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Abstract—The traditional production paradigm of large batch
production does not offer flexibility towards satisfying the
requirements of individual customers. A new generation of
smart factories is expected to support new multi-variety and
small-batch customized production modes. For that, Artificial
Intelligence (AI) is enabling higher value-added manufacturing
by accelerating the integration of manufacturing and information
communication technologies, including computing, communica-
tion, and control. The characteristics of a customized smart
factory are to include self-perception, operations optimization,
dynamic reconfiguration, and intelligent decision-making. The
AI technologies will allow manufacturing systems to perceive the
environment, adapt to the external needs, and extract the process
knowledge, including business models, such as intelligent produc-
tion, networked collaboration, and extended service models.

This paper focuses on the implementation of AI in cus-
tomized manufacturing (CM). The architecture of an AI-driven
customized smart factory is presented. Details of intelligent
manufacturing devices, intelligent information interaction, and
construction of a flexible manufacturing line are showcased.
The state-of-the-art AI technologies of potential use in CM, i.e.,
machine learning, multi-agent systems, Internet of Things, big
data, and cloud-edge computing are surveyed. The AI-enabled
technologies in a customized smart factory are validated with
a case study of customized packaging. The experimental results
have demonstrated that the AI-assisted CM offers the possibility
of higher production flexibility and efficiency. Challenges and
solutions related to AI in CM are also discussed.

Index Terms—Customized Manufacturing; Artificial Intelli-
gence; Industry 4.0; Smart Factory; Software-Defined Network.

I. INTRODUCTION

This work was supported in part by the National Key R & D Program of
China (Grant No. 2018YFB1700500), the Joint Fund of the National Natural
Science Foundation of China and Guangdong Province (Grant No. U1801264),
and Macao Science and Technology Development Fund under Macao Funding
Scheme for Key R & D Projects (0025/2019/AKP). (Corresponding author:
Hong-Ning Dai.)

J. Wan and D. Li are with the School of Mechanical and Automotive
Engineering, South China University of Technology, Guangzhou, China (e-
mails: mejwan@scut.edu.cn, itdili@scut.edu.cn).

X. Li is with the School of Mechanical Engineering, Zhongkai Uni-
versity of Agriculture and Engineering, Guangzhou, China (e-mail: lixi-
aomin@zhku.edu.cn).

H.-N. Dai is with the Faculty of Information Technology, Macau University
of Science and Technology, Macau SAR (email: hndai@ieee.org).

A. Kusiak is with the Intelligent Systems Laboratory, Department of
Mechanical and Industrial Engineering, The University of Iowa, Iowa City,
USA (email: andrew-kusiak@uiowa.edu).

M. Martı́nez-Garcı́a is with the Dept. of Aeronautical and Auto-
motive Engineering, Loughborough University, UK (email: m.martinez-
garcia@lboro.ac.uk).

Manuscript received xx; revised xx.

THE Industry 4.0 initiative is advocating smart manu-
facturing as the industrial revolution leading to global

economic growth [1]–[4]. Many countries, corporations, and
research institutions have embraced the concept of Industry
4.0, in particular the United States, the European Union, and
East Asia [5]. Some industries have begun a transformation
from the digital era to the intelligent era. Manufacturing repre-
sents a large segment of the global economy, while the interest
in smart manufacturing is expanding [6]. The progress in
information and communication technologies, for example, the
Internet of Things (IoT) [7], [8], artificial intelligence (AI) [9],
[10], and big data [11], [12] for manufacturing applications,
has impacted smart manufacturing [13]. In the broad context
of manufacturing, customized manufacturing (CM) offers a
value-added paradigm for smart manufacturing [14], as it
refers to personalized products and services. The benefits of
CM have been highlighted by multinational companies.

