
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCS.2020.2990458, IEEE Open
Journal of the Computer Society

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 1

XBlock-ETH: Extracting and Exploring Blockchain Data From
Ethereum

Peilin Zheng, Zibin Zheng∗, Senior Member, IEEE, Jiajing Wu, Member, IEEE, and Hong-Ning Dai, Senior Member, IEEE

Blockchain-based cryptocurrencies have received extensive attention recently. Massive data has been stored on permission-less
blockchains. The analysis on massive blockchain data can bring huge business values. However, the absence of well-processed
up-to-date blockchain datasets impedes big data analytics of blockchain data. To fill this gap, we collect and process the up-to-date
on-chain data from Ethereum, which is one of the most popular permission-less blockchains. We name such well-processed Ethereum
data as XBlock-ETH, which consists of transactions, smart contracts, and cryptocurrencies (i.e., tokens). However, it is non-trivial
to partition and categorize the collected raw Ethereum data to the well-processed datasets since the whole processing procedure
requires sophisticated knowledge on software engineering as well as big data analytics. Moreover, we also present basic statistics
and exploration each of the well-processed datasets. Furthermore, we also outline the possible research opportunities based on
XBlock-ETH.

Index Terms—Blockchain, Data Analytics, Ethereum, Smart Contracts

I. INTRODUCTION

Blockchain has attracted extensive attention from both
academia and industry in the recent years. Among the diverse
blockchain systems, substantial efforts have been made on the
permission-less blockchain (or public blockchain) due to its
decentralization [1]. The idea of permission-less blockchain
was firstly proposed and implemented on Bitcoin [2]. In a
blockchain system, each peer holds a ledger being considered
as a public tally that is essentially temper-resistant. Ethereum
[3] is another most popular permission-less blockchain system
that enables Turing-complete smart contracts. The proliferation
of blockchain systems has lead to the generation of massive
amount of blockchain data. Take Bitcoin as an example.
There are nearly 242 GB Bitcoin data by the third quarter
of 2019 as reported by Statista (https://www.statista.com/).
In this paper, we focus on the data of Ethereum rather than
Bitcoin, since Ethereum provides richer data types. For another
example, more than 16,000,000 smart contracts are deployed
on Ethereum. As the Ethereum community has published two
token protocol to enable easier Initial Coin Offerings (so-called
ICO) for users [4], over 100,000 kinds of ERC20 token and
1,600 kinds of ERC721 token are available to be transferred
on Ethereum where ERC stands for Ethereum Request for
Comments.

The massive blockchain data provides researchers with
both huge business values and great opportunities [5] due to
openness, decentralization and temper-resistance of blockchain
systems. Take business trading data as an example. In the
past, it is difficult for researchers to obtain the real business
trading data because of the privacy or ownership concerns of
data owners. However, all the data in incumbent blockchain
systems are all publicly available. Meanwhile, the blockchain
data in permission-less blockchains can be accessed almost
everywhere due to the decentralization of blockchain systems.

Corresponding authors: Zibin Zheng
P. Zheng, Z. Zheng, J. Wu are with Sun Yat-sen University, Guangzhou,

China. (e-mail: me@zhengpeilin.com; zhzibin@mail.sysu.edu.cn; wujia-
jing@mail.sysu.edu.cn).

H.-N. Dai is with Macau University of Science and Technology, Macau
SAR. (e-mail: hndai@ieee.org).

Moreover, distributed consensus of blockchains also guaran-
tees the temper-resistance of blockchain data. In addition to
blockchain transactions, Ethereum (or its alternatives) also
consists of both smart contracts and cryptocurrencies. Big data
analytics of blockchain data can advance the developments in
fraud detection of transactions, vulnerability detection of smart
contracts and software development of smart contracts, etc.

However, there are a number of challenges in big data
analytics of blockchain data, especially in Ethereum: (1)
Difficulty in data synchronization at Blockchain peer. Due
to the bulky size of blockchain, it takes a long period to
fully synchronize entire blockchain data at a node (i.e., a
peer) newly connected with the blockchain. For example, it
takes more than one week and over 500 GB storage space
to fully synchronize the entire Ethereum at a peer. The high
expenditure of massive storage space and network bandwidth
due to blockchain data synchronization impedes the analysis
of blockchain data. (2) Challenge in blockchain data ex-
traction and processing. Blockchain data is stored at clients
in heterogeneous and complex data structures, which cannot
be directly analyzed. Meanwhile, the underlying blockchain
data is either binary or encrypted. Thus, it is a necessity to
extract and process binary and encrypted blockchain data so
as to obtain valuable information. However, it is non-trivial
to process heterogeneous blockchain data since conventional
data analytic methods may not work for this type of data.
(3) Absence of general data extract tools for blockchains.
Although many studies provide open source data extraction
tools of blockchain data, most of them can only support to
extract partial blockchain data (not all the data). Moreover,
most of existing tools can only fulfil specific research tasks.
(4) Absence of basic data explorations for blockchains. Ex-
isting studies only focus on specific data analysis of blockchain
data, e.g., transaction graph [6], contract security [7]. However,
the basic data explorations like statistic analysis, text analysis
and data visualization are missing in most of existing tools.

To address the above challenges, we propose a blockchain
data analytics framework namely eXplore Blockchain ETH
(XBlock-ETH) to analyze Ethereum data. In particular, we
extract the raw data consisting of 8,100,000 blocks from

https://www.statista.com/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCS.2020.2990458, IEEE Open
Journal of the Computer Society

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 2

Ethereum. The raw data includes three types of Ethereum
data: blocks, traces, and receipts. Since the analysis on the
raw Ethereum data is difficult, we partition and categorize
the obtained Ethereum Blockchain data into six datasets: (1)
Block and Transaction, (2) Internal Ether Transaction, (3)
Contract Information, (4) Contract Calls, (5) ERC20 Token
Transactions, (6) ERC721 Token Transactions. The new cat-
egorization of Ethereum data can help other researchers to
explore and analyze Ethereum data in a more convenient way.
However, it is non-trivial to partition and process the raw
data since it requires substantial efforts in extracting metadata
information from raw data and associating with six datasets.
We then conduct statistic analysis on the six refined datasets.
We also discuss the potential applications of XBlock-ETH,
such as blockchain system analysis, smart contract analysis,
and cryptocurrency analysis.

In summary, we highlight the major contributions of this
paper as follows:

• The XBlock-ETH data contain the comprehensive on-
chain data in contrast of previous works (only cover par-
tial Ethereum data). In particular, it includes blockchain
data, smart contract data, and cryptocurrency data. More-
over, the well-processed datasets can be easily used for
data exploration. Furthermore, XBlock-ETH data for-
mally released online1 has been periodically updated.

• The XBlock-ETH framework also offers basic statis-
tic and exploration functions to analyze blockchain
datasets.This paper also outlines the research opportuni-
ties brought by XBlock-ETH. In particular, we discuss the
applications of XBlock-ETH in aspects of blockchain sys-
tem analysis, smart contract analysis and crytocurrency
analysis.

The rest of this paper is organized as follows. Section II
first gives an overview of blockchain and smart contract
technologies. Sections III, IV then present raw data acquisition
from Ethereum and data exploration of six datasets. Section
V discusses the applications of XBlock-ETH data. Section VI
surveys related work. Finally, the paper is concluded in Section
VII.

