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Abstract

Low power Internet of Things (IoT) is suffering from two limitations: battery-power limitation of IoT nodes
and inflexibility of infrastructure-node deployment. In this paper, we propose an Unmanned Aerial Vehicle (UAV)-
enabled data acquisition scheme with directional wireless energy transfer (WET) to overcome the limitations of low
power IoT. The main idea of the proposed scheme is to employ a UAV to serve as both a data collector and an
energy supplier. The UAV first transfers directional wireless energy to an IoT node which then sends back the data
packets to the UAV by using the harvested energy. Meanwhile, we minimize the overall energy consumption under
conditions of balanced energy supply and limited overall time. Moreover, we derive the optimal values of WET
time and data transmission power. After analysing the feasibility of the optimal WET time and data transmission,
we design an allocation scheme based on the feasible ranges of data size level and channel-fading degree. The
numerical results show the feasibility and adaptability of our allocation scheme against the varied values of multiple
system parameters. We further extend our scheme to the multi-node scenario by re-designing energy beamforming
and adopting multi-access mechanisms. Moreover, we also analyse the mobility of UAVs in the proposed scheme.

Index Terms

Unmanned Aerial Vehicle (UAV), Internet of Things (IoT), Wireless Energy Transfer (WET), Data Acquisition.

I. INTRODUCTION

The proliferation of Internet of Things (IoT) results in the upsurge of massive data generated from a diversity of
IoT devices, such as sensor nodes, RFIDs tags and smart meters. Analysis on big volume of IoT data is bringing
numerous values including forecasting disastrous events, reducing factory machine downtime, enhancing product
quality and improving supply chain efficiency [1], [2]. Data acquisition is a crucial step during the whole procedure
of IoT data analytics while it is also challenging due to the diversity of IoT devices and the heterogeneity of IoT
networks [3]–[5].

Recently, low power wide area network (LPWAN) has been introduced as a promising solution to achieve data
acquisition in various IoT applications [6], [7]. Compared with conventional IoT solutions such as Low-Power
Wireless Personal Area Networks (6LoWPAN), LPWAN can significantly enhance the coverage from 100 m to 10
km. However, LPWAN also has two intrinsic limitations: 1) battery-power limitation of IoT nodes and 2) inflexibility
of infrastructure-node deployment. Regarding 1), an IoT node typically has a limited battery and some of IoT nodes
may even have no battery (e.g., passive RFID) [2]. IoT nodes often turn off to save energy when there is no data
transmission demand [8]. Regarding 2), base stations (BS) or IoT gateways are always required to be deployed
in IoT networks to achieve and facilitate network connections from IoT nodes to infrastructure nodes (e.g., BS
and IoT gateways). However, the deployment of IoT infrastructure nodes results in the inflexibility and the high
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Fig. 1. Application scenarios of UAV-enabled data acquisition with WET

expenditure of establishing and maintaining the IoT network. In addition, it is also not always feasible to deploy
IoT infrastructure nodes in scenarios like rural pastures, mountainous areas and ruins after disasters [9].

The recent advances in Unmanned Air Vehicle (UAV) technologies have received extensive attention from both
academia and industry. UAVs have a wide diversity of applications in both military and civil fields mainly owing
to their high mobility and deployment flexibility [10]–[14]. Many studies employ UAVs as relay nodes to extend
the coverage of communications networks [15], [16]. In addition, the studies such as [17], [18] exploit UAVs as
the data collectors hovering over the area with IoT nodes to obtain the IoT data.

On the other hand, wireless energy transfer (WET) technologies are exploited to transfer radio energy to wireless
nodes so as to prolong the life-span of networks [19], [20]. Since general wireless channels of WET often experience
high attenuation and large path loss, recent studies tend to investigate the energy-maximization scheme to cope
with different requirements. For example, recent studies [21]–[23] investigate maximizing the received energy at
multiple users or single user. Meanwhile, [21] presents the energy beamforming technology that can get a maximum
harvested power by controlling the transmit beamforming (BF) vector in advance.

The integration of UAV and WET technologies can overcome the aforementioned limitations of IoT data
acquisition. In particular, a UAV can transfer radio energy to an IoT node which can then have enough energy to
transmit data back to the UAV. During this procedure, the UAV plays a role of serving as both an energy supplier
and a data collector in IoT. Accordingly, a number of IoT application scenarios can be benefited from UAV-enabled
WET and data acquisition, such as forest fire surveillance, smart farms, water-quality monitoring in rural areas as
shown in Fig. 1. Some recent studies exploit the integration of UAVs with WET technology (e.g., [24]–[27]). For
example, the work of [27] investigates the optimal UAV trajectory when UAVs are used as energy suppliers to IoT
nodes. However, most of existing studies assume that radio energy is broadcast omni-directionally (i.e., toward all
directions) thereby leading to the poor energy harvesting efficiency.

In contrast to prior studies, this paper concentrates on designing a controllable WET by exploiting energy
beamforming (BF) technology to transfer radio energy to an IoT node in a directional manner, consequently
improving the energy harvesting efficiency. For the purpose of exposition, we consider the UAV-enabled data
acquisition system for a single IoT node, in which the UAV transmits BF energy signal to the IoT node. The
IoT node then sends back the data to the UAV by using the harvested energy. During this process, it is crucial
to guarantee the optimal energy supply to complete a data acquisition task given a limited time. To this end, we
aim at finding the optimal energy supply strategy to complete a data acquisition task from a UAV to an IoT node.
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This optimization problem is subject to sufficient energy supply and the maximum overall time. To the best of our
knowledge, this work is the first to explore the controllable WET scheme for UAV-enabled communication tasks.
The proposed scheme can be easily extended to a general scenario consisting of multiple IoT nodes and multiple
UAVs, in which a UAV can transfer radio energy to IoT nodes in a merry-go-round manner (i.e., one by one) and
multiple UAVs can essentially cover a wider area.

The main contributions of this paper are summarized as follows.
• The first contribution is proposing UAV-enabled data acquisition scheme with WET. In particular, we consider

that a dispatched UAV serving as the data collector will fly over a pre-determined area containing IoT nodes
and conduct data acquisition tasks. Without loss of generality, we assume that there must be a UAV control
center responsible for UAV’s dispatching, path planning, and the resource pre-allocation as shown in Fig. 1.
When the UAV flies to an IoT node and activates the IoT node, the data acquisition task starts. We consider the
UAV mounted with an antenna array with N antenna elements to generate BF energy signal for a directional
WET. In order to achieve a successful and controllable task, we design a four-step communication process for
every data acquisition task: 1) IoT-node activation, 2) IoT-node localization, 3) wireless energy transferring,
4) data transmission.

• Second, we formulate an energy minimization problem to maximize the overall energy efficiency during WET
and data transmission. This optimization problem is subjected to two constraints: balanced energy supply and
limited overall time. We then obtain closed-form expressions of the optimal WET time and data transmission
power after solving the optimization problem. The optimal solution gives two options for adapting the different
value ranges of system parameters (for simplification, we redefine a joint system parameter - channel fading
degree to explain the meaning of two ranges). The first-case solution can offer a more stable energy harvesting
and data transmitting power for the IoT node because it supports a more flexibly value for overall time in a
better channel fading range. The second-case solution supports the fixed overall time (at its maximum value)
but the data transmitting power is not so stable because of the worse channel fading range adapted in this
solution.

• Last, we design a resource allocation scheme based on the optimal solutions in the energy minimization
problem. In particular, two allocation functions are proposed to adapt the different ranges of channel fading
degree. We analyse the feasibility of our scheme by substituting the numerical values of system parameters
(such as distance, path loss and fading distribution). Accordingly, we get the specific allocation values for WET
time and data transmitting power. We demonstrate that our scheme is feasible since allocation parameters fall
into the feasible ranges of system parameters. We also show that the allocation parameters are adjustable with
the varied values of system parameters. Moreover, we also extend our analysis to the multi-node scenario and
investigate the mobility of UAVs.

