fake user detection, which are
explained as follows.

1) Cryptocurrency Transferring Analysis: Analysis on
cryptocurrency transactions is a preliminary step to conduct
cryptocurrency transferring analysis. Regarding Ether trans-
ferring, Chen et al. [6] propose the graph analysis on Ether
transactions and derive some insights from graph analysis.
With regard to ERC20/ERC721 tokens, Victor et al. [43] and
Somin et al. [44] propose the analysis of the token trading
network. After the analysis on cryptocurrency transactions,
the further analysis on user behaviours can be done. For
example, the users of tokens may form different communities.
The community discovery can be conducted through ana-
lyzing cryptocurrency transactions. Moreover, the anonymity
of blockchain-based cryptocurrency can result in money-
laundering behaviors, which can be essentially identified and
detected via cryptocurrency transaction analysis. Our XBlock-
ETH data offers the potential solutions to these issues.

2) Cryptocurrency Price Analysis: The price of blockchain-
based cryptocurrencies has been affected by multiple different
factors such as government policies, technology innovations,
social sentiment and business activities. Several recent studies
focus on the price analysis and prediction of cryptocurrencies
[45]–[47]. The typical cryptocurrency price analysis consists
of three steps: (i) collect price data form the cryptocurrency
exchanges, (ii) identify the relevance between cryptocurrency
prices and other factors, (iii) forecast the future prices and
predict the potential profits. However, the price of cryptocur-
rencies can sometimes be maliciously controlled by some par-
ties. Thus, the data cleaning process is necessary to obtain the
accurate and normal cryptocurrency price data. Our XBlock-
ETH also contains cryptocurrency price data, which can be
used for cryptocurrency price analysis while the raw receipt
data may require the further preprocess to benfit the future
analysis.

3) Fake User Detection: Fake user detection [48]–[50] is
a traditional research topic in social networks. The cryptocur-
rency users in blockchain systems also form social-network
like communities, in which there are also some fake users
controlled by the developers to improve the DApps activity
rankings. Because the DApp (or cryptocurrency) ranking is
based on some metrics related to the user activities, such as
Daily Active Users (DAU). Therefore, many developers exploit
the loophole to fabricate some fake users to improve activities
so as to gain higher rankings. Although some DApp websites,
such as DAppReview9 mark the cryptocurrencies with fake
users, this kind of fake user detection is almost done in a black
box or manually. In addition, there are few studies on fake user
detection on cryptocurrency. The permission-less blockchain
systems which are often free of charge may advocate more

9http://dapp.review

frequent fake user activities than permissioned blockchain
systems. Our XBlock-ETH will be further improved to support
the fake user detection in the future.

VI. RELATED WORK AND DISCUSSION

Some previous studies on Ethereum data will be described
and discussed in this section. We categorize the state-of-the-art
literature into two types: Data tools and Data analysis.

Regarding Ethereum data tools, some studies provide open-
source tools or APIs with users to obtain the data. For
example, EtherQL [51] offers a query layer for Ethereum.
Blocksci [52] constructs a platform for researchers to analyze
the blockchain data. DataEther [53] is a tool to obtain the
data from Ethereum, with code modification of the Ethereum
clients. Google BigQuery [54] imports the data of Bitcoin and
Ethereum and enables researchers to analyaze the data online
while updating Ethereum data has been stopped for a long
time. Meanwhile, it is pretty challenging for researchers to
download, update and analyze the blockchain data. There are
also some websites offering data APIs for developers to use
or analyze, including Amberdata10. However, these third-party
APIs always restrict the usage rating so that it is difficult for
researchers to crawl all the data. In summary, most of these
studies only offer tools or APIs to researchers while failing to
offer well-processed up-to-date datasets.

Some recent studies provide the analysis on the Ethereum
data. For example, studies of [39]–[41] propose the contract
classification methods to detect Ponzi schemes. Moreover,
Chen et al. [6] analyze the transactions and construct three
graphs to observer the behaviors on Ethereum. Furthermore,
the work of [55] analyzes the ERC20 tokens on Etherem
and find un-standard token. Another popular research area on
Ethereum data is the smart contracts security. For example,
Oyente [7], Zeus [35] propose the security analysis tools
for Ethereum smart contracts to find the vulnerable codes.
Although some of these studies release some datasets, most
of them are only suitable for specific research questions.
Furthermore, most of them are difficult to be updated.

It is worth mentioning that XBlock-ETH does not contain
the off-chain data such as the price data in exchanges, the
source code of verified smart contracts, the behavior on Github
of the DApps even if they are also crucial for the analysis.
Since those data are not generated by the Ethereum, we only
concentrate on the on-chain data in this paper.