Today, information and communication technologies are the
base of smart manufacturing [15], [16], and intelligent systems
driven by AI are the core of CM [17]. With the development
of AI technologies, new theories, models, algorithms, and
applications - towards simulating, extending, and enhancing
human intelligence - are continuously developed. The progress
of big data analysis and deep learning has accelerated AI
to enter the 2.0 era [18]–[20]. AI 2.0 manifests itself as
a data-driven deep reinforcement learning intelligence [21],
network-based swarm intelligence [22], technology-oriented
hybrid intelligence of human-machine and brain-machine in-
teraction [23]–[25], cross-media reasoning intelligence [26],
[27], etc. Therefore, AI 2.0 offers significant potential to smart
manufacturing, especially, CM in smart factories [28].

Typically, AI solutions can be applied to several aspects
of smart manufacturing. AI algorithms can run the manu-
facturing of personalized products in a smart factory [29],
[30]. The AI-assisted CM is to construct smart manufacturing
systems supported by cognitive computing, machine status
sensing, real-time data analysis, and autonomous decision-
making [31], [32]. AI permeates through every link of CM
value chains, such as design, production, management, and
service [33], [34]. Based on these insights of CM and AI,
the focus of this paper is on the implementation of AI in the
smart factory for CM involving architecture, manufacturing
equipment, information exchange, flexible production line, and
smart manufacturing services.

The contributions of the research presented in this paper are
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as follows.
• The architecture of the AI-assisted CM for smart factories

is developed by merging smart devices and industrial
networks with big data analysis.

• The state-of-the-art AI technologies are reviewed and
discussed.

• The key AI-enabled technologies in CM are validated
with a prototype platform of a customized candy pack-
aging line.

• The challenges and possible solutions brought by the
introduction of AI into CM are discussed.

The remainder of the paper is organized as follows. In Sec-
tion II, the relationship between the CM and AI is discussed.
The general architecture of AI-assisted CM is presented in
Section III. Section IV illustrates the implementation of AI
in intelligent manufacturing equipment. The intelligent infor-
mation exchange process, flexible production line, and smart
manufacturing services in the AI-assisted CM are proposed in
Section V and Section VI, respectively. A case study is pro-
vided in Section VII. The challenges and possible solutions to
the AI-assisted intelligent manufacturing factory are discussed
in Section VIII. Section IX concludes the paper.

II. CUSTOMIZED MANUFACTURING AND ARTIFICIAL
INTELLIGENCE

This section first summarizes the characteristics of cus-
tomized manufacturing in Section II-A and then discusses the
opportunities brought by AI-driven customized manufacturing
in Section II-C.

A. Characteristics of customized manufacturing

Despite the progress made, manufacturing industry faces a
number of challenges, some of which are: traditional mass-
production is not able to adapt to the rapid production of
personalized products; and resource limitations, environmental
pollution, global warming, and an aging global population
have become more prominent. Therefore, a new manufac-
turing paradigm to address these challenges is needed. The
customer-to-manufacture concept reflects the characteristics of
customized production where a manufacturing system directly
interacts with a customer to meet his/her personalized needs.
The goal is to realize the rapid customization of personalized
products. The new generation of intelligent manufacturing
technology offers improved flexibility, transparency, resource
utilization, and efficiency of manufacturing processes. It has
led to new programs, e.g., the Factory of the Future in
Europe [35], Industry 4.0 in Germany [1], and Made in
China 2025 [36]. Moreover, the United States has accelerated
research and development programs [37].

Compared with mass production, the production organi-
zation of CM is more complex, quality control is more
difficult, and the energy consumption needs attention. In
classical automation, the production boundaries were rigid to
ensure quality, cost, and efficiency. Compared with traditional
production, CM has the following characteristics.

• Smart interconnectivity. Smart manufacturing
embraces a cyber-physical environment, e.g.,

processing/detection/assembly equipment, and storage,
all operating in a heterogeneous industrial network.
The Industrial IoT has progressed from the original
industrial sensor networks to the Narrow Band-Internet
of Things (NB-IoT), LoRa WAN, and LTE Cat M1 with
increased coverage at reduced power consumption [38].
Edge computing units are deployed to improve system
intelligence. Cognitive technology ensures the context
awareness and semantic understanding of the industrial
IoT [39]. Intelligent industrial IoT as the key technologies
is widely used for intelligent manufacturing.