The rest of this paper is organized as follows. Section II introduces the design of the communication procedure
and system models. In Section III, we formulate the optimization problem and derive the optimal solution. Section
IV presents a feasible allocation scheme. Section V gives numerical results of the proposed allocation scheme and
its performance. Section VI presents the extension of our scheme for multiple nodes and discusses the mobility of
UAVs. In Section VII, we conclude this paper.
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TABLE I
FOUR-STEP COMMUNICATION PROCESS IN ONE TASK

Step 1 The UAV broadcasts a wake-up signal to the IoT node.

Step 2 The IoT node transmits a feedback signal to the UAV.

Step 3 The UAV transmits the BF energy signal to the IoT node toward its orientation.

Step 4 The IoT node uses harvested energy to transmit its sensed data.

II. UAV-ENABLED DATA ACQUISITION

Section II-A gives communication design of a data acquisition and Section II-B shows the mathematical model
in data acquisition.

A. Communication design

We assume that the trajectory path and battery storage of every UAV are pre-allocated by a remote ground control
node (or a UAV control center) [28]. The UAV control center can designate UAVs to complete data acquisition
tasks according to prior knowledge including the distribution of IoT nodes, locations of IoT nodes and amount of
sensed data. Thus, one dispatched UAV can hover in the location of the IoT node one by one to conduct WET
and data transmission along the designed path [17], [18], [29]. Additionally, we consider that the UAV control
center pre-defines the fixed maximum threshold of energy transmit power (a.k.a. WET power for simplicity) and a
maximum threshold of overall time for one task. Given the fixed WET power and a directional BF vector (mainly
influenced by wireless channel), the WET time of every task depending on the energy demand of data transmission
is sensitive to the wireless link. Thus, we can obtain the optimal wireless energy supply scheme by controlling
WET time.

The IoT nodes may not have the data to transmit all the time (e.g., some IoT nodes may collect the data monthly),
even though general communication networks in IoT can provide reliable and periodical communications. This
phenomenon is especially serious for those nodes constrained by battery and coverage since they have neither
enough energy nor the available data receivers. Hence, we use the radio frequency (RF) wake-up mechanism
from [30], [31] to provide an on-demand data acquisition, in which the UAV transmits a wake-up signal to the
IoT node and then the IoT node is activated upon detecting enough power from the wake-up signal. Compared
with periodic-based communications in LPWAN, RF wake-up mechanism is more flexible and suitable for data
acquisition applications with sporadic transmissions especially for those IoT nodes in deployment-constrained areas.

Combining the wake-up mechanism with WET and data transmission, we design a 4-step communication process
in one data acquisition task (we call it one task for simplicity in rest of this paper) as shown in Fig. 2. We consider
that the UAV flies above an IoT node along the predefined trajectory. Then the UAV hovers over a rough position
upon the IoT node and conducts a communication with the IoT node through the following four steps. In Step 1,
the UAV wakes the IoT node up by broadcasting an activation signal [30]. In this step, the IoT node is activated by
detecting enough power from the wake-up signal. In a general case, given a certain height, the received power at
IoT nodes depends on the power of the wake-up signal. For simplicity, we assume that the power of the wake-up
signal is large enough to activate IoT nodes. This large enough power value can be computed and designed by
UAV control center. After Step 1, the IoT node then conduct Step 2, i.e., transmitting a feedback signal to UAV. In
this step, the UAV can obtain a more specific orientation of the IoT node by analysing the feedback signal via the
multi-antenna array [11], [32], [33]. In Step 3, The UAV transmits the BF energy to the IoT node. Then, in Step 4,
the IoT node uses the harvested energy to transmit its sensed data to the UAV. Table I summarizes the four steps.

The first two steps are designed for activation and positioning of the IoT node, thereby paving the way for WET
and data transmission. The last two steps are more crucial to accomplish data acquisition than the first two steps. It
is worth noting that the wake-up time delay is much smaller than the data transmit time. As a result, the delay will
not affect most opportunistic sensing applications. Recent work [31] has confirmed this observation. Additionally,
to investigate a controllable energy supply, we focus on the resource allocation and modelling in last two steps.
Moreover, it is necessary to fulfill two goals in last two steps: 1) achieving the balance between the energy supply
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and demand; 2) limiting the overall time of WET and data transmission. These two goals can be mapped to the
following two conditions, respectively:
• Balanced Energy Supply. The harvested energy at the IoT node is required to suffice for energy consumption in

data transmission. This condition can help to achieve the highest energy efficiency because the entire harvested
energy is used for data transmission without waste. Note that energy supply being higher than energy consumption
is a more general consideration to ensure sufficient and reliable energy supply. To simplify the analysis, we refer
the (sufficient) harvested energy to the supplied energy, which is essentially equal to the consumed energy for
data transmission.

• Limited Overall Time. The overall time spent at one data acquisition task must be smaller than the maximum
threshold value to fulfill the time limitation. In this paper, the overall time is mainly composed of the WET time
and the data transmission time while the time spent on the activation process is so small (e.g., 8 µs as in [34])
that it can be ignored1.

B. Communication Model

Notably, in our model, we do not consider the flying/hovering power of UAVs because many recent studies such
as [36]–[38] analysed the power consumption caused by UAVs’ flying or hovering though it is much larger than
that of wireless communications. Moreover, We extend the analysis to the mobile scenario of UAVs in Section VI.

1) The wireless link: We assume that a UAV is equipped with a phase-array directional antenna consisting of
N antenna elements and an IoT node is equipped with a single omnidirectional antenna. Thus, the wireless link
between a UAV and an IoT node can be characterized by a vector h ∈ CN×1, where CN×1 denotes the space
of N × 1 complex matrices. We assume that the UAV hovers at a fixed position after the activation process to
ensure the directional WET link to the IoT node. Besides, the communication link for ground-to-aerial (G2A)
channel/aerial-to-ground (A2G) channel offers a good approximation for the practical G2A/A2G model when the
UAV is above a certain altitude, which has been verified by Qualcomm [39].

2) The BF energy signal: We denote the BF energy signal by s ∈ CN×1. Referring to the energy beamforming
model in [21], [40], the expression of BF energy signal is given by

s =
√
PETwx,

where w ∈ CN×1 denotes the BF vector, x denotes the normalized energy signal, and PET denotes the power
spectrum density constraint for each sub-band. Referring to [40], the inequality ‖s‖22 ≤ PET always holds to ensure
the controllable range of WET power. In this paper, we will design w as a normalized vector, i.e., ‖w‖22 = 1. Then
PET becomes practical energy transmitting power, for simplicity, we call PET as WET power in later description.

It is worth mentioning that BF vector is used to achieve directional WET along the IoT node’s orientation. BF
vector can be specifically generated by using the estimated channel matrix, i.e., w = v1/ ‖v1‖, where v1 is an
eigen-vector that matches with the maximum eigenvalue λ1 of matrix H being the co-variance matrix of h, i.e.,
H = hhH . The expression v1/ ‖v1‖ comes from the energy harvesting maximum problem as given in Appendix
A. The solution of this problem leads to an optimal BF vector w∗ that contains the direction of the IoT node. The
optimal BF vector leads to the maximum harvested power λ1PET / ‖v1‖2 at the IoT node. Hence, in rest of this
paper, we use v1/ ‖v1‖ to represent the BF vector.

3) The overall time: The overall time containing WET and data transmitting is denoted by T . Let the maximum
threshold of T be Tmax. Hence, T ≤ Tmax represents the condition of limited overall time. Let α denote the portion
part of WET time where 0 < α < 1. Then αT represents the time of WET (a.k.a. WET time for simplicity in the
rest of this paper) and (1− α)T represents the time for data transmission. Note that the time of signal conversion
in energy harvesting and the time in data processing can be negligible because they are much smaller than the
overall time T .