II. BACKGROUND

Fig. 1 presents an overview of Ethereum blockchain, which
consists of the following layers from bottom to top: peers,
blockchain, smart contracts, and tokens. We next review basic
concepts of each layer in Ethereum.

A. Peer and Blockchain

In a nutshell, a blockchain is essentially a chain-like data
structure consisting of a number of consecutively-connected
blocks. The chain has been maintained by all the peers in a
peer-to-peer (P2P) blockchain network. In a certain period of
time, only one block can be confirmed by the entire blockchain
network through a consensus protocol. The block containing
the confirmed transactions at that time and the hash value
of the previous block has been generated by a peer (a.k.a.

1http://xblock.pro/dataset

Peers

Block
N-1

Block
N

Block
N+1

Blockchain

Contract
0X01…

Contract
0Xe2…

Contract
0X1a…

Contract
0Xf3…

Smart Contract

Token

Fig. 1. Overview of Ethereum Blockchain

miner). After being generated, the block will be validated
independently by the other peers. Once the block is validated
and confirmed by most of peers in the blockchain network,
the transactions in the block will be considered as completed.
In this way, each peer can trust the whole blockchain (a.k.a.
ledger) since the transactions have been validated by all the
peers. In other words, blockchain enhances trustworthiness of
transaction data through duplicating computation and storage
at all the peers.

Thanks to the completeness of blockchain data in each
permission-less blockchain peer, researchers can obtain the
entire blockchain data via connecting a blockchain peer the
blockchain network. The blockchain data that consists of all
the operations done by the users and miners in the blockchain
contains substantial business values. For example, the trans-
action records are essentially operations done by different
business parties. The analysis on the blockchain data can help
to understand user behaviours in a real-world economic system
(e.g., money transferring). Meanwhile, there is a rapid growth
of blockchain data, especially in Bitcoin and Ethereum, with
the proliferation of blockchain users and transactions. The
analysis on blockchain data can be also beneficial to predict
the economic trend.

B. Smart Contract

Smart contract that was proposed even earlier than
blockchain [8] is a promising technology to reshape the mod-
ern industry. Blockchain-based smart contracts are essentially
computer programs, in which the execution states are stored
on top of blockchain. The blockchain transactions are the
messages representing the deployment or invocations of smart
contracts. Therefore, blockchain guarantees the trustworthiness
of smart contracts.

The incumbent blockchain systems have enable smart con-
tracts. For example, Bitcoin enables users to run a simple

http://xblock.pro/dataset

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCS.2020.2990458, IEEE Open
Journal of the Computer Society

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 3

script program during the execution of transactions. This script
can be regarded as a simple blockchain-based smart contract.
However, the Bitcoin script is not Turing-complete so that it
cannot enables complex logic expressions in the contract. In
contrast, Ethereum enables Turing-complete smart contracts.
In Ethereum, smart contract is executed in the environment
called Ethereum Virtual Machine (EVM). EVM reads and
writes the states (stored in the key-value pair) as the actions
defined in a smart contract. During the contract execution, a
miner uses “Gas” as a unit to evaluate the consumption of one
smart contract. After running the contract , the contract user
is charged by the “GasUsed” and “GasPrice”. The more
“GasPrice” that the users promise to pay for the miner,
the faster the contract executes. After the transactions (i.e.,
operations) are done, EVM will generate a hash value of the
state and record it into the blockchain. Therefore, we can learn
from Fig. 1 that smart contracts on Ethereum are not directly
stored on blockchain. They are essentially stored in the states
that have been operated by the blockchain.

C. Tokens and clients

It is worth mentioning that Ethereum has two standard token
protocols (a.k.a. templates) of smart contracts [4], [9]. These
token protocols define the standard variables, functions, and
interfaces in the smart contract. With the protocols, users
can issue tokens (or so-called cryptocurrencies) based on
smart contracts on top of Ethereum. There are four typical
tokens USDT2, Cryptokitties [10], Kyber [11], MarkerDAO3

as shown in Fig. 1 (i.e., the top layer). For an example, a user
can publish an ERC20 contract on Ethereum issuing tokens to
others. After that, any other users (even contracts) can receive
or send the token without a centralized authority (e.g., stock
exchange). The standard token protocols greatly enrich the
ecosystem of Ethereum so as to make Ethereum become a
flexible financial system. In Section IV-E and IV-F, we will
explore the data of tokens in Ethereum.

Ethereum allows that any computer programs can join into
the network if they meet the requirement of the protocol just
like P2P protocols (e.g., BitTorrent). As a result, there are
a number of diverse Ethereum clients that can validate the
blocks and transactions. Among most of Ethereum clients,
Go-Ethereum (Geth) and Parity have been the most widely
used according to the statistic from Ether nodes4. Both of
them provide JSON-RPC interfaces for users to interact with
Ethereum blockchain. Through the JSON-RPC interfaces, user
can obtain the blockchain data from Ethereum. Geth has been
generally used in many previous studies while the interfaces
designed in Geth is not suitable for data acquisition. Even
though many researchers attempted to modify source codes of
Geth to obtain the detailed run-time data, the whole procedure
of the code modification is time consuming and complex. In
addition, the obtained data is not absolutely accurate in some
cases. Different from Geth, Parity better designs the interfaces
so that it can obtain the index of each block corresponding

2https://tether.to/
3https://makerdao.com/
4https://ethernodes.org

Block

Block N

Transaction 1
Transaction 2

...

Blockchain Peer

Block Header

Receipt Trace

Ethereum Virtual Machine

Commit

Execute

Receipt

Contract A

Contract B

① Create ② Call

③ Suicide ④ Reward

Fig. 2. Raw data collection during Ethereum transaction flow

to each piece of the data that we need. The details on data
acquisition of blockchain data will be described in Section III.

III. RAW DATA EXTRACTION FROM ETHEREUM

This section describes the procedure how the raw data
was obtained from Ethereum blockchain. Fig. 2 illustrates the
typical Ethereum transaction execution flow from Block N
to EVM through Blockchain peer. During this procedure, we
collect the three types of blockchain raw data: Block, Receipt
and Trace. We next describe the details on the composition
and acquisition of each kind of raw data.

A. Block

Block data is directly stored in Ethereum blockchain. Each
block consists of two components:

• Block Header: Block header is the basic information
of a block, including the miner’s address, timestamp, gas
limit, etc.

• Block Transactions: Block transactions constructs the
body of the block. Each transaction consists of the fields:
From, To, Value, Input, etc. If the transaction is used to
deploy a contract, the To field is “null” in the block
transaction.

Almost all the Ethereum clients including Geth and Par-
ity offer the interfaces to query the blocks. For example,
“eth_getBlock” is available in both Geth and Parity with
the similar efficiency. However, we can only obtain little
information about the blockchain users through analyzing the
block data. This is because the input of block transaction
only represents operations to EVM in the contract deployment
phase while the contract code will be stored only at the end
of the transaction execution and it is not the same as the input
of the transaction. Thus, we cannot obtain the exact contract
code in the block transaction. Meanwhile, in the contract
invocation phase, we cannot know whether the transaction is
executed successfully or what kinds of errors thrown during
the transaction execution since sometimes a contract will send
messages or cryptocurrencies to other contracts.