• Dynamic reconfiguration. The concept of a smart factory
aims at the rapid manufacturing of a variety of products
in small batches. Since the product types may change
dynamically, system resources need to be dynamically
reorganized. A multi-agent system [40] is introduced to
negotiate a new system configuration.

• Massive volumes of data. An intelligent manufacturing
system includes interconnected devices generating data
such as device status and process parameters. Cloud com-
puting and big data science make data analysis feasible
in failure prediction, active preventive maintenance, and
decision making.

• Deep integration. The underlying intelligent manufac-
turing entities, cloud platforms, edge servers, and up-
per monitoring terminals are closely connected. Data
processing, control, and operations can be performed
simultaneously in the Cyber-Physical Systems (CPS),
where the information barriers are broken down, thereby
realizing the deep integration of physical and information
environments.

B. Overview of AI technologies
AI embraces theories, methods, technologies, and applica-

tions to augment human intelligence. It includes not only AI
techniques such as perception, machine learning (ML), deep
learning (DL), reinforcement learning, and decision making,
but also AI-enabled applications like computer vision, natural
language processing, intelligent robots, and recommendation
systems, as shown in Fig. 1a. ML has outperformed traditional
statistical methods in tasks such as classification, regression,
clustering, and rule extraction [41]. Typical ML algorithms
include decision tree, support vector machines, regression
analysis, Bayesian networks, and deep neural networks.

As a subset of ML algorithms, DL algorithms have superior
performance than other ML algorithms. The recent success of
DL algorithms mainly owes to three factors: 1) the availability
of massive data; 2) the advent of computer capability achieved
by computer architectures and hardware, such as Graphic
Processing Units (GPUs); 3) the advances in diverse DL
algorithms such as a convolutional neural network (CNN),
long short-term memory (LSTM) and their variants. Different
from ML methods, which require substantial efforts in feature
engineering in processing raw industrial data, DL methods
combine feature engineering and learning process together,
thereby achieving outstanding performance.

However, DL algorithms also have their disadvantages.
First, DL algorithms often require a huge amount of data
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Fig. 1. The AI and customized manufacturing. (a) AI technologies include perception, machine learning, deep learning, reinforcement
learning, and decision making as well as AI-enabled applications like computer vision, natural language processing, intelligent robots,
and recommendation systems. (b) AI can foster customized manufacturing in the aspects: customized product design, customized product
manufacturing, manufacturing maintenance, customer management, logistics, after-sales service, and market analysis.

to train DL models to achieve better performance than other
ML algorithms. Moreover, the training of DL models requires
substantial computing resources (e.g., expensive GPUs and
other computer hardware devices). Third, DL algorithms also
suffer from poor interpretability, i.e., a DL model is like an
uncontrollable “black box”, which may not obtain the result
as predicted. The poor interpretability of DL models may
prevent their wide adoption in industrial systems, especially in
critical tasks like fault diagnosis [42] despite recent advances
in improving the interpretability of DL models [43].

C. AI-driven customized manufacturing

As AI technologies have demonstrated their potential in
areas such as customized product design, customized prod-
uct manufacturing, manufacturing management, manufactur-
ing maintenance, customer management, logistics, after-sales
service, and market analysis as shown in Fig. 1b, industrial
practitioners and researchers have begun their implementation.
For example, the work [44] presents a Bayesian network-
based approach to analyze the consumers’ purchase behaviour
via analyzing RFID data, which is collected from RFID-tags
attached to in-store shopping carts. Moreover, a deep learning
method is adopted to identify possible machine faults through
analyzing mechanic data collected from the real industrial
environments such as induction motors, gearboxes, and bear-
ings [45].

Therefore, the introduction of AI technologies can poten-
tially realize the customized manufacturing. We name such
AI-driven customized manufacturing as AI-driven CM. In
summary, AI-driven CM has the following advantages [46],
[47].