1Kindly note that recent studies such as [31], [34], [35] analysed the performance (like delay and energy consumption) of the activation
process of low-power IoT nodes. So, we omit the analysis of the activation process in this paper.
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4) The supplied energy: The supplied energy of one IoT node in a task is denoted by eEH , which is expressed
as follows,

eEH = ζαT
λ1PET

‖v1‖2
, (1)

where 0 < ζ ≤ 1 denotes the constant energy conversion efficiency that is the energy loss degree from the received
signal to electric energy [22], [41], αT is WET time and λ1PET / ‖v1‖2 is harvested power of the received signal.

5) The data transmission: We denote the data transmission power by p and denote the data transmission size by
l. According to Shannon–Hartley theorem [42], we can construct the achievable data transmission rate, which is

r = B log2

(
1 +

ptr(H)

Nnoise

)
,

where B is the transmission bandwidth and Nnoise is the noise power. The data transmission time is equal to l/r.
We then have the time equality l/r = (1− α)T and further derive the expression of T as follows,

T =
l

(1− α)r
. (2)

We next have the consumed energy at IoT nodes during data transmission, denoted by eDT as follows,

eDT = p(1− α)T. (3)

Herein, we assume that p can be controlled by the UAV. This assumption is feasible via transmitting the expected
value of p to the IoT node via the downlink.

6) Overall Energy Consumption: Let eoverall be the overall energy consumption in one data acquisition task.
We have

eoverall = tr(ssH)αT = PET tr(wwH)αT = PETαT, (4)

where wwH = v1vH1 / ‖v1‖2 = I is the covariance matrix of w. Obviously, the overall energy consumption in one
task is equal to WET energy consumption at the UAV.

III. PROBLEM FORMULATION

To find out the optimal energy supply solution while maintaining high energy efficiency, we adopt the minimiza-
tion of the overall energy consumption in a task as the objective and both the balanced energy supply and limited
overall time as the constraints.

A. Energy consumption minimization problem

We mainly consider three controllable system parameters: overall time T , WET time factor α and data transmis-
sion power p. The other system parameters are either fixed as prior knowledge (such as WET power, amount of
sensed data, communication bandwidth) or uncontrollable parameters (such as channel fading, noise, and energy
conversion efficiency). Here, the fixed value setting of WET power is to ensure a controllable wireless energy
harvesting by only changing the WET time αT . Therefore, we construct an overall energy minimization problem
by optimizing p, α and T as follows:

(P1) : min
p,T,α

eoverall (5a)

s.t. eEH = eDT , T ∈ (0, Tmax] (5b)

where eEH = eDT represents a balanced energy supply for a generally consideration and T ≤ Tmax is the condition
of Limited Overall Time. The optimal solution in P1 can be used to adjust the data acquisition task in an optimal
energy supply-and-demand. For example, multiplying the optimal data transmission power p∗ by the optimal data
transmission time (1− α∗)T ∗, we get the optimal energy consumption for data transmission demand; multiplying
the WET power PET by the optimal WET time α∗T ∗, we get the optimal energy supply in WET.
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B. Optimal solution

Due to fading characteristics of the wireless channel, both WET and data transmission processes are sensitive to
the diverse channel fading effects, leading to unstable energy supply-and-demand in a task. Hence, we find that the
optimal solution of energy supply-and-demand is related to the channel fading and also constrained by the feasible
range of the channel-fading. In order to simplify the analysis of our solution, we define κ ∆

= Nnoise
ζλ1P

tr(H)

‖v1‖2
as a joint

channel-fading degree that will be used to represent the feasible condition of our optimal solution. Obviously, κ
represents a system-fading degree in terms of the wireless channel, noise and also energy conversion. We observe
that, the smaller value of κ indicates a better communication condition.

Solving P1, we derive the optimal solution as shown in Theorem 1.

Theorem 1. P1 has two optimal solution for two cases:
Case 1 If channel-fading degree κ is in the range specified as follows,

0 < κ ≤ TmaxB

3l
− 1

2
, (6)

then the optimal solution is

T opt1 =
3l(2Nnoisetr(H) + ζ λ1PET

‖v1‖2
)

2Bζ λ1PET
‖v1‖

, (7a)

popt1 =2
Nnoise

tr(H)
, (7b)

αopt1 =
2Nnoise

ζ λ1PET
‖v1‖2

tr(H) + 2Nnoise

, (7c)

In this case, T opt1 < Tmax always holds (i.e., the overall time is smaller than the upper limit Tmax).
Case 2 If channel-fading degree κ is in the range specified as follows

0 < κ < 2

(
1 +

TmaxB

l

)
, (8)

then the optimal solution is

T opt2 =Tmax, (9a)

popt2 =− ζTmaxB

l ln(2)

λ1PET

‖v1‖2
W (τ)− Nnoise

tr(H)
, (9b)

αopt2 =
− ζTmaxB

l ln(2)
λ1PET
‖v1‖2

W (τ)− Nnoise
tr(H)

ζ λ1PET
‖v1‖2

− ζTmaxB
l ln(2)

λ1PET
‖v1‖2

W (τ)− Nnoise
tr(H)

, (9c)

where W (τ) is Lambert Function [43] and τ is given by

τ =− Nnoise

tr(H)

l ln(2)

ζTmaxB λ1PET
‖v1‖2

× 2

l

TmaxB

(
1− Nnoise

ζtr(H)
λ1PET
‖v1‖2

)
.

In this case, T opt2 = Tmax always holds (i.e., the overall time is equal to Tmax).

Proof : The proof for Theorem 1 is given in Appendix B. �
Remark 1: The derivation of Theorem 1 comes from inequality of limited time condition (i.e., T ≤ Tmax)

and equality of energy-supply condition (i.e., eEH = eDT ). In particular, there are two cases for the condition
T ≤ Tmax: Case 1 for T < Tmax and Case 2 for T = Tmax. In addition, eEH = eDT holds to avoid unnecessary
energy consumption from UAV and also satisfy the minimized overall energy consumption. Caused by energy-
supply equality αoptT optζλ1PET / ‖v1‖2 = (1−αopt)T optpopt, a general expression between the optimal WET time
factor and the optimal data transmission power denoted by αopt = popt

ζ
λ1PET
‖v1‖2 +popt

. This expression always holds in

two cases. We observe that the optimal WET time factor is also related to the optimal data transmission power.
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C. Feasibility analysis

Since the overall time and the WET time factor are essentially determined by α ∈ (0, 1) and T ≤ Tmax, their
optimal values in Theorem 1 are thereby feasible. However, no limitation on data transmission power p may lead
to the in-feasibility of the optimal value of p. To ensure the feasibility of popt, we set a limit on popt. We denote
the upper bound of popt by pmax. Then the optimal values of data transmission power in two cases denoted by popt1

and popt2 are limited by popt1 ≤ pmax and popt2 ≤ pmax, respectively. Solving two above inequalities, we derive two
constraints on channel fading degree corresponding to Case 1 and Case 2 in Theorem 1 as follows:

0 < κ ≤ pmax

2ζ λ1PET
‖v1‖2

(for Case 1), (10)

0 < κ ≤ 1

ζ λ1PET
‖v1‖2

· pmax

2

l

TmaxB
(1+ pmax

ζ
λ1PET
‖v1‖2

)

− 1

(for Case 2). (11)

Plugging Eq. (10) into the previous constraint Eq. (6), we update the feasible channel-fading range for Case 1 as

0 < κ ≤ min

(
TmaxB

3l
− 1

2
,

pmax

2ζ λ1PET
‖v1‖2

)
. (12)

Meanwhile, plugging Eq. (11) into Eq. (8), we obtain the feasible channel-fading range for Case 2 as

0 < κ < min

2 +
2TmaxB

l
,

1

ζ λ1PET
‖v1‖2

× pmax

2

l

TmaxB
(1+ pmax

ζ
λ1PET
‖v1‖2

)

− 1

 . (13)

Up to now, we have obtained two optimal solutions in Theorem 1 and two updated feasible ranges of channel-
fading degree κ. We can allocate the optimal values of WET time and data transmission power as long as the
practical channel-fading degree is within the feasible ranges. The only remaining problem is to conduct the statistic
analysis for optimal solution and to find its feasibility for practical deployment. We will analyse this issue in the
next section.