B. Trace

Trace data is essentially the detailed run-time data that was
generated in EVM (e.g., internal contract calls, transferring
money from the contract to a person). Trace data cannot be

https://tether.to/
https://makerdao.com/
https://ethernodes.org

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCS.2020.2990458, IEEE Open
Journal of the Computer Society

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 4

directly obtained or observed from the block data, but can
be recorded during the contract execution. In this paper, trace
data is referred to the data that cannot be obtained before or
after the transaction execution, but only appears during the
execution. Trace data includes the following types:

• Create is the trace including the creator, code, and initial
balance when a smart contract is deployed. The creator
of a contract can be a person or another smart contract.

• Call occurs when money or messages are transferred
through different Ethereum addresses. Contract call or
Ether transferring is shown as a “Call” trace.

• Suicide is the trace that smart contract “suicide” deletes
its code, and refunds the value to a specific account.

• Reward is the trace that miners get the Ether reward
when they mine a block. The reward value varies de-
pending on the contribution of the miners.

In Geth, the interface of trace is “debug_-
traceTransaction”. However, this interface returns
all the operations during the transaction, resulting in large
resource consumption and low efficiency. Thus, many previous
studies attempt to modify the source codes of Geth to obtain
the detailed run-time data, while this procedure is extremely
time consuming. In this paper, we adopt “parity_trace” in
Parity to obtain the trace data. This interface is provided and
maintained by the official developers so that the correctness
is guaranteed in contrast to Geth. Meanwhile it also provides
enough information that we need, such as the basic trace
types and errors. Moreover, another advantage of Parity is the
updating convenience as the data is indexed by blocks.

C. Receipt

After the transaction is executed, some of the Ethereum
states have been changed (e.g., the balance of the account in
a token contract). Then the clients need to know what have
been changed. To reduce the query overhead of clients, many
contracts leave one kind of outputs called “Event” in the
execution. For example, a standard token contract will output a
“Transfer(from,to,value)” event to let the clients know
what happens during the execution. This kind of outputs is
an one-way output, as it is just written in the receipt of the
transaction, and can be read by external clients or persons but
cannot be read by internal EVMs.

Section IV will then give the statistics of Ethereum data.
In particular, there are over 100,000 kinds of cryptocurren-
cies using smart contracts on Ethereum. As for these token
contracts, the receipt data is the important source to learn
about the holders, owners, and the user behaviors. Thus, it
is necessary to obtain receipt data. Both Geth and Parity
provide the interfaces to get the transaction receipts. The
main difference between Geth and Parity interfaces lies in
the query index of the receipts. In particular, the receipt of
the interface of Geth is “eth_getTransactionReceipt”
that is indexed by the transaction hash, while the interface
of Parity is “parity_getBlockReceipts” that is indexed
by block number. In this way, Parity is much more efficient
than Geth since it can return a batch of receipts in one
query. In summary, there are three kinds of raw datasets

Block

Receipt

Trace

Block and Transaction

Internal Ether Transaction

Contract Info

Contract Calling

ERC20 Token Transaction

ERC721 Token Transaction

Raw Data Processed Datasets

Fig. 3. Mapping from raw data to datasets

TABLE I
STATISTICS OF DATASET 1

Statistics Values
No. of Blocks 8,100,000
No. of Transactions 491,562,222
No. of Miner Addresses 5,122
Mean of Transaction Counts per Block 60.68
Mean of Block Time 15.33 seconds
Mean of Block Size 11,457 bytes

that can be obtained in Ethereum: block, trace, and receipt.
Because of the massive volume and redundant information of
the raw data, data procession is necessary to simplify data
representation and fasten data analysis for the further study.
After compression, the size of the data is about 313 GBytes.

IV. DATA EXPLORATION OF ETHEREUM

In this section, we process the obtained raw data from
Ethereum and divide it into six datasets: (1) Block and
Transaction, (2) Internal Ether Transaction, (3) Contract Info,
(4) Contract Call, (5) ERC20 Token Transaction, (6) ERC721
Token Transaction. The relationship from the raw data to the
processed datasets is shown in Fig. 3. We can easily observe
that the trace data has been the most widely used in the
data process. This section will introduce how the datasets are
generated, with statistics and observations.

A. Dataset 1: Block and Transaction

To investigate the basic statistics of Ethereum, we ex-
tract the information about the blocks and the transactions
inside the blocks. In particular, there are 8,100,000 blocks
and 491,562,222 transactions generated from the block data.
For each block, we also obtain the statistic values of the
“gasPrice”: minimum, average, and maximum. Meanwhile,
corresponding to the hash of each transaction, the fields of
“minerReward”, “gasUsed” and “error” are extracted from
the receipt and trace. Regarding the miners of the Ethereum
blockchain, there are 5,122 unique addresses of miners as

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCS.2020.2990458, IEEE Open
Journal of the Computer Society

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 5

(a) Word Cloud of Miners’ Text

0 100 200 300 400 500 600 700 800
Per 10000 Block

0

500000

1000000

1500000

2000000

2500000

T
ra

n
sa

ct
io

n
sC

o
u
n
t

(b) Transaction Count

0 100 200 300 400 500 600 700 800
Per 10000 Block

18

20

22

24

26

28

30

lo
g
(G

a
sP

ri
ce

)

MIN

MAX

AVG

(c) Macro view of GasPrice

0 200 400 600 800 1000
Per 20 Block

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G
a
sP

ri
ce

1e10

MIN

AVG

(d) Micro view of GasPrice

Fig. 4. Visualization of Dataset 1 (better viewed in color).

shown in Table I. It implies that there are no more than
5,122 peers that serve as miners since one peer may own
more than one addresses. Meanwhile, each miner has the
right to write extra texts in the block. So, we also use the
word cloud to analyze the texts of miners. Fig. 4(a) shows
the visualization of the texts of the word cloud. The results
show that there are texts left by the mining pool, since most
miners are in the mining pool and they have left their names
in the blocks to promote their mining capability. As shown in
Table I, the mean of transaction counts per block is 60.68,
and the block time is 15.33 seconds. In other words, the
average throughput of Ethereum is about 4 transactions per
second. Even when most of the network is active, as shown
at 4,900,000 blocks in Fig. 4(b), the throughput is about 16.7
transactions per second. This result implies that Ethereum still
has a long way to go to support real-time Internet applications.
In Ethereum, a miner has a higher priority to package the
transactions with higher “gasPrice” into the block. The
visualization of “gasPrice” is shown in Figs. 4(c) and 4(d).
In a macro view, the “gasPrice” is gradually decreasing
with the development of the Ethereum community, except for
several peaks caused by extremely frequent transaction when
the network is congested. In a micro view, we extract the
time from 8,000,000 to 8,020,000 blocks and find that such
fluctuations of “gasPrice” can be observed by the tidal law.
This observation implies that the fluctuations of “gasPrice”
can potentially be predicted.