1) Improved production efficiency and product quality. In
CM factories, automated devices can potentially make
decisions with reduced human interventions. Technolo-
gies such as ML and computer vision are enablers

of cognitive capabilities, learning, and reasoning (e.g.,
analysis of order quantities, lead time, faults, errors, and
downtime). Product defects and process anomalies can
be identified using computer vision and foreign object
detection. Human operators can be alerted to process
deviations.

2) Facilitating predictive maintenance. Scheduled mainte-
nance ensures that the equipment is in the best state.
Sensors installed on a production line collect data for
analysis with ML algorithms, including convolutional
neural networks. For example, the wear and tear of a
machine can be detected in real-time and a notification
can be issued.

3) Developing of smart supply chains. The variability and
uncertainty of supply chains for CM can be predicted
with ML algorithms. Moreover, the insights obtained can
be used to predict sudden changes in customer demands.

In short, the incorporation of AI and industrial IoT
brings benefits to smart manufacturing. AI-assisted tools
improve manufacturing efficiency. Meanwhile, higher value-
added products can be introduced to the market.

However, we cannot deny that AI technologies still have
their limitations when they are formally adopted to real-
world manufacturing scenarios. On the one hand, AI and ML
algorithms often have stringent requirements on computing
facilities. For example, high-performance computing servers
equipped with GPUs are often required to fasten the training
process on massive data [48] while exiting manufacturing fa-
cilities may not fulfill the stringent requirement on computing
capability. Therefore, the common practice is to outsource (or
upload) the manufacturing data to cloud computing service
providers who can conduct the computing-intensive tasks.
Nevertheless, outsourcing the manufacturing data to the third
party may lead to the risk of leaking confidential data (e.g.,
customized product design) or exposing private customer data
to others. On the other hand, transferring the manufacturing
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Fig. 2. The architecture of AI-assisted customized manufacturing includes smart devices, smart interaction, AI layer, and smart services.

data to remote clouds inevitably leads to high latency, thereby
failing to fulfill the real-time requirement of time-sensitive
tasks.

III. ARCHITECTURE OF AN AI-ASSISTED CUSTOMIZED
MANUFACTURING FACTORY

This section first presents an AI-Assisted customized manu-
facturing (AIaCM) framework in Section III-A and then gives
a brief comparison of the proposed AIaCM framework with
the state-of-the-art literature in Section III-B.

A. AI-Assisted Customized Manufacturing Factory

Different frameworks have been presented towards the
increased interactivity and resource management [49]–[51].
Most studies have focused on information communica-
tions [52] or big data processing [53]–[55]. So far, research
proposing generic AI-based CM frameworks is limited. Sys-
tem performance metrics, e.g., flexibility, efficiency, scalabil-
ity, and sustainability, can be improved by adopting AI tech-
nologies such as ML, knowledge graphs, and human-computer
interaction (HCI). This is especially true in sensing, inter-
action, resource optimization, operations, and maintenance
in a smart CM factory [56], [57]. Since cloud computing,
edge computing, and local computing paradigms have their
unique strengths and limitations, they should be integrated
to maximize their effectiveness. At the same time, the cor-
responding AI algorithms should be redesigned to match the
corresponding computing paradigm. Cloud intelligence is re-
sponsible for making comprehensive, time-insensitive analysis
and decisions, while the edge and local node intelligence
are applicable to the context or time-aware environments. In-
telligent manufacturing systems include smart manufacturing

devices, realize intelligent information interaction, and provide
intelligent manufacturing services by merging AI technologies.
As shown in Fig. 2, an AI-assisted CM framework that
includes smart devices, smart interaction, AI layer, and smart
services. We then explain this framework in detail as follows.

1) Smart devices: include robots, conveyors, and other ba-
sic controlled platforms. Smart devices serve as “the physical
layer” for the entire AIaCM. Specifically, different devices and
equipment, such as robots and processing tools are controlled
by their corresponding automatic control systems. Therefore, it
is crucial to meet the real-time requirement for the device layer
in an AIaCM system. To achieve this goal, ML algorithms can
be implemented at the device layer in low power devices such
as FPGAs. The interconnection of the physical devices, e.g.,
machines, conveyors, is implemented at the device layer [58],
[59] using edge computing servers.