IV. THE ALLOCATION DESIGN

In this section, we will first conduct the statistic analysis for the optimal solution and then design our allocation
scheme through the analytical results.

A. Statistic analysis

Before conducting our analysis, we need to specify the channel model and system parameters, catering for the
practical scenarios. In particular, we adopt the general wireless channel model h =

√
h0h̃, with h0 being the large-

scale fading variable and h̃ ∈ CN×1 being an N -dimensional small-scale fading variable. It is worth mentioning
that the small fading component may limit the practical communication range (less than 100 meters) due to the
energy-harvesting constraint. In addition, due to the high altitude of the UAV, h0 depends on the probabilistic
combination of Line-of-sight (LoS) and Non-line-of-sight (NLoS) links [44], [45]. We derive the expression of h0

in the following lemma.

Lemma 1. Given the probabilistic LoS/NLoS path loss, the large-scale fading value h0 can be given by

h0 =

(
d0fc4π

c

)−2

dPrLOS(εNLoS−εLoS)−εNLoS ,

where d0 is the unit distance 1m, fc is the carrier frequency, c is the speed of light, d is the distance from the UAV
to the IoT node and PLoS is the LoS probability given by 1/(1 + χexp(−χ[θ − ξ])). In PLoS , χ,ξ are associated
with the surrounding environment, θ is the UAV elevation angle that is given by 180

π arcsin(huav/d), Huav is the
UAV height, and εLoS , εNLoS are the path loss exponents for the LoS link and the NLoS link, respectively.

Proof. The proof is given in Appendix C. �
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TABLE II
PARAMETER SETTINGS

Fixed Parameters Values

Maximum overall time Tmax = 1s
Transmitting bandwidth B = 15MHz
The carrier frequency fc = 900MHz
Energy conversion efficiency η = 0.7
Path loss exponent of LoS εLoS = 2
Path loss exponent of NLoS εNLoS = 2.5
Environment parameters χ = 4.88, ξ = 0.429
Noise Power Nnoise = 10−9W
Minimum threshold of EH power PEHmin = −83dBm
WET power PET = 10W
Maximum data transmitting power pmax = 0.1W

Variable Parameters Ranges

the number of antenna elements N ∈ {8, 16}
The UAV Height Huav ∈ {25, 50}m
Data size l ∈ {104, 105} bits

Moreover, we denote the additional loss of shadowing or scattering of the channel by h̃, in which each entry (or
element) is an independent and identically distributed (i.i.d.) circular symmetric complex Gaussian random variable
with zero mean and unit variance.

We choose the system parameters as shown in Table II, including both the fixed and variable values. Note that
our approaches can also be applied to other system settings2. The variable parameters (including N,Huav, l in
Table II) will be used as independent variables to analyse the performance of our system.

����

/ sin(�)����

�

UAV

IoT	node

� ∈ { , / sin(�)}���� ����

Fig. 3. Relationship between the elevation angle θ, the UAV height Huav and the achievable distance d.

In our analysis, we adopt the minimum elevation angle of the UAV by 30◦. Thus, given a fixed height Huav,
the UAV can cover the IoT node with the distance d. The distance d falls in the range of (Huav, Huav/ sin(30

◦)),
which can be calculated through the triangular relation as shown in Fig. 3. For example, when the UAV flies at
the height Huav = 25m, the distance range d falls into (25m ∼ 50m). Accordingly, we perform the following
statistic analysis with the results being obtained by averaging over 500 randomized channel realizations. Note that
the above parameters are specifically chosen though our approaches can be also applied to other system settings.

1) Validity of the optimal solution: We analyse the validity of feasible channel fading ranges in two cases (i.e.,
(0, κ1] and (0, κ2)). We compare statistic results of the practical channel fading degree κ and the upper bound
of two feasible ranges (i.e., κ1 and κ2). We then investigate whether the practical value of channel fading degree
exists in two feasible ranges.

Comparing Fig. 4(a) and Fig. 4(b) (data size l = 104bits) with Fig. 4(c) and Fig. 4(d) (data size l = 105bits),
respectively, we observe that the increasing value of data size leads to narrower feasible range of channel fading
for both two cases of solutions. This phenomenon shows that the heavier data load brings weaker adaptability in

2We choose the carrier frequency of 900MHz to cater to longer propagation distance compared to the frequency of 2.4GHz in the
practical RF-based energy harvesting circuit [46]. In contrast, the radio signal in high carrier-frequency such as 2.4GHz suffers the rapid
propagation loss. In addition, the values of the environment parameters (χ = 4.88, ξ = 0.429) are calculated through the Suburban statistic
parameters (0.1, 750, 8) given by [45].
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Fig. 4. Channel fading degree κ and upper bound of channel fading ranges (i.e., κ1 and κ2) versus the distance d, the number of antenna
elements N and the data size l.

channel fading range (because of fixed TmaxB). Meanwhile, comparing Fig. 4(a) and Fig. 4(c) (the number of
antenna elements N = 8) with Fig. 4(b) and Fig. 4(d) (the number of antenna elements N = 16), respectively,
we observe that the more antenna elements bring broader feasible range of channel fading for both two cases of
solutions. This phenomenon indicates that we can choose a larger antenna consisting of more elements for the harsh
communication environment (i.e., the worse propagation).

We also observe that there are two intersections in each sub-figure of Fig. 4. In particular, in Case 1, the upper
bound of the feasible range intersects with the practical channel fading degree κ at d = d1. In Case 2, the upper
bound of the feasible range intersects with the practical channel fading degree κ at d = d2. Accordingly, we analyse
the practical range of the distance d when channel fading degree falls into two feasible ranges. First, the value of
κ1 is larger than the value of κ when d < d1, implying that the first case of solution is valid and applicable under
the distance limit d1. Second, the value of κ2 is larger than the value of κ when d < d1, implying that the second
case of solution is applicable under the distance limit d2. Specifically, d2 = 53m, d1 = 61m in Fig. 4(a) while
d2 = 68m, d1 = 72m in Fig. 4(b), which shows both two cases based on l = 104bits, N = 16 are valid in longer
distance than that when l = 104bits, N = 16. Moreover, d1 = 34m in Fig. 4(c) and d1 = 41m in Fig. 4(d) show
only the Case 1 is valid in their corresponding distance ranges (25m ∼ 34m) and (25m ∼ 41m). The value of d2

is beyond the scope of Fig. 4(c) and Fig. 4(d); this means the too longer distance (longer than 25m) resulting in
Case 1.

2) Three joint parameters of the optimal solution: We observe that all optimal solutions in Theorem 1 are
determined by three joint expressions, i.e., l/TmaxB, ζλ1PET / ‖v1‖2 and Nnoise/tr(H). It means that a single
system parameter (such as l, Tmax, B, ζ, λ1, PET , ‖v1‖2, Nnoise and tr(H)) has no conclusive impact on optimal
solution. In the same joint expression, two or more system-parameters have joint impacts on the optimal value.
For instance, increasing l to 3 times and reducing Tmax to 3 times have the same impact on the optimal solution
because l and TmaxB are in expression l/TmaxB. Therefore, we can analyse optimal solution based on the above
three joint expressions. Meanwhile, the statistic analysis of optimal solution can also be obtained by analysing the
statistic variation of those joint expressions.