B. Dataset 2: Internal Ether Transaction

Ether is the native cryptocurrency of Ethereum. The transac-
tions of Ether not only happen in the transactions recorded in
the block, but also occur during the smart contract execution.
For example, if someone asks a smart contract to send 10
Ethers to another one, the Ether transaction from the contract
will not be observed in the block. In some blockchain explorers
such as Etherscan5, this kind of transactions is also called “In-

5http://etherscan.io

TABLE II
STATISTICS OF DATASET 2

Statistics Values
No. of Ether Transactions 329,020,692
No. of Addresses 54,720,018
Mean of Amount of Ethers 22.30
Maximum of Amount of Ether 11,901,464.24

0 100 200 300 400 500 600 700 800
Per 10000 Block

0.0

0.2

0.4

0.6

0.8

1.0

E
th

e
r/

w
e
i

1e26

(a) Ether Transferred Amount

0-0
.0

01

0.0
01-0

.0
1

0.0
1-0

.1
0.1

-1
1-1

0

10-1
00

100-1
000

1000-1
0000

10000-

Value/Ether

0.0

0.2

0.4

0.6

0.8

1.0

C
o
u
n
t

1e8

(b) Ether Transaction Distribution

Fig. 5. Visualization of Dataset 2.

ternal Transaction”. To investigate all the Ether transactions,
we process the block and trace data to conduct the internal
Ether transaction dataset. As shown in Table II, 329,020,672
Ether transactions which occur among 54,720,018 addresses
are collected. The values of Ether have a large variance,
as the maximum is 11,901,464.24 Ethers (about 2 billions
dollars now) but the mean is only 22.30 Ethers. Fig. 5(a)
presents statistics on the total transaction amount of every
10,000 blocks. It is shown that the most active time for Ether
transaction is the time during 4,000,000 to 4,300,000 blocks,
matching with the most active time of Initial Coin Offering
(ICO). Regarding the Ether distribution as shown in Fig. 5(b),
we find that most of Ether transactions fall in the range from
0.1 Ether to 1 Ether, indicating that most of transactions only
transfer small amounts of Ethers.

C. Dataset 3: Contract Info

Ethereum can be considered as a platform for smart con-
tracts. To investigate all the smart contracts on Ethereum, we
process the trace data to get the basic information of smart
contracts, including the creator, created-time, initial value,
contract code, creation code. Some smart contracts can be
deleted and refund Ethers to someone if they set a “SUICIDE”
operation code inside a function. Therefore, we can observe
the actions of contract deletions. According to the statistics
in Table III, there are 16,609,273 smart contracts created by
133,484 addresses. It implies that there should be a number of
users who create multiple contracts. An abnormal phenomenon
observed from Table III is that 5,564,823 contracts are deleted
while they refund the Ether balance to 19,133,481 addresses.
Generally, a smart contract will not refunds Ethers to multiple
addresses during deletion. The reason behind this abnormal
phenomenon is that Ethereum has suffered from a Denial of
Service (DoS) attacks, in which attackers use a vulnerability
of the price of “SUICIDE” to create accounts in Ethereum.
Before the vulnerability is fixed, a great amount of contracts
are deleted to direct to empty address, leading to many

http://etherscan.io

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCS.2020.2990458, IEEE Open
Journal of the Computer Society

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 6

TABLE III
STATISTICS OF DATASET 3

Statistics Values
No. of Created Contracts 16,609,273
No. of Creator Addresses 133,484
No. of Deleted Contracts 5,564,823
No. of Refunded Addresses 19,133,481
Mean of Contract Hex Code Size 958.20

0 1000 2000 3000 4000 5000
ContractCodeHexSize

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

C
o
u
n
t

(a) Contract size distribution

0 100 200 300 400 500 600 700 800
Per 10000 Block

0

50000

100000

150000

200000

C
re

a
te

d
C

o
n
tr

a
ct

C
o
u
n
t

(b) Count of created contracts

Fig. 6. Visualization of Dataset 3.

Ethereum peers shutting down as indicated in previous work
[12].

Regarding the contract code, we translate the bytecode into
hexadecimal code. Fig. 6(a) gives the statistics of contract size.
Particularly, the mean of contract size is 958.20, indicating
that the smart contracts take up little space of storage. The
contract size distribution also implies that the sizes of most
contracts have focused on some clusters. This indicates that
many smart contracts may look similar. This similarity will be
further investigate in Dataset 4. Fig. 6(b) presents the count of
created contracts. It is shown in Fig. 6(b) that the number of
new smart contracts is increasing, especially at the time after
the concept of “ICO” [13] comes out.

D. Dataset 4: Contract Call

In EVM, a smart contract can call another one to invoke
some codes or functions. To investigate the calls among the
Ethereum contracts (which are represented as addresses),
we extract Contract Calls in the execution from the trace
dataset. The contract call dataset includes the caller, called
address, calling function. As shown in Table IV, it consists
of 1,148,572,009 Contract Calls, among which 639,336,722
contain input codes and 169,463,261 contain errors. Fig. 7
gives the visualization of Contract Calls. In particular,
Fig. 7(a) and Fig. 7(c) show that, during the time from
2,300,000 to 2,460,000 blocks, contract calls and errors
occur very frequently. This is caused by the DoS attacks
mentioned in the above subsection, as the attackers invoked
a large number of contracts in batches and some of them
throw errors. Fig. 7(b) gives the distribution of call types.
In particular, Fig. 7(b) shows that most of developers
prefer to use “call” and “delegatecall” rather than
“staticcall” and “callcode”, since the logic of “call”
and “delegatecall” is clearer and more practical than
other two calls. Fig. 7(d) shows the error types during calling
contract, indicating that most of errors are caused by “Out

TABLE IV
STATISTICS OF DATASET 4

Statistics Values
No. of Contract Calls 1,148,572,009
No. of Calls with Inputs 639,336,722
No. of Calls with Errors 169,463,261

of gas”, which is mainly resulted from the wrong settings
of message senders. The second most common error is
“Reverted”, which is a manually-thrown exception by the
developers. Moreover, other errors such as “Bad instruction”
and “Bad jump destination” are often caused by the contract
codes themselves. Generally, the compiler of smart contracts
will use the hash value of function name and parameters
as the entry of the function. In other words, in Ethereum
smart contracts, the identical function in source code will
have the identical entry in the complied contract code.
We then count the calling contract functions to see what
functions are the most common ones. The distribution of
top-10 functions is shown in Fig. 7(e). The results show that
most of the calling functions concentrated on some types of
them. For example, top-10 functions have occupied 46.32%
of the contract calls. Moreover, after verifying the hash
values of functions with the open-source contracts, we obtain
the functions in source code. We then have the top-3 functions:
“transfer(address,uint256)”,“balanceOf(add-ress)”
and “transferFrom(address, address, uint256)”.
This result implies that the most common contract calls are
about tokens and there might be a great similarity among the
contracts due to the similar calls.

E. Dataset 5: ERC20 Token Transaction

From the above analysis, we observe that the most active
smart contracts on Ethereum now are the token contracts. We
next further investigate the token contracts. In order to collect
the information of tokens, we process the receipt dataset to
extract the standard events, which are defined in the standard
ERC20 protocol of Ethereum community [4]. Additionally,
each ERC20 token contains basic information like name,
symbol, total supply, etc. We then send calls to the local
Ethereum peers to collect such basic information of ERC20
tokens. As shown in Table V, 106,683 smart contracts are
considered as ERC20 contracts, since they output the events
that are defined as the standard ERC20 token transactions.
There are 227,698,645 ERC20 transactions among 42,146,575
holder addresses. Generally, the number of holder addresses
could be much more larger than that of exact human holders
because a user may own several addresses. Meanwhile some
token issuers will send the tokens to other users without their
permissions (also called token air-drop [14]). Fig. 8(a) shows
the transaction count distribution for each ERC20 token. We
can easily observe the Matthew effect [15] from Fig. 8(a)
as most of token transactions happen in few token contracts.
Fig. 8(b) presents the word cloud of names of ERC20 tokens. It
is shown in Fig. 8(b) that the most common words are “Chain”,
“Coin”, and “Share”, on which the most ERC20 tokens focus.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCS.2020.2990458, IEEE Open
Journal of the Computer Society