VII. CONCLUSION AND FUTURE WORK

This paper introduces a well-processed up-to-date on-chain
dataset of Ethereum, namely XBlock-ETH, which includes the
data of the Ethereum blockchain, smart contracts and cryp-
tocurrencies. Moreover, comprehensive statistics and explo-
ration of the datasets are presented. The XBlock-ETH datasets
have been released on XBlock.pro website. Furthermore, the
research opportunities of the XBlock-ETH datasets are also
outlined.

10http://amberdata.io

Our XBlock-ETH is promising to promote the studies on
Ethereum. The future improvements are listed as following:
(1) More features: The exploration of the basic features of
the datasets are given in this paper. Ethereum is a complex
ecosystem that includes decentralized finance, stable coin, and
so on. More features of the Ethereum data will be explored
in the future. (2) More data from exchanges and open-
source communities: The off-chain data is also important
since it provides the information of off-chain behaviors of
both developers and users. In the future, the off-chain data will
be collected. (3) Combined analysis with other blockchain
systems: There are some other blockchain systems that have
also attracted a large number of users and developers. The
combined analysis between Ethereum and other permission-
less blockchains will be conducted in the future.

REFERENCES

[1] Z. Zheng, S. Xie, H.-N. Dai, and H. Wang, “Blockchain challenges
and opportunities: A survey,” International Journal of Web and Grid
Services, 2016.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[3] V. Buterin et al., “Ethereum white paper,” 2013.
[4] V. Buterin and F. Vogelsteller, “Erc20 token standard,” URL:

https://theethereum. wiki/w/index. php/ERC20 Token Standard, 2015.
[5] H.-N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for internet of things:

A survey,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8076 –
8094, 2019.

[6] T. Chen, Y. Zhu, Z. Li, J. Chen, X. Li, X. Luo, X. Lin, and X. Zhange,
“Understanding ethereum via graph analysis,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications. IEEE, 2018, pp.
1484–1492.

[7] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS. ACM, 2016, pp.
254–269.

[8] N. Szabo, “The idea of smart contracts,” 1997.
[9] W. Entriken, D. Shirley, J. Evans, and N. Sachs, “Erc-721 non-fungible

token standard,” Ethereum Foundation, 2018.
[10] O. Kharif, “Cryptokitties mania overwhelms ethereum networks pro-

cessing,” Bloomberg, 2017.
[11] Y. V. L. Luu, “Kybernetwork: A trustless decentralized ex-

change and payment service,” URl: https://home. kyber. net-
work/assets/KyberNetworkWhitepaper. pdf.

[12] T. Chen, X. Li, Y. Wang, J. Chen, Z. Li, X. Luo, M. H. Au, and X. Zhang,
“An adaptive gas cost mechanism for ethereum to defend against under-
priced dos attacks,” in International Conference on Information Security
Practice and Experience. Springer, 2017, pp. 3–24.

[13] S. T. Howell, M. Niessner, and D. Yermack, “Initial coin offerings:
Financing growth with cryptocurrency token sales,” National Bureau of
Economic Research, Tech. Rep., 2018.

[14] P. van Valkenburgh, “A token airdrop may not spare you from securities
regulation,” 2017.

[15] R. K. Merton, “The matthew effect in science: The reward and com-
munication systems of science are considered,” Science, vol. 159, no.
3810, pp. 56–63, 1968.

[16] C. Wang, X. Chu, and Q. Yang, “Measurement and analysis of
the bitcoin networks: A view from mining pools,” arXiv preprint
arXiv:1902.07549, 2019.

[17] A. E. Gencer, S. Basu, I. Eyal, R. Van Renesse, and E. G. Sirer,
“Decentralization in bitcoin and ethereum networks,” arXiv preprint
arXiv:1801.03998, 2018.

[18] Jin.S, “Ethereum gas price analysis,” 2018.
[19] K. Owocki, “A brief history of gas prices on ethereum,” 2018.
[20] Y. Majuri, “Simply explained: Ethereum gas,” 2018.
[21] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and

B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 583–598.

[22] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th Symposium on Operating Systems Principles. ACM, 2017,
pp. 51–68.

[23] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2018,
pp. 931–948.

[24] J. Wang and H. Wang, “Monoxide: Scale out blockchains with asyn-
chronous consensus zones,” in 16th USENIX Symposium on Networked
Systems Design and Implementation, NSDI), 2019, pp. 95–112.