For simplicity, we define three above expressions as shown in Table III. The statistic analysis of (LDS , PEH , κ)
is shown as follows.
• The statistic value of data size level LDS is linearly influenced by l, Tmax, B. When we let Tmax = 1 and
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TABLE III
DEFINITION OF JOINT SYSTEM PARAMETERS

Definition Meaning

LDS
∆
= l

TmaxB

The term LDS represents data size level of the amount of transmitting data compared with TmaxB.
Given the fixed value of maximum threshold Tmax and bandwidth B, the larger data transmission
size l leads to larger data size level LDS . In this paper, we set LDS ∈ (0, 1).

PEH
∆
= ζλ1PET

‖v1‖2

The term PEH represents the received power at IoT nodes; it depends on the energy conversion
efficiency, the upper limit of WET power and the maximum orientation gain between UAV and the
IoT node.

Nnoise
tr(H)

∆
= κPEH

This joint parameter represents the channel-fading degree of the up-link channel. For simplicity, we
use the pre-defined channel-fading degree κ and PEH to replace Nnoise/tr(H), i.e., κPEH .
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Fig. 5. Harvested power PEH and channel fading degree κ versus the distance d and the number of antenna elements N .

B = 15MHz, the value LDS will be smaller than 1 for the data size in range 0 < l <= 15 Mbits; otherwise the
value LDS will be larger than 1.

• The statistic value of the harvested power PEH is shown in Fig. 5(a). Obviously, the increased values of d and β
lead to channel deterioration, further resulting in the decreased value of PEH ; the more antenna elements bring
more precise orientation toward the IoT nodes, leading to the larger value of PEH . In one word, the harvested
power drops dramatically with the increasing distance. If the system determines the minimum threshold of
harvested power PEH min, the curve of PEH may intersect with a horizontal line y = PEH min at a distance (we
denote such distance as dEH min). As a result, the WET succeeds only when the distance d is shorter than the
threshold dEH min. In Fig. 5(a), if PEH min = −83dBm, the setting with N = 16 leads to dEH min ≈ 80m; this
result implies that the WET in this situation is applicable within 80 meters.

• Statistic value of channel fading degree κ. Fig. 5(b) shows the statistic value of κ against the distance d and
the number of antenna elements N . We can see that the value of channel fading degree is increasing with the
increased value of distance and the reduced number of antenna elements. Notably, comparing Fig. 5(b) with
Fig. 5(a), we can see that the variation of channel fading degree is totally inverse to the received power. This
phenomenon can be explained because any parameters variation causing channel deterioration can lead to the
increasing value of channel fading, consequently resulting in the decreased value of the received power. Moreover,
the statistic value of κ is also influenced by noise power. Moreover, the practical channel fading degree κ is
restricted by the upper bound of two feasible channel fading ranges (i.e., κ1 and κ2). The comparison of three
parameters (κ, κ1 and κ2) will be shown in Section IV-A1.
Remark 2: As shown in Fig. 5(a), the supplied energy becomes very small when the transmitting distance over 100

m. This phenomenon is mainly caused by the channel propagation loss, the supplied energy decays exponentially
with the increased distance [47]. Referring to [48], the power strength of RF transmission is attenuated according
to the reciprocal of the distance between transmitter and receiver. For example, 20 dB per decade means with the
increment of distance by 10 times, the power strength is decreased by 102 times. Consequently, the significant signal
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TABLE IV
THE ALLOCATION SCHEME FOR A DATA ACQUISITION TASK

The allocation scheme for a data acquisition task

1: Initialize system parameters l, Tmax, B, PET , η,Nnoise, PEHmin, and pmax.
2: Estimate the system fading parameters tr(H), ‖v1‖2 , λ1, d.
3: Calculate the practical value of joint system parameters LDS , PEH , κ, κ1, κ2.
4: If PEH > PEHmin

5: If κ ∈ (0, κ1]
⋂

(0, κ2)
6: Using Allocation function 1 or Allocation function 2 to allocate WET time and data transmitting power.
7: Else if κ ∈ (0, κ1] and κ /∈ (0, κ2)
8: Using Allocation function 1 to allocate WET time and data transmitting power.
9: End
10: End

attenuation results in the limited power transfer distance. Moreover, the RF-to-DC energy conversion efficiency is
quite low especially when the harvested RF power is small.

B. Allocation scheme

In Section IV-A, we derive the validity condition of the optimal solution and meanwhile obtain the statistic
ranges of three joint system parameters. Accordingly, we can determine the feasible distance d and then allocate
the optimal values of WET time and data transmitting power for the practical allocation.

Before presenting the allocation scheme, we first determine allocation functions of WET time an data transmitting
power. After substituting three joint parameters (i.e., LDS , PEH , and κ) into the optimal solution of Theorem 1,
two corresponding allocation functions are obtained as follows.
• Allocation function 1:

αopt1 T opt1 =3LDST
max, (14a)

popt1 =2κPEH . (14b)

• Allocation function 2:

αopt2 T opt1 =Tmax
− W (τ)
LDS ln(2) − κ

1− W (τ)
LDS ln(2) − κ

, (15a)

popt2 =PEH

(
− W (τ)

LDS ln(2)
− κ
)
, (15b)

where
τ = −κLDS ln(2)× 2LDS(1−κ).

Using the above two allocation functions, we design the allocation scheme as shown Table IV.
Remark 3: Our allocation scheme (as shown in Table IV) is based on the expressions of three joint system

parameters, upper bound of channel fading degree, and also two allocation functions. By determining the feasible
range of system parameters and calculating the allocation values, the proposed scheme can achieve an optimal
allocation. It is worth noting that our scheme can perform well in practical scenarios because of the following three
reasons.
• First, all initialized parameters are available in practical scenarios. Energy conversion efficiency η and maximum

threshold of data transmitting power pmax are restricted by the IoT devices and hence can be regarded as the
prior knowledge. Meanwhile, the noise power Nnoise can be set as an general value, such as −160dBm. The
channel matrix tr(H) and the distance d can be estimated at the UAV via analysing the received feedback signal
[49].
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Fig. 6. WET time αT , data transmission power p and data transmitting time (1− α)T versus distance d.

• Second, all calculated expressions (LDS , PEH , κ, κ1, κ2) are given and verified in this paper. Therefore, the
values of LDS , PEH , κ, κ1, κ2 can be calculated by substituting all specific value of basic parameters to their
corresponding expressions.

• Last, the proposed scheme can offer the optimal choice after judging the feasibility of WET and the allocation
function. Particularly, the condition in line 4 is used to determine whether the harvested power reaches the
minimum threshold. This process is to ensure the feasibility of WET, corresponding to a restricted range d <
dEH min in practice. To guarantee the feasibility of two allocation functions, the condition in line 5 is to determine
whether the practical channel fading degree falls into both two feasible channel fading ranges, corresponding to
the restricted range d < d2 in practice. Moreover, the condition in line 7 is to determine whether the practical
channel fading degree is only in the feasible channel fading range of Case 2, corresponding to the restricted
range d2 < d < d1 in practice.