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 7

0 100 200 300 400 500 600 700 800
Per 10000 Block

0

5

10

15

20
lo

g
(C

o
n
tr

a
ct

C
a
lli

n
g
T
im

e
s)

(a) Count of Contract Call

callcode call delegatecall staticcall
CallTypes

105

106

107

108

109

C
o
u
n
t

(b) Call Type Distribution

0 100 200 300 400 500 600 700 800
Per 10000 Block

0

5

10

15

20

lo
g
(C

o
n
tr

a
ct

E
rr

o
tT

im
e
s)

(c) Count of Contract Error

Out o
f g

as

Reverte
d

Bad in
str

ucti
on

Bad ju
mp'

Stack underflo
w

Out o
f s

tack

Mutable Call'

ErrorTypes

101

102

103

104

105

106

107

108

109

C
o
u
n
t

(d) Error Type Distribution

0xa9059cb
b

0x70a08231

0x23b872dd

0x00000000

0x8da5cb
5b

0x64c6
6395

0x6ea056a9

0x18160ddd

0xdd62ed3e

0x672815c2

Top10Functions

106

107

108

109

C
o
u
n
t

26.60%

4.03% 3.88% 3.88%

1.60% 1.53% 1.40% 1.26% 1.08% 1.06%

(e) Calling Count of Top 10 Contract Function

Fig. 7. Visualization of Dataset 4.

TABLE V
STATISTICS OF DATASET 5

Statistics Values
No. of ERC20 Contracts 106,683
No. of ERC20 Transactions 227,698,645
No. of Holder Addresses 42,146,575

In addition, another common word is “Test”, implying that
many ERC20 contracts deployed on Ethereum are just for the
testing purpose.

F. Dataset 6: ERC721 Token Transaction

ERC721 token is another contract protocol proposed by
Ethereum community [9]. Different from ERC20 token,

0-10
10-100

100-1000

1000-10000
10000-

TokenTransactons

0

10000

20000

30000

40000

50000

60000

70000

80000

T
o
ke

n
C

o
u
n
t

(a) ERC20 Popularity Distribution (b) Word Cloud of ERC20 Tokens

Fig. 8. Visualization of Dataset 5 (better viewed in color).

TABLE VI
STATISTICS OF DATASET 6

Statistics Values
No. of ERC721 Contracts 1,954
No. of ERC721 Transactions 7,524,827
No. of Holder Addresses 414,829

0-10
10-100

100-1000

1000-10000
10000-

TokenTransactons

0

200

400

600

800

1000

1200

T
o
ke

n
C

o
u
n
t

(a) ERC721 Popularity Distribution

0 100 200 300 400 500 600 700 800
Per 10000 Block

0

20000

40000

60000

80000

100000

120000

140000

C
re

a
te

d
C

a
tT

ra
n
sa

ct
io

n

(b) CryptoKitties Turnover Times

Fig. 9. Visualization of Dataset 6.

ERC721 token is indivisible. In the contract function, the
parameter is not the value of token but the token ID. For
example, a virtual pet in smart contract could be a ERC721
token, which is not separable but can be transferred. Table VI
presents the statistics of ERC721 contracts. We find that 1,954
ERC721 contracts contain 7,524,827 token transactions and
414,829 holder addresses. It is worth mentioning that some of
the collected contracts do not follow the standard ERC721
protocol exactly. These contracts are also included in the
dataset since they output the token transferred events in the
receipt. Fig. 9(a) shows the popularity distribution of ERC721
tokens. Compared with ERC20 tokens, the amount of ERC721
tokens is much lower. The major reason is that ERC721
applications require much more workloads on visualization
at each token, consequently improving the development dif-
ficulty. We also investigate a popular ERC721 token contract
called CryptoKitties. It is one of the most famous ERC721
token contracts, selling the virtual cats as tokens. Each cat is
represented as a token in the ERC721 contract. We count the
turnover times distributed by birth block of the cats, as shown
in Fig. 9(b). Fig. 9(b) also shows that the cats that were born
in 4,500,000 to 5,000,000 blocks have the higher turnover
times than others. At that time, the type of CryptoKitties
reaches the peak. The time to obtain the peak in Fig. 9(b)
is almost the same as that in Fig. 4(b) and Fig. 4(c), implying
that the popularity of CryptoKitties leads to the congestion of
Ethereum.

V. APPLICATIONS OF XBLOCK-ETH

This section presents applications of XBlock-ETH frame-
work. As shown in Fig. 1, the architecture of Ethereum
consists of peers, blockchain, smart contracts and tokens.
Thus, we also categorize the applications according to the top
3 layers in this architecture. Meanwhile, we also discuss the
research opportunities in each layer.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCS.2020.2990458, IEEE Open
Journal of the Computer Society

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 8

A. Blockchain System Analysis

Since XBlock-ETH processes data from realistic blockchain
systems, it can be used to support the following applications.

1) Decentralization Analysis
The decentralization is one of the key features of blockchain

systems. However, there are few studies on the decentralization
evaluation of the blockchain systems. In particular, the work of
[16] presents the measurement of the mining pool for Bitcoin.
Although Gencer et al. [17] present a measurement study
on the decentralization level of Bitcoin and Ethereum, their
study only consider several metrics such as network bandwith,
mining power and fairness. In contrast, our XBlock-ETH
data offers a more comprehensive measurement on Ethereum.
Moreover, our work can be used to analyze the decentral-
ization of users, contract owners and miners. In addition, our
XBlock-ETH can also be used to make comparison with other
blockchain systems, such as Bitcoin, EOS or other blockchain
systems.

2) Gasprice Prediction
Since the transaction fees are equal to “gasPrice” times

“gasUsed”, the users can control the “gasUsed” in a rea-
sonably low range to minimize the transaction fees charged
by miners. Meanwhile, we can learn from Section IV-A that
there is always a gap between the minimum “gasPrice”
and the average “gasPrice” in a block, leading to the
opportunity to save fees. Recent studies such as Other-tech
[18], Gitcoin [19], Majuri [20] analyze the “gasPrice” of
Ethereum while several Ethereum websites (e.g., Etherscan6,
Etherchain7) provide tools to predict the “gasPrice” in a
short time. However, those tools are essentially black boxes,
the accuracy and correctness of them cannot be assured. In
summary, the prediction of “gasPrice” has great economic
value such that the user of Ethereum can save the money or
shorten waiting time through the “gasPrice” prediction while
it is worthwhile to conduct an in-depth study in the future.

3) Performance Benchmark
Performance is crucial to blockchain systems. There are a

number of studies on blockchain performance optimizations,
such as Omniledger [21], Algorand [22] and RapidChain
[23]. Meanwhile, some optimized blockchain systems (e.g.,
Monoxide [24]) adopt the realistic blockchain transaction data
to conduct performance evaluation for blockchain systems. To
compare the performance of different optimization methods,
a common benchmark of real-world user cases for blockchain
systems is needed. Zheng et al. [25] and BlockBench [26]
propose performance evaluation tools for blockchain systems.
The performance benchmark requires simulating the user
behaviors and obtaining data similar to real-world blockchain
systems. In this context, the XBlock-ETH framework can be
regarded as a benchmark since the source data is generated
exactly by the real-world users.