[25] P. Zheng, Z. Zheng, X. Luo, X. Chen, and X. Liu, “A detailed and
real-time performance monitoring framework for blockchain systems,”
in Proceedings of the 40th International Conference on Software Engi-
neering: Software Engineering in Practice, ICSE-SEIP. ACM, 2018,
pp. 134–143.

[26] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L.
Tan, “Blockbench: A framework for analyzing private blockchains,” in
Proceedings of the 2017 ACM International Conference on Management
of Data, 2017, pp. 1085–1100.

[27] M. Chilowicz, E. Duris, and G. Roussel, “Syntax tree fingerprinting
for source code similarity detection,” in 2009 IEEE 17th International
Conference on Program Comprehension. IEEE, 2009, pp. 243–247.

[28] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applica-
tions to software plagiarism detection,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 389–400.

[29] K. Lemhöfer and T. Dijkstra, “Recognizing cognates and interlingual
homographs: Effects of code similarity in language-specific and general-
ized lexical decision,” Memory & Cognition, vol. 32, no. 4, pp. 533–550,
2004.

[30] Y. Huang, Q. Kong, N. Jia, X. Chen, and Z. Zheng, “Recommending
differentiated code to support smart contract update,” in Proceedings of
the 27th International Conference on Program Comprehension. IEEE
Press, 2019, pp. 260–270.

[31] A. Meneely, L. Williams, W. Snipes, and J. Osborne, “Predicting failures
with developer networks and social network analysis,” in Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of
software engineering, 2008, pp. 13–23.

[32] L. Layman, L. Williams, and R. S. Amant, “Toward reducing fault fix
time: Understanding developer behavior for the design of automated
fault detection tools,” in First International Symposium on Empirical
Software Engineering and Measurement, ESEM. IEEE, 2007, pp. 176–
185.

[33] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, “Using developer
information as a factor for fault prediction,” in Proceedings of the Third
International Workshop on Predictor Models in Software Engineering,
2007, p. 8.

[34] M. I. Mehar, C. L. Shier, A. Giambattista, E. Gong, G. Fletcher,
R. Sanayhie, H. M. Kim, and M. Laskowski, “Understanding a revo-
lutionary and flawed grand experiment in blockchain: the dao attack,”
Journal of Cases on Information Technology, vol. 21, no. 1, pp. 19–32,
2019.

[35] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts.” in NDSS, 2018.

[36] J. Krupp and C. Rossow, “teether: Gnawing at ethereum to automatically
exploit smart contracts,” in 27th USENIX Security Symposium, Security),
2018, pp. 1317–1333.

[37] H. Liu, C. Liu, W. Zhao, Y. Jiang, and J. Sun, “S-gram: towards
semantic-aware security auditing for ethereum smart contracts,” in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. ACM, 2018, pp. 814–819.

[38] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart contracts
for vulnerability detection,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2018, pp. 259–269.

[39] W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou, “Detecting
ponzi schemes on ethereum: Towards healthier blockchain technology,”
in Proceedings of the 27th International Conference on World Wide Web,
WWW. ACM, 2018.

[40] M. Bartoletti, S. Carta, T. Cimoli, and R. Saia, “Dissecting ponzi
schemes on ethereum: identification, analysis, and impact,” Future
Generation Computer Systems, 2019.

[41] W. Chen, Z. Zheng, E. C.-H. Ngai, P. Zheng, and Y. Zhou, “Exploiting
blockchain data to detect smart ponzi schemes on ethereum,” IEEE
Access, vol. 7, pp. 37 575–37 586, 2019.

[42] C. F. Torres, M. Steichen, and R. State, “The art of the scam:
Demystifying honeypots in ethereum smart contracts,” in Proceedings
of the 28th USENIX Conference on Security Symposium, ser. SEC’19.
Berkeley, CA, USA: USENIX Association, 2019, pp. 1591–1607.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3361338.3361449

[43] F. Victor and B. K. Lüders, “Measuring ethereum-based erc20 token
networks,” in International Conference on Financial Cryptography and
Data Security, 2019.

[44] S. Somin, G. Gordon, and Y. Altshuler, “Network analysis of erc20
tokens trading on ethereum blockchain,” in International Conference on
Complex Systems. Springer, 2018, pp. 439–450.

[45] C. Lamon, E. Nielsen, and E. Redondo, “Cryptocurrency price prediction
using news and social media sentiment,” SMU Data Sci. Rev, vol. 1,
no. 3, pp. 1–22, 2017.