V. NUMERICAL RESULTS

This section presents the performance evaluation of the proposed scheme. We set the system parameters (including
Tmax, B, fc, η, εLoS , εNLoS , χ, ξ,Nnoise, PEH min, PET , p

max) as the same as those in Table II. With exceptions, we
choose the fixed values for the variable parameters in Table II as follows: N = 16, l = 104bits. For the UAV
heights, we reserve two heights (25m and 50m) to show a constant distance range from 25m to 100m. Accordingly,
we compute three distance thresholds: dEH min = 80m (i.e., valid distance bound under minimum harvested power
PEH min), d1 = 72m (i.e., valid distance bound for Allocation Function 1) and d2 = 68m (i.e., valid distance bound
for Allocation Function 2). Obviously, d2 < d1 < dEH min, implies the threshold distance of WET is larger than
both two thresholds of Allocation Function 1 and Allocation Function 2. Thus, according to the scheme of Table
IV, we observe that Allocation Function 1 is valid when d <= d1; Allocation Function 2 is valid when d < d2.
This phenomenon will be further confirmed in numerical results. In following figures, we use the solid line with
a circle mark and the dashed line with a cross mark to denote numerical results under the adoption of Allocation
function 1 and Allocation function 2, respectively. Since all numerical figures have the same legend, so we only
reserve the legend in Fig. 6(a). Furthermore, for simplicity, we use AF 1 and AF 2 at the legend to represent two
allocation functions.

A. Allocation Value

Fig. 6 presents comparative numerical results of two allocations against the distance d. Specifically, Fig. 6(a)
and Fig. 6(b) show the allocation results of WET time and data transmitting power, respectively. We observe
that all allocation values of WET time and data transmitting power under both AF 1 and AF 2 increase with the
increased distance. This phenomenon can be explained by the fact that the IoT node requires more supplied energy
to transmit its data as the increased distance leads to the deteriorated channel. In addition, we observe that AF 1
allocates a higher data transmitting power than AF 2. Consequently, AF 1 needs to allocate more WET time than
AF 2, attributed by the relationship expression α = p/(p + PEH) in Theorem 1. As the data transmitting time is
(1 − α)T , Fig. 6(c) shows a different result of data transmitting time compared with Fig. 6(a). Clearly, the data
transmitting time in AF 1 is much shorter than the data transmitting time in AF 2. This is because AF 1 requires a
much longer time to transmit its data than AF 2. It is worth noticing that the data transmitting time for both two
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Fig. 7. Data transmitting rate r, overall latency T , supplied energy eEH and overall energy consumption eoverall versus distance d.

allocations keeps nearly unchanged. This is because data transmitting power has been adaptively adjusted for the
deteriorated channel, thus leading to a stable data transmission.

In summary, AF 1 allocates more WET time and data transmitting power than AF 2. Thus, AF 1 can work in a
larger range than AF 2. Accordingly, the node allocated with AF 1 can successfully transmit its data in less time
than the node allocated with AF 2.

B. Performance Analysis

Fig. 7 presents the performance of two allocation functions. We consider four performance metrics (i.e., data
transmitting rate, overall latency, supplied energy, overall energy consumption) as shown in Fig. 7(b), Fig. 7(a), Fig.
7(c) and Fig. 7(d), respectively. In Fig, 7(b), we observe that, the overall latency in AF 1 is equal to the maximum
latency threshold Tmax = 1s, while the overall latency in AF 2 is adjustable with the increased distance, which
is the intrinsic setting of two allocations according to Theorem 1. In Fig. 7(a), we observe that the transmitting
rate keeps stable against the distance. This is because data transmitting power has been adaptively adjusted for
the deteriorated channel, thus leading to a stable data transmission. Specifically, AF 1 that keeps a higher data
transmitting rate requires more supplied energy and consumes more overall energy, compared with AF 2. All of
these phenomenons are caused by the larger allocation values of WET time and data transmitting power of AF 1
than AF 2.

Both the statistic analysis and the numerical results show multiple system parameters’ impact on our scheme.
Accordingly, we can improve the system performance by adjusting some parameters. For example, we can improve
the harvested energy by increasing the value of WET power as well as increasing the number of antenna elements.
In addition, we can improve the system adaptability to the worse channel by decreasing the size of the data load.
Moreover, we can achieve the valid condition to conduct our scheme by lowering the distance between the UAV
and IoT node.

VI. DISCUSSION

In this section, we extend our data acquisition scheme to the multi-node scenario and discuss the mobility of
UAVs. Particularly, with the multi-node energy beamforming technology and multi-access mechanism adopted, we
give an extended data acquisition task for multiple nodes. In addition, we present two mobile strategies of the UAV
to deal with the nodes that are activated while cannot use the allocation scheme.

A. Data acquisition of multiple nodes

Recalling the aforementioned analysis in Section IV-B, we offer a data acquisition scheme to allocate WET time
and data transmitting power between the UAV and one IoT node. This scheme is specifically suitable for the nodes
with sparse distribution in remote area, where a UAV conducts the data acquisition tasks from multiple nodes via
hovering directly above each node in one-by-one manner. Regarding another scenario that the IoT nodes are densely
distributed, a UAV can fly directly above multiple nodes as close as possible to minimize path loss. In this case,
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the UAV may activate more than one IoT node after broadcasting the wake-up signal, then the resource allocation
scheme should be adjusted to ensure the successful WET and data transmitting for multiple nodes.

In particular, we consider an extended data acquisition task for multiple nodes. This task has the same activation
process as the single-node task as shown in Section II, i.e., the UAV broadcast the wake-up signal and then receive
the feedback signals from multiple activated IoT nodes. In addition, we present the extension of WET and data
transmitting for multiple nodes as follows: 1) the UAV transfers a BF energy signal to multiple nodes; 2) then
multiple nodes with the harvested energy transmit their data to the UAV. For simplicity, we assume that the wake-up
power threshold is equal to the minimum harvested power for IoT nodes. Then the activated nodes can successfully
harvest the energy and then transmit their data. Fig. 8 shows the detailed arrangement of WET and data transmission
of multiple nodes, in which the system parameters need to be properly assigned.

We can follow the aforementioned data acquisition scheme as Section II and allocate WET time and data
transmitting power to ensure the successful data acquisition for each activated node. Kindly note that the previous
scheme can only be used when the valid energy harvesting condition and the feasible channel fading condition
are satisfied simultaneously. Meanwhile, as shown in the previous analysis in Section IV, the two conditions are
essentially transformed to the distance limitations, after giving the system settings including channel fading model h,
energy transfer power PET , and the data transmitting size l. For the nodes that are activated at the same time, as they
usually share the same channel fading model, they follow the same distance limitations (i.e., d < min{dEH min, d1}).
Consequently, the n activated nodes under the distance limitations can be allocated with the corresponding WET
time αaloi T aloi and data transmitting power paloi , where i ∈ {1, 2, ..., n}. Moreover, the WET time should be unified
as the maximal allocation value of WET time from all IoT nodes, i.e., max

{
αaloi T aloi

}
. This requirement can

ensure the sufficient energy supply for all IoT nodes.
Moreover, two critical technologies should be exploited to achieve the multi-node data acquisition task: 1) energy

BF for multiple nodes and 2) the multi-access mechanism for the system support for allocation of multiple nodes.
Regarding energy BF technology to multiple nodes, a simple method is to combine the optimized BF vector of
multiple activated nodes together and form an overall BF vector, i.e., w =

∑n
i=1 wi,∀i ∈ {1, 2, ..., n}, where

wi = vi1/ ‖vi1‖ and vi1 is computed from the estimated channel matrix of each feed back signal. With respect
to multi-access mechanisms, there are three types of multi-access schemes: i) frequency-division-multiple-access
(FDMA) [50], ii) time-division-multiple-access (TDMA) [51], and iii) space-division-multiple-access (SDMA) [52].
It is worth mentioning that both FDMA and SDMA can support simultaneous G2A data transmissions, hence the
allocation scheme for multiple nodes can perform independently. As a result, either FDMA or SDMA based
multi-access system can independently use the allocated data transmitting power palo at each node. In contrast,
TDMA requires extra time scheduling for every node. In general, we can choose the starting time of the ith
node, by computing the summation of the transmission time and the starting time of the i − 1th node, i.e., ti =
ti−1 +

∑i−1
j=1(1− αaloj )T aloj , ∀j = 1, 2, ..., i.