B. Smart Contract Analysis

As one of the most popular smart contract platforms,
Ethereum has attracted a large number of software devel-

6http://etherscan.io
7http://etherchain.org

opers as well a huge number of smart contracts. Therefore,
Ethereum has a more active developer community compared
with other smart contract platforms such as EOS and Tron,
which claim to have the higher throughput and lower latency
than Ethereum. Consequently, our XBlock-ETH framework
(on top of Ethereum) can be used in the studies of smart
contracts. We summarize the potential applications of XBlock-
ETH as follows.

1) Contract Similarity and Recommendation
As indicated in Section IV, there is a great similarity

between the smart contract codes and call of smart contracts.
Code similarity evaluation is a traditional research topic in
software engineering as a number of studies concentrate on
code similarity detection [27] [28] [29]. Several recent studies
focus on similarity analysis of smart contracts. In particu-
lar, Etherscan6 provides the query system based on similar
contracts. Finding the similar contracts is beneficial to the
developers during developing new contracts. For example, de-
velopers can estimate the user behaviors before the publishing
the contract. Meanwhile, Huang et al. [30] propose the method
to recommend differentiated codes to update smart contracts
based on the existing codes of smart contracts. In addition, in
the aspect of users, recommending the similar smart contract
will help users to find the contracts suitable for themselves.

2) Contract Developer Analysis
Developer analysis that is another traditional research topic

in software engineering includes developer network analysis
[31], behavior analysis [32], fault prediction [33], and so on.
With respect to developer analysis, XBlock-ETH also includes
a large network of smart contract developers. For example,
there some on-chain libraries deployed and provided by dif-
ferent developers; these libaries can be invoked by others. Each
developer can be identified by his/her own Ethereum address.
Thus, the contract calling network can be also regarded as the
collaboration network of contract developers. The network and
structure of developer collaboration may inform us about the
reliability of the contract codes. For example, the developer
who develops a smart contract with vulnerabilities will have
a higher risk to develop new contracts with vulnerabilities
than others. In this sense, our XBlock-ETH can be beneficial
to the developer analysis after analyzing smart contracts of
developers.

3) Contract Vulnerability Detection
The security of smart contracts has been a hot research topic

in blockchain research community. In particular, the vulnera-
bility of smart contracts has attracted extra attentions. A num-
ber of malicious attacks on Ethereum (e.g., TheDAO attack)
have already resulted in huge loss (in terms of millions dollars)
[34]. To prevent smart contracts from malicious attacks, the
vulnerability detection on contracts is a critical step. There are
some recent attempts in vulnerability detection. For example,
Oyente [7], Zeus [35], teEther [36], S-gram [37], Contract-
Fuzzer [38] propose the tools of vulnerability detection on
smart contracts. In some cases, the vulnerability detection
methods of smart contracts can be inspired and motivated by
traditional software vulnerability detection methods as they are
essentially equivalent to the verification of the codes. In this
aspect, several studies focus on verifying contract codes on

http://etherscan.io
http://etherchain.org

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCS.2020.2990458, IEEE Open
Journal of the Computer Society

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 9

blockchains; these contract codes are also called “bytecode”
or “opcode”. Our XBlock-ETH that essentially includes the
data of contract codes can be applied to contract vulnerability
detection.

4) Fraud Detection
Due to the huge economic value and the popularity of

smart contracts, smart contracts can be exploited by malicious
users as scams. For example, crowd-funding contracts with
a promised huge return to attract victims for investment. It
is reported in [39] that Ponzi scam contracts can defraud
others’ cryptocurrencies. Several approaches [39]–[42] have
been proposed to detect the fraud contracts on Ethereum. Most
of the methods are mainly based on the codes and transaction
records of smart contracts while they are included in XBlock-
ETH data. Thus, XBlock-ETH data can be further leveraged
in fraud detection.

C. Cryptocurrency Analysis

Blockchain-based cryptocurrency has become a hot topic
recent years due to the decentralization and the reduced cost.
There are a large amount of cryptocurrencies in Ethereum,
including the Ether, ERC20 tokens and ERC721 tokens. It
is shown in the CoinMarketCap8 that more than 2,000 kinds
of tokens can be used in third-party exchange. Therefore,
cryptocurrency analysis based on blockchain data can bring
huge financial values. We roughly categorize the cryptocur-
rency analysis into cryptocurrency transferring analysis, cryp-
tocurrency price analysis and fake user detection, which are
explained as follows.

1) Cryptocurrency Transferring Analysis
Analysis on cryptocurrency transactions is a preliminary

step to conduct cryptocurrency transferring analysis. Regard-
ing Ether transferring, Chen et al. [6] propose the graph
analysis on Ether transactions and derive some insights from
graph analysis. With regard to ERC20/ERC721 tokens, Victor
et al. [43] and Somin et al. [44] propose the analysis of the
token trading network. After the analysis on cryptocurrency
transactions, the further analysis on user behaviours can be
done. For example, the users of tokens may form different
communities. The community discovery can be conducted
through analyzing cryptocurrency transactions. Moreover, the
anonymity of blockchain-based cryptocurrency can result in
money-laundering behaviors, which can be essentially identi-
fied and detected via cryptocurrency transaction analysis. Our
XBlock-ETH data offers the potential solutions to these issues.

2) Cryptocurrency Price Analysis
The price of blockchain-based cryptocurrencies has been

affected by multiple different factors such as government
policies, technology innovations, social sentiment and busi-
ness activities. Several recent studies focus on the price
analysis and prediction of cryptocurrencies [45]–[47]. The
typical cryptocurrency price analysis consists of three steps:
(i) collect price data form the cryptocurrency exchanges, (ii)
identify the relevance between cryptocurrency prices and other
factors, (iii) forecast the future prices and predict the potential

8https://coinmarketcap.com/all/views/all/

profits. However, the price of cryptocurrencies can sometimes
be maliciously controlled by some parties. Thus, the data
cleaning process is necessary to obtain the accurate and normal
cryptocurrency price data. Some of the cryptocurrency price
data is stored in the decentralized exchange contracts, which
can be used for cryptocurrency price analysis while the raw
data may require the further preprocess to benefit the future
analysis.

3) Fake User Detection
Fake user detection [48]–[50] is a traditional research topic

in social networks. The cryptocurrency users in blockchain
systems also form social-network like communities, in which
there are also some fake users controlled by the developers
to improve the DApps activity rankings. Because the DApp
(or cryptocurrency) ranking is based on some metrics related
to the user activities, such as Daily Active Users (DAU).
Therefore, many developers exploit the loophole to fabricate
some fake users to improve activities so as to gain higher
rankings. Although some DApp websites, such as DAppRe-
view9 mark the cryptocurrencies with fake users, this kind of
fake user detection is almost done in a black box or manually.
In addition, there are few studies on fake user detection on
cryptocurrency. The permission-less blockchain systems which
are often free of charge may advocate more frequent fake
user activities than permissioned blockchain systems. Our
XBlock-ETH will be further improved to support the fake user
detection in the future.

VI. RELATED WORK AND DISCUSSION

Some previous studies on Ethereum data will be described
and discussed in this section. We categorize the state-of-the-art
literature into two types: Data tools and Data analysis.