2) Smart interaction: links the device layer, AI layer, and
services layer [60], [61]. It represents a bridge between differ-
ent layers of the proposed architecture. The smart interaction
layer is composed of two vital modules. The first module
includes basic network devices such as access points, switches,
routers and network controllers, which are generally supported
by different network operating systems, or equipped with dif-
ferent network functions. The basic network devices constitute
the core of the network layer [62], [63]. Different from the first
module which is fixed or static, the second module consists
of the dynamic elements, including network/communications
protocols, information interaction, and data persistent or tran-
sient storage. These dynamic elements are essentially infor-
mation carriers to connect different manufacturing processes.
The dynamic module is running on top of the static one.

AI is utilized in the prediction of wireless channels, op-
timization of mobile network handoffs, and control network
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TABLE I. Summary of most relevant state-of-the-art literature

Refs. Smart devices Smart interaction AI Smart services Pros Cons Applications

[49] X × X X Integration sensor with
cloud services

No edge computing
considered

Machine status monitor-
ing (primitive ML meth-
ods were used)

[50] X X X X Service-oriented smart
manufacturing

No edge computing
considered

Milk production from
buffalo pasture

[51] X X × × Integration CPS with
smart manufacturing

No edge computing and
in-depth analysis of AI
algorithms

Several cases from prod-
uct design to manufac-
turing control

[52] X × × X Comprehensive consid-
eration of the entire in-
dustrial network

No AI as well as edge
computing considered

No specific application

[54] X × X X Integration sensor with
cloud services

No edge computing
considered

Light gauge steel pro-
duction line

[55] X X X × Integration CPS with
AI

No edge computing
considered

Production line and fac-
tory management

[56] × × X × Diverse AI algorithms
were used

No consideration
of smart devices,
interactions and
services

Cold spray additive
manufacturing,
augmented reality-
guided inspection and
surface stress estimation

congestion. Recurrent Neural Networks (RNN) or Reservoir
Computing (RC) are candidate solutions due to the advantages
of them in analyzing temporal network data.

3) The AI layer: includes algorithms running at different
computing platforms such as edge or cloud servers [54],
[64]. The computing environment consists of cloud and edge
computing servers running MapReduce, Hadoop, and Spark.

AI algorithms are adopted at different levels of computing
paradigms in the AIaCM architecture. For instance, training a
deep learning model for image processing can be conducted
in the cloud. Then, edge computing servers are responsible for
running the trained DL model and executing relatively simple
algorithms for specific manufacturing tasks.

4) Smart manufacturing services: include data visualiza-
tion, system maintenance, predictions, and market analysis.
For example, a recommender system can provide customers
with details of CM products, and the information including the
performance of a production line, market trends, and efficiency
of the supply chain.

B. Overview on state-of-the-art manufacturing methods

Recently, substantial research efforts have been made to im-
prove the interactivity and elasticity of exiting manufacturing
factories [49]–[57]. Table I summarizes most relevant state-
of-the-art literature. We can observe from Table I that most of
the references only concentrate on a single or several aspects
in CM. For example, the work [49] presents a cloud man-
ufacturing framework to analyze and process manufacturing
data. Similarly, a cloud-based manufacturing equipment [54] is
proposed to provide users with on-demand services. However,
outsourcing manufacturing data to cloud services providers
who are often owned by third parties can also bring the risks
of leaking customers’ private data and exposing confidential
manufacturing data (e.g., product design models). Despite
most of the aspects being considered, the work [50] ignores

the critical issues such as the edge computing paradigm and
advanced AI technologies.

In contrast, our AIaCM framework includes all the aspects
in CM, including smart devices, smart interaction, AI tech-
nologies, and smart services. Meanwhile, our AIaCM frame-
work also considers the advent of edge computing, software-
defined networks, and advanced AI technologies. Moreover,
we also present a full-fledged prototype to further demonstrate
the effectiveness of the proposed framework (please refer to
Section VII for more details). The implementation details of
the AIaCM architecture are discussed next.