[46] J. Abraham, D. Higdon, J. Nelson, and J. Ibarra, “Cryptocurrency price
prediction using tweet volumes and sentiment analysis,” SMU Data
Science Review, vol. 1, no. 3, p. 1, 2018.

[47] W. Mensi, K. H. Al-Yahyaee, and S. H. Kang, “Structural breaks and
double long memory of cryptocurrency prices: A comparative analysis
from bitcoin and ethereum,” Finance Research Letters, vol. 29, pp. 222–
230, 2019.

[48] Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro, “Aiding the detection
of fake accounts in large scale social online services,” in Proceedings
of the 9th USENIX conference on Networked Systems Design and
Implementation. USENIX Association, 2012, pp. 15–15.

[49] O. Varol, E. Ferrara, C. A. Davis, F. Menczer, and A. Flammini, “Online
human-bot interactions: Detection, estimation, and characterization,” in
Eleventh international AAAI conference on web and social media, 2017.

[50] E. Ferrara, O. Varol, C. Davis, F. Menczer, and A. Flammini, “The rise
of social bots,” Communications of the ACM, vol. 59, no. 7, pp. 96–104,
2016.

[51] Y. Li, K. Zheng, Y. Yan, Q. Liu, and X. Zhou, “Etherql: a query layer for
blockchain system,” in International Conference on Database Systems
for Advanced Applications. Springer, 2017, pp. 556–567.

[52] H. Kalodner, S. Goldfeder, A. Chator, M. Möser, and A. Narayanan,
“Blocksci: Design and applications of a blockchain analysis platform,”
arXiv preprint arXiv:1709.02489, 2017.

[53] T. Chen, Z. Li, Y. Zhang, X. Luo, A. Chen, K. Yang, B. Hu, T. Zhu,
S. Deng, T. Hu et al., “Dataether: Data exploration framework for
ethereum,” in Proceedings of the 39th IEEE International Conference
on Distributed Computing Systems, 2019.

[54] J. Tigani and S. Naidu, Google BigQuery Analytics. John Wiley &
Sons, 2014.

[55] T. Chen et al., “Tokenscope: A system for detecting inconsistent
behaviors of cryptocurrency tokens.” 2019.

Peilin Zheng is a student at Sun Yat-sen Uni-
versity, Guangzhou, China. His research interests
include performance monitoring and evaluation on
blockchain, optimization of smart contracts, and
blockchain-based decentralized applications.

http://dl.acm.org/citation.cfm?id=3361338.3361449

Zibin Zheng is a professor at Sun Yat-sen Univer-
sity, Guangzhou, China. He received Ph.D. degree
from The Chinese University of Hong Kong in
2011. He received ACM SIGSOFT Distinguished
Paper Award at ICSE’ 10, Best Student Paper Award
at ICWS’ 10, and IBM Ph.D. Fellowship Award.
His research interests include services computing,
software engineering, and blockchain.

Hong-Ning Dai is an Associate Professor in Faculty
of Information Technology at Macau University of
Science and Technology. He obtained his PhD in
Computer Science and ngineering from the Depart-
ment of Computer Science and Engineering at the
Chinese University of Hong Kong in 2008. His
research interests include wireless networks, mobile
computing, and distributed systems

	I Introduction
	II Background
	II-A Peer and Blockchain
	II-B Smart Contract
	II-C Tokens and clients

	III Raw data extraction from Ethereum
	III-A Block
	III-B Trace
	III-C Receipt

	IV Data exploration of Ethereum
	IV-A Dataset 1: Block and Transaction
	IV-B Dataset 2: Internal Ether Transaction
	IV-C Dataset 3: Contract Info
	IV-D Dataset 4: Contract Call
	IV-E Dataset 5: ERC20 Token Trasnaction
	IV-F Dataset 6: ERC721 Token Trasnaction

	V Applications of XBlock-ETH
	V-A Blockchain System Analysis
	V-A1 Decentralization Analysis
	V-A2 Gasprice Prediction
	V-A3 Performance Benchmark

	V-B Smart Contract Analysis
	V-B1 Contract Similarity and Recommendation
	V-B2 Contract Developer Analysis
	V-B3 Contract Vulnerability Detection
	V-B4 Fraud Detection

	V-C Cryptocurrency Analysis
	V-C1 Cryptocurrency Transferring Analysis
	V-C2 Cryptocurrency Price Analysis
	V-C3 Fake User Detection

	VI Related Work and Discussion
	VII Conclusion and Future work
	References
	Biographies
	Peilin Zheng
	Zibin Zheng
	Hong-Ning Dai