Regarding Ethereum data tools, some studies provide open-
source tools or APIs with users to obtain the data. For
example, EtherQL [51] offers a query layer for Ethereum.
Blocksci [52] constructs a platform for researchers to analyze
the blockchain data. DataEther [53] is a tool to obtain the
data from Ethereum, with code modification of the Ethereum
clients. Google BigQuery [54] imports the data of Bitcoin and
Ethereum and enables researchers to analyaze the data online
while updating Ethereum data has been stopped for a long
time. Meanwhile, it is pretty challenging for researchers to
download, update and analyze the blockchain data. There are
also some websites offering data APIs for developers to use
or analyze, including Amberdata10. However, these third-party
APIs always restrict the usage rating so that it is difficult for
researchers to crawl all the data. In summary, most of these
studies only offer tools or APIs to researchers while failing to
offer well-processed up-to-date datasets.

Some recent studies provide the analysis on the Ethereum
data. For example, studies of [39]–[41] propose the contract
classification methods to detect Ponzi schemes. Moreover,
Chen et al. [6] analyze the transactions and construct three
graphs to observer the behaviors on Ethereum. Furthermore,
the work of [55] analyzes the ERC20 tokens on Etherem

9http://dapp.review
10http://amberdata.io

https://coinmarketcap.com/all/views/all/
http://dapp.review
http://amberdata.io

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCS.2020.2990458, IEEE Open
Journal of the Computer Society

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 10

and find un-standard token. Another popular research area on
Ethereum data is the smart contracts security. For example,
Oyente [7], Zeus [35] propose the security analysis tools
for Ethereum smart contracts to find the vulnerable codes.
Although some of these studies release some datasets, most
of them are only suitable for specific research questions.
Furthermore, most of them are difficult to be updated. It is
worth mentioning that XBlock-ETH does not contain the off-
chain data such as the price data in exchanges, the source
code of verified smart contracts, the behavior on Github of
the DApps even if they are also crucial for the analysis.
Since those data are not generated by the Ethereum, we only
concentrate on the on-chain data in this paper.

VII. CONCLUSION AND FUTURE WORK

This paper introduces a well-processed up-to-date on-chain
dataset of Ethereum, namely XBlock-ETH, which includes the
data of the Ethereum blockchain, smart contracts and cryp-
tocurrencies. Moreover, comprehensive statistics and explo-
ration of the datasets are presented. The XBlock-ETH datasets
have been released on XBlock.pro website. Furthermore, the
research opportunities of the XBlock-ETH datasets are also
outlined. Our XBlock-ETH is promising to promote the studies
on Ethereum. The future improvements are listed as following:
(1) More features: The exploration of the basic features of
the datasets are given in this paper. Ethereum is a complex
ecosystem that includes decentralized finance, stable coin, and
so on. More features of the Ethereum data will be explored
in the future. (2) Extra off-chain data from Ethereum:
The off-chain data is also important since it provides the
information of off-chain behaviors of both developers and
users. In the future, the off-chain data will be collected. (3)
Joint data analysis with other blockchain systems: There
are some other blockchain systems that have also attracted a
large number of users and developers. The joint data analysis
of Ethereum and other permission-less blockchains will be
conducted in the future.

REFERENCES

[1] Z. Zheng, S. Xie, H.-N. Dai, and H. Wang, “Blockchain challenges
and opportunities: A survey,” International Journal of Web and Grid
Services, 2016.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[3] V. Buterin et al., “Ethereum white paper,” 2013.
[4] V. Buterin and F. Vogelsteller, “Erc20 token standard,” URL:

https://theethereum. wiki/w/index. php/ERC20 Token Standard, 2015.
[5] H.-N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for internet of things:

A survey,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8076 –
8094, 2019.

[6] T. Chen, Y. Zhu, Z. Li, J. Chen, X. Li, X. Luo, X. Lin, and X. Zhange,
“Understanding ethereum via graph analysis,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications. IEEE, 2018, pp.
1484–1492.

[7] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS. ACM, 2016, pp.
254–269.

[8] N. Szabo, “The idea of smart contracts,” 1997.
[9] W. Entriken, D. Shirley, J. Evans, and N. Sachs, “Erc-721 non-fungible

token standard,” Ethereum Foundation, 2018.
[10] O. Kharif, “Cryptokitties mania overwhelms ethereum network’s pro-

cessing,” Bloomberg, 2017.

[11] Y. V. L. Luu, “Kybernetwork: A trustless decentralized ex-
change and payment service,” URl: https://home. kyber. net-
work/assets/KyberNetworkWhitepaper. pdf.

[12] T. Chen, X. Li, Y. Wang, J. Chen, Z. Li, X. Luo, M. H. Au, and X. Zhang,
“An adaptive gas cost mechanism for ethereum to defend against under-
priced dos attacks,” in International Conference on Information Security
Practice and Experience. Springer, 2017, pp. 3–24.

[13] S. T. Howell, M. Niessner, and D. Yermack, “Initial coin offerings:
Financing growth with cryptocurrency token sales,” National Bureau of
Economic Research, Tech. Rep., 2018.

[14] P. van Valkenburgh, “A token airdrop may not spare you from securities
regulation,” 2017.

[15] R. K. Merton, “The matthew effect in science: The reward and com-
munication systems of science are considered,” Science, vol. 159, no.
3810, pp. 56–63, 1968.

[16] C. Wang, X. Chu, and Q. Yang, “Measurement and analysis of
the bitcoin networks: A view from mining pools,” arXiv preprint
arXiv:1902.07549, 2019.

[17] A. E. Gencer, S. Basu, I. Eyal, R. Van Renesse, and E. G. Sirer,
“Decentralization in bitcoin and ethereum networks,” arXiv preprint
arXiv:1801.03998, 2018.

[18] Jin.S, “Ethereum gas price analysis,” 2018.
[19] K. Owocki, “A brief history of gas prices on ethereum,” 2018.
[20] Y. Majuri, “Simply explained: Ethereum gas,” 2018.
[21] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and

B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 583–598.

[22] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th Symposium on Operating Systems Principles. ACM, 2017,
pp. 51–68.

[23] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2018,
pp. 931–948.

[24] J. Wang and H. Wang, “Monoxide: Scale out blockchains with asyn-
chronous consensus zones,” in 16th USENIX Symposium on Networked
Systems Design and Implementation, NSDI), 2019, pp. 95–112.

[25] P. Zheng, Z. Zheng, X. Luo, X. Chen, and X. Liu, “A detailed and
real-time performance monitoring framework for blockchain systems,”
in Proceedings of the 40th International Conference on Software Engi-
neering: Software Engineering in Practice, ICSE-SEIP. ACM, 2018,
pp. 134–143.

[26] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L.
Tan, “Blockbench: A framework for analyzing private blockchains,” in
Proceedings of the 2017 ACM International Conference on Management
of Data, 2017, pp. 1085–1100.

[27] M. Chilowicz, E. Duris, and G. Roussel, “Syntax tree fingerprinting
for source code similarity detection,” in 2009 IEEE 17th International
Conference on Program Comprehension. IEEE, 2009, pp. 243–247.

[28] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applica-
tions to software plagiarism detection,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 389–400.

[29] K. Lemhöfer and T. Dijkstra, “Recognizing cognates and interlingual
homographs: Effects of code similarity in language-specific and general-
ized lexical decision,” Memory & Cognition, vol. 32, no. 4, pp. 533–550,
2004.

[30] Y. Huang, Q. Kong, N. Jia, X. Chen, and Z. Zheng, “Recommending
differentiated code to support smart contract update,” in Proceedings of
the 27th International Conference on Program Comprehension. IEEE
Press, 2019, pp. 260–270.