B. Mobility analysis of UAVs

It is worth mentioning that some nodes within the distance d (d1 < d < dEH min) cannot accomplish their data
acquisition even though they are activated since these nodes do not satisfy the feasible condition that is required by
the aforementioned scheme IV-B. In this case, the UAV can adjust its height or placement to shorten the distance to
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these nodes and then directly conduct the WET and data transmission. Considering that there may be one or more
than one nodes in this scenario, we list two mobile strategies of the UAV to shorten the distance with the nodes:
1) descending height of UAV for one node; 2) trajectory planning for multiple nodes. Fig. 9 shows an analysis of
the two strategies. We describe the details as follows.

Height descending strategy is adopted when the UAV directly flies above a node and its height is not low enough
to satisfy the feasible condition of the data acquisition scheme. In this case, the IoT nodes are generally distributed
in a sparse manner and the UAV can only activate those nodes one by one. Thus, the UAV that conduct the separate
data acquisition task for each node in the one-by-one way may suffer from the case of the height being not low
enough. Therefore, the UAV needs to descend its height to the distance d′ (d′ < min{d1, dEH min}) so as to let
the allocation scheme be feasible. Additionally, trajectory planning of the UAV is used when multiple nodes are
activated but only some of them satisfy the feasible distance (d < min{d1, dEH min}). This strategy can deal with
the densely-distributed IoT nodes since the UAV can simultaneously activate multiple nodes while not all activated
nodes fall into the feasible distance. In this case, the UAV does not need to descend its height because its height
is under the feasible distance range, thus the UAV can plan its trajectory to visit the multiple nodes one by one.
In particular, the trajectory planning can be determined by finding the shortest path of the UAV passing through
all activated nodes. Without loss of generality, the previous studies of UAVs’ trajectory planning such as [51], [53]
can be used to solve this issue.

VII. CONCLUSION

This paper presents a UAV-enabled data acquisition scheme with WET for IoT. In particular, we investigate
an overall energy minimization problem for a single UAV-enabled data acquisition task. We derive two allocation
functions to conduct the optimal allocation of WET time and data transmission power. Accordingly, we design an
allocation scheme based on the above analysis. The numerical results show that the proposed scheme can offer a
flexible allocation of WET time to support the stable data transmitting power and data transmitting rate. Moreover,
the proposed scheme can be extended to multiple nodes by re-designing energy BF and adopting multi-access
mechanisms. Based on our allocation scheme, the feasible condition can be used to adjust the UAV’s placement to
collect data from all activated nodes.

APPENDIX A

Derivation for w∗.
The harvested power of the energy signal at the IoT node is denoted by PEH . Combining WET link h with

the BF energy signal s, we can compute PEH that is equal to tr(sHHs) = PET tr(wHHw), where H = hhH

is the covariance matrix of h. We can compute an optimal value of w by maximizing the harvested power. This
minimization problem can be modelled as a simple semi-definite programming problem as follows

max
w

PEH = PET tr(wHHw) s.t. w � 0.

The optimal solution of the above problem is w∗ = v1, where v1 is an eigenvector that matches with the maximum
eigenvalue λ1 of matrix H . To get a normalized BF vector for limiting the power of BF energy signal to PET , we
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update the optimal w∗ as v1

‖v1‖ . The updated optimal BF vector leads to the maximum harvested power λ1PET / ‖v1‖2
at the IoT node.

�

APPENDIX B

Proof of Theorem 1
The derivation steps are as follows. The objective function in P1 (i.e., the overall energy consumption eoverall =

PETαT ) can be reduced to WET time αT ; since PET is assumed to be a fixed value as shown in the communication
design of Subsection II-A. Substituting the expression of T to P1, we can reduce the three variables to two variables:
α and p. Accordingly, we update P1 to an simplified problem P2 as follows:

(P2) : min
p,α

αl

(1− α)B log2

(
1 + ptr(H)

Nnoise

)
s.t.

αlζλ1PET
‖v1‖2

(1− α)B log2

(
1 + ptr(H)

Nnoise

) =
lp

B log2

(
1 + ptr(H)

Nnoise

) ,
l

(1− α)B log2

(
1 + ptr(H)

Nnoise

) ≤ Tmax.

However, the objective function in above problem is non-convex to α. Therefore, we set a new variable β ∆
= 1/α

to replace α. We construct a new equivalent problem P3 as follows.

(P3) : max
p,β

(β − 1) log2

(
1 +

ptr(H)

Nnoise

)
,

s.t. lβ − (β − 1)B log2

(
1 +

ptr(H)

Nnoise

)
Tmax ≤ 0,

p(β − 1)− ζλ1PET

‖v1‖2
= 0,

In P3, both objective functions and constraints are either convex or affine for all variables. Therefore, we can derive
the global optimal solution of three variables (i.e., αopt = 1/βopt, T opt and popt) by Karush-Kuhn-Tucker (KKT)
conditions [54].

1) Construct the Lagrange function of Problem P3 as follows:

L (p, β, λ, µ) = −(β − 1) log2

(
1 +

ptr(H)

Nnoise

)
+ λ

(
lβ − (β − 1)B log2

(
1 +

ptr(H)

Nnoise

)
Tmax

)
+ µ

(
p(β − 1)− ζλ1PET

‖v1‖2

)
,

where λ and µ are Lagrange multipliers integrating all inequality-constraints into a Lagrange function as the
new objective function.

2) Compute KKT equation groups: the first-order necessary condition for two variables (KKT 1) and (KKT 2),
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inequality-constraints (KKT 3) and Lagrange condition (KKT 4), as follows

∂L/∂p|opt = 0, (KKT 1)

∂L/∂β|opt = 0, (KKT 2)

µopt
(
popt(βopt − 1)− ζ λ1PET

‖v1‖2

)
= 0,

µopt > 0,

p(βopt − 1)− ζ λ1PET

‖v1‖2
= 0. (KKT 3)

λopt(lβopt − (βopt − 1)B log2

(
1 +

popttr(H)

Nnoise

)
Tmax) = 0,

λopt ≥ 0,

lβopt − (βopt − 1)B log2

(
1 +

popttr(H)

Nnoise

)
Tmax ≤ 0, (KKT 4)

According to (KKT 1), we have expression of µopt in P3

µopt =
λoptTmaxB + 1

p+ Nnoise
tr(H)

. (16)

Substituting Eq. (16) to (KKT 2), we obtain popt and λopt in P3

log2

(
1 +

popttr(H)

Nnoise

)
=

λoptl + popt(λoptTmaxB+1)

popt+
Nnoise

tr(H)

λoptTmaxB + 1
(17)

According to Eq. (16), we determine µopt > 0. Then substituting µopt > 0 to (KKT 3), we get the following
equation

popt(βopt − 1)− ζ λ1PET

‖v1‖2
= 0.

Solving the above equation, we got the optimal value of β as follows

βopt = ζ
λ1PET

‖v1‖2
/popt + 1.

Since βopt = 1/αopt, we derive the optimal WET time factor of P3 as follows

αopt = popt/(ζ
λ1PET

‖v1‖2
+ popt). (18)

3) For the final solution, we have two branches because of the indeterminate sign of λopt.
When λopt = 0, T opt < Tmax always holds. Substituting λopt = 0 to Eq. (17), we get

log2

(
1 +

popttr(H)

Nnoise

)
=

popt

popt + Nnoise
tr(H)

.

Solving the above equation, we get the optimal data transmission power in Case 1 of Theorem 1, i.e., popt1 =
2Nnoise/tr(H). Accordingly, we derive the optimal value αopt by substituting popt to Eq. (18). Meanwhile,
we can derive T opt by substituting popt to Eq. (2) and Eq. (7a). In addition, substituting all above optimal
expressions to the inequality lβopt−(βopt−1)B log2

(
1 + popttr(H)

Nnoise

)
Tmax ≤ 0 in (KKT 4), we get the feasible

channel-fading range for Case 1 of Theorem 1 in Eq. (6).
When λopt > 0, T opt = Tmax always holds. Substituting λopt > 0 to (KKT4), we get the equation

lβ − (β − 1)B log2 (1 + ptr(H)/Nnoise)T
max = 0.