[31] A. Meneely, L. Williams, W. Snipes, and J. Osborne, “Predicting failures
with developer networks and social network analysis,” in Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of
software engineering, 2008, pp. 13–23.

[32] L. Layman, L. Williams, and R. S. Amant, “Toward reducing fault fix
time: Understanding developer behavior for the design of automated
fault detection tools,” in First International Symposium on Empirical
Software Engineering and Measurement, ESEM. IEEE, 2007, pp. 176–
185.

[33] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, “Using developer
information as a factor for fault prediction,” in Proceedings of the Third
International Workshop on Predictor Models in Software Engineering,
2007, p. 8.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCS.2020.2990458, IEEE Open
Journal of the Computer Society

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 11

[34] M. I. Mehar, C. L. Shier, A. Giambattista, E. Gong, G. Fletcher,
R. Sanayhie, H. M. Kim, and M. Laskowski, “Understanding a revo-
lutionary and flawed grand experiment in blockchain: the dao attack,”
Journal of Cases on Information Technology, vol. 21, no. 1, pp. 19–32,
2019.

[35] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts.” in NDSS, 2018.

[36] J. Krupp and C. Rossow, “teether: Gnawing at ethereum to automatically
exploit smart contracts,” in 27th USENIX Security Symposium, Security),
2018, pp. 1317–1333.

[37] H. Liu, C. Liu, W. Zhao, Y. Jiang, and J. Sun, “S-gram: towards
semantic-aware security auditing for ethereum smart contracts,” in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. ACM, 2018, pp. 814–819.

[38] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart contracts
for vulnerability detection,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2018, pp. 259–269.

[39] W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou, “Detecting
ponzi schemes on ethereum: Towards healthier blockchain technology,”
in Proceedings of the 27th International Conference on World Wide Web,
WWW. ACM, 2018.

[40] M. Bartoletti, S. Carta, T. Cimoli, and R. Saia, “Dissecting ponzi
schemes on ethereum: identification, analysis, and impact,” Future
Generation Computer Systems, 2019.

[41] W. Chen, Z. Zheng, E. C.-H. Ngai, P. Zheng, and Y. Zhou, “Exploiting
blockchain data to detect smart ponzi schemes on ethereum,” IEEE
Access, vol. 7, pp. 37 575–37 586, 2019.

[42] C. F. Torres, M. Steichen, and R. State, “The art of the scam:
Demystifying honeypots in ethereum smart contracts,” in Proceedings
of the 28th USENIX Conference on Security Symposium, ser. SEC’19.
Berkeley, CA, USA: USENIX Association, 2019, pp. 1591–1607.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3361338.3361449

[43] F. Victor and B. K. Lüders, “Measuring ethereum-based erc20 token
networks,” in International Conference on Financial Cryptography and
Data Security, 2019.

[44] S. Somin, G. Gordon, and Y. Altshuler, “Network analysis of erc20
tokens trading on ethereum blockchain,” in International Conference on
Complex Systems. Springer, 2018, pp. 439–450.

[45] C. Lamon, E. Nielsen, and E. Redondo, “Cryptocurrency price prediction
using news and social media sentiment,” SMU Data Sci. Rev, vol. 1,
no. 3, pp. 1–22, 2017.

[46] J. Abraham, D. Higdon, J. Nelson, and J. Ibarra, “Cryptocurrency price
prediction using tweet volumes and sentiment analysis,” SMU Data
Science Review, vol. 1, no. 3, p. 1, 2018.

[47] W. Mensi, K. H. Al-Yahyaee, and S. H. Kang, “Structural breaks and
double long memory of cryptocurrency prices: A comparative analysis
from bitcoin and ethereum,” Finance Research Letters, vol. 29, pp. 222–
230, 2019.

[48] Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro, “Aiding the detection
of fake accounts in large scale social online services,” in Proceedings
of the 9th USENIX conference on Networked Systems Design and
Implementation. USENIX Association, 2012, pp. 15–15.

[49] O. Varol, E. Ferrara, C. A. Davis, F. Menczer, and A. Flammini, “Online
human-bot interactions: Detection, estimation, and characterization,” in
Eleventh international AAAI conference on web and social media, 2017.

[50] E. Ferrara, O. Varol, C. Davis, F. Menczer, and A. Flammini, “The rise
of social bots,” Communications of the ACM, vol. 59, no. 7, pp. 96–104,
2016.

[51] Y. Li, K. Zheng, Y. Yan, Q. Liu, and X. Zhou, “Etherql: a query layer for
blockchain system,” in International Conference on Database Systems
for Advanced Applications. Springer, 2017, pp. 556–567.

[52] H. Kalodner, S. Goldfeder, A. Chator, M. Möser, and A. Narayanan,
“Blocksci: Design and applications of a blockchain analysis platform,”
arXiv preprint arXiv:1709.02489, 2017.

[53] T. Chen, Z. Li, Y. Zhang, X. Luo, A. Chen, K. Yang, B. Hu, T. Zhu,
S. Deng, T. Hu et al., “Dataether: Data exploration framework for
ethereum,” in Proceedings of the 39th IEEE International Conference
on Distributed Computing Systems, 2019.

[54] J. Tigani and S. Naidu, Google BigQuery Analytics. John Wiley &
Sons, 2014.

[55] T. Chen et al., “Tokenscope: A system for detecting inconsistent behav-
iors of cryptocurrency tokens.” in Proc. of the 26th ACM Conference on
Computer and Communications Security (CCS), 2019.

Peilin Zheng is a student at Sun Yat-sen Uni-
versity, Guangzhou, China. His research interests
include performance monitoring and evaluation on
blockchain, optimization of smart contracts, and
blockchain-based decentralized applications.

Zibin Zheng is a professor at Sun Yat-sen Univer-
sity, Guangzhou, China. He received Ph.D. degree
from The Chinese University of Hong Kong in
2011. He received ACM SIGSOFT Distinguished
Paper Award at ICSE’ 10, Best Student Paper Award
at ICWS’ 10, and IBM Ph.D. Fellowship Award.
His research interests include services computing,
software engineering, and blockchain.

Jiajing Wu received the B.Eng. degree in com-
munication engineering from Beijing Jiaotong Uni-
versity, Beijing, China, in 2010 and the Ph.D. de-
gree from Hong Kong Polytechnic University, Hong
Kong, in 2014. In 2015, she joined the School of
Data and Computer Science, Sun Yat-sen University,
Guangzhou, China, where she is currently an Assis-
tant Professor. Her current research interest includes
network science and its applications in engineering
networked systems, such as communication net-
works, power grids, and cyber-physical systems. She

was the recipient of the Hong Kong Ph.D. Fellowship Scheme during her
Ph.D. study in Hong Kong from 2010 to 2014. She is serving as an Associate
Editor for the IEEE Transactions on Circuits and Systems II: Express Briefs.

Hong-Ning Dai is an Associate Professor in Faculty
of Information Technology at Macau University of
Science and Technology. He obtained his PhD in
Computer Science and ngineering from the Depart-
ment of Computer Science and Engineering at the
Chinese University of Hong Kong. His research
interests include wireless networks, mobile com-
puting, and distributed systems. He is serving as
an Associate Editor for IEEE Access, an Associate
Editor for Connection Science and an editor of Ad
Hoc Networks (Elsevier).

http://dl.acm.org/citation.cfm?id=3361338.3361449