Solving the above equation, we get the optimal data transmission power as Eq. (9b) in Case 2 of Theorem 1.
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Following the similar steps of the derivation of Case 1, we derive the optimal value αopt by substituting popt

to Eq. (18). The value of T opt is fixed as Tmax. Substituting all optimal expressions to Eq. (16), we get
expression of λopt as

λopt =
1

l

log2

(
1+ popt tr(H)

Nnoise

)
− popt

popt+
Nnoise

tr(H)

− TmaxB
.

Substituting the above equation to λopt > 0, we get the feasible channel-fading range for Case 2 of Theorem
1 in Eq. (8).

�

APPENDIX C

Proof of Lemma 1
The large-scale fading value h0 can be calculated by a probability-weighted combination of path-loss components

of LoS and NLoS. For convenience of calculation, we transform the dB form of the probabilistic mean path-loss
model to the linear form, as follows:

h0 = 10−(
PrLOSPLLOS+PrNLOSPLNLOS

10
), (19)

where PrLOS is the LoS probability, PrNLOS = 1 − PrLOS is the NLoS probability, PLLOS and PLNLOS denote
the corresponding path loss effects of LoS and NLoS links, respectively. According to the previous studies [45],
[55], [56], PLLOS ,PLNLOS are modelled as follows, respectively,{

PLLOS = PLFS(d0) + 10εLoS log(d),
PLNLOS = PLFS(d0) + 10εNLoS log(d),

(20)

where PLFS(d0) is the free space path loss given by 20 log(d0fc4π/c) with d0 being the free-space reference
distance, fc being the carrier frequency and c being the speed of light. εLoS and εNLoS are the path loss exponents
for LoS and NLoS links.

Substituting Eq. (20) into Eq. (19), we get the following derivation process:

h0 =10
PrLOSPLLOS+PrNLOSPLNLOS

10

=10−
PrLOS10 log

(
( d0fc4πc )

2
dεLoS

)
+PrNLOS10 log

(
( d0fc4πc )

2
dεNLoS

)
10

=

(
d0fc4π

c

)−2PrLOS

d−PrLOSεLoS

(
d0fc4π

c

)−2PrNLOS

d−PrNLOSεNLoS

=

(
d0fc4π

c

)−2

dPrLOS(εNLoS−εLoS)−εNLoS .

�
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[37] D. F. Finger, F. Götten, C. Braun, and C. Bil, “On Aircraft Design Under the Consideration of Hybrid-Electric Propulsion Systems,”
in Asia-Pacific International Symposium on Aerospace Technology. Springer, 2018, pp. 1261–1272.

[38] N. S. Brun, “Preliminary design of a fuel cell-battery hybrid propulsion system for a small vtol uav,” Master’s thesis, University of
Stavanger, Norway, 2018.

[39] Qualcomm, “LTE Unmanned Aircraft Systems Trial Report,” https://www.qualcomm.com/documents/lte-unmanned-aircraft-systems-
trial-report, san Diego, CA, USA, 2017.

http://www.diva-portal.org/smash/get/diva2:1131267/FULLTEXT01.pdf
https://www.qualcomm.com/documents/lte-unmanned-aircraft-systems-trial-report
https://www.qualcomm.com/documents/lte-unmanned-aircraft-systems-trial-report


21

[40] S. Timotheou, I. Krikidis, G. Zheng, and B. Ottersten, “Beamforming for miso interference channels with qos and rf energy transfer,”
IEEE Transactions on Wireless Communications, vol. 13, no. 5, pp. 2646–2658, May 2014.

[41] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing optimization in wireless powered mobile-edge computing
systems,” IEEE Transactions on Wireless Communications, vol. 17, no. 3, pp. 1784–1797, 2018.

[42] C. E. Shannon, “A mathematical theory of communication,” Bell system technical journal, vol. 27, no. 3, pp. 379–423, 1948.
[43] R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and D. Knuth, “On the Lambert W function,” Advances in Computational Mathematics,

vol. 5, no. 4, pp. 329–359, 1996.
[44] A. Alsharoa and M. Yuksel, “Uav-direct: Facilitating d2d communications for dynamic and infrastructure-less networking,” in

Proceedings of the 4th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications, 2018, pp. 57–62.
[45] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal lap altitude for maximum coverage,” IEEE Wireless Communications Letters,

vol. 3, no. 6, pp. 569–572, 2014.
[46] X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Wireless networks with RF energy harvesting: A contemporary survey,” IEEE

Communications Surveys & Tutorials, vol. 17, no. 2, pp. 757–789, 2015.
[47] S. Timotheou, G. Zheng, C. Masouros, and I. Krikidis, “Exploiting constructive interference for simultaneous wireless information and

power transfer in multiuser downlink systems,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 5, pp. 1772–1784,
May 2016.

[48] X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Wireless networks with rf energy harvesting: A contemporary survey,” IEEE
Communications Surveys Tutorials, vol. 17, no. 2, pp. 757–789, Secondquarter 2015.

[49] M. Biguesh and A. B. Gershman, “Training-based mimo channel estimation: a study of estimator tradeoffs and optimal training signals,”
IEEE transactions on signal processing, vol. 54, no. 3, pp. 884–893, 2006.

[50] H. He, S. Zhang, Y. Zeng, and R. Zhang, “Joint altitude and beamwidth optimization for uav-enabled multiuser communications,” IEEE
Communications Letters, vol. 22, no. 2, pp. 344–347, 2017.

[51] C. Zhan and Y. Zeng, “Completion time minimization for multi-uav-enabled data collection,” IEEE Transactions on Wireless
Communications, vol. 18, no. 10, pp. 4859–4872, 2019.

[52] F. Jiang and A. L. Swindlehurst, “Optimization of uav heading for the ground-to-air uplink,” IEEE Journal on Selected Areas in
Communications, vol. 30, no. 5, pp. 993–1005, 2012.

[53] C. Zhan, Y. Zeng, and R. Zhang, “Energy-efficient data collection in uav enabled wireless sensor network,” IEEE Wireless
Communications Letters, vol. 7, no. 3, pp. 328–331, 2017.

[54] Boyd, Vandenberghe, and Faybusovich, “Convex optimization,” IEEE Transactions on Automatic Control, vol. 51, no. 11, pp. 1859–
1859, 2006.

[55] M. Alzenad, A. El-Keyi, and H. Yanikomeroglu, “3-d placement of an unmanned aerial vehicle base station for maximum coverage of
users with different qos requirements,” IEEE Wireless Communications Letters, vol. 7, no. 1, pp. 38–41, 2017.

[56] M. Chen, M. Mozaffari, W. Saad, C. Yin, M. Debbah, and C. S. Hong, “Caching in the sky: Proactive deployment of cache-enabled
unmanned aerial vehicles for optimized quality-of-experience,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 5, pp.
1046–1061, 2017.


	Introduction
	UAV-enabled data acquisition
	Communication design
	Communication Model
	The wireless link
	The BF energy signal
	The overall time
	The supplied energy
	The data transmission
	Overall Energy Consumption


	Problem formulation
	Energy consumption minimization problem
	Optimal solution
	Feasibility analysis

	The Allocation Design
	Statistic analysis
	Validity of the optimal solution
	Three joint parameters of the optimal solution

	Allocation scheme

	Numerical results
	Allocation Value
	Performance Analysis

	Discussion
	Data acquisition of multiple nodes
	Mobility analysis of UAVs

	Conclusion
	References