IV. INTELLIGENT MANUFACTURING DEVICES

A. Edge computing-assisted intelligent agent construction

In the customized production paradigm, manufacturing de-
vices should be capable of rapid restructuring and reuse for
small batches of personalized products [65], [66]. However,
it is challenging to achieve elastic and rapid control over the
massive manufacturing devices. The agent-based system was
considered a solution to this challenge [67], [68]. Agents can
autonomously and continuously function in a collaborative
system [69]. A multi-agent system can be constructed to
take autonomous actions. Different types of agents have been
constructed in [70]–[72].

Although a single agent may have sensing, computing, and
reasoning capabilities, it alone can only accomplish relatively
simple tasks. Smart manufacturing may involve complex tasks,
for instance, the image-based personalized product recogni-
tion, expected from the emerging multi-agent systems [73],
[74]. However, the multiple agents are deficient in processing
massive data. Recent advances in edge computing can meet
this emerging need [75]–[77]. As shown in Fig. 3, a variety
of decentralized manufacturing agents are connected to edge
computing servers via high-speed industrial networks. The



PROCEEDINGS OF THE IEEE, VOL. XX, NO. X, FEBRUARY 2020 6

Device layer

Agent layer

Edge layer

Robot arm
Robot Forklift

AGV

Agent

Conveyor belt

Edge computing agent

Edge computing node

Computing facilities

Agent

Camera

3D printer

AI library
Data storage

Motor

AI layer
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edge computing assisted manufacturing agents embrace the
device layer, agent layer, edge computing layer, and AI layer.

An agent is equipped with a reasoning module and a
knowledge base, offering basic AI functionalities such as
inferencing and computing. Moreover, with the support of
new communication technologies (e.g., 5G mobile networks
and high-speed industrial wired networks), all agents and edge
computing servers can be interconnected.

Agents run on edge computing servers to guarantee low-
latency services for data analytics. The agent edge servers are
connected by high-speed industrial IoT to achieve low latency.
Generally, edge computing servers support a variety of AI
applications.

An example of such a system is a personalized product
identification based on deep learning image recognition. First,
a multiple agent subsystem is constructed for producing per-
sonalized products. Then, a single agent records image or
video data at different stages of the CM process. Next, the
edge computing server runs the image recognition algorithms,
such as a convolutional neural network (CNN), R-CNN, Fast
R-CNN, Faster R-CNN, YOLO, or Single Shot Detection
(SSD), all of which have demonstrated their advantages in
computer vision tasks. The identification results are rapidly
transferred to the devices. When the single edge computing
server cannot meet the real-time requirements, the multiple
agent edge servers may work collaboratively to complete the
specific tasks such as product identification. Indeed, during
the process, the master-slave or auction mode can be adopted
for coordination, according to the status analysis of each edge
server.

Additionally, with the help of edge computing, it is possible
to establish a quantitative energy-aware model with a multi-
agent system for load balancing, collaborative processing
of complex tasks, and scheduling optimization in a smart
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factory [78]. The above procedure can also optimize the
production line with better logistics while ensuring flexibility
and manufacturing efficiency.

B. Manufacturing resource description based on ontology

Intelligent manufacturing will be greatly beneficial to the in-
tegration of distributed competitive resources (e.g., manpower
and diverse automated technologies), so that resource shar-
ing between enterprises and flexibility to respond to market
changes are possible (i.e., CM). Therefore, in smart manu-
facturing, it is imperative to realize dynamic configurations of
manufacturing resources [79], [80]. CM can optimize lead time
and manufacturing quality under various real-world constraints
of dynamic nature (resource and manpower limitations, market
demand, etc.).

There are several strategies in describing manufacturing
resources, such as databases, object-oriented method [81], and
the unified manufacturing resource model [82]. In contrast to
the conventional resource description methods, the ontology-
based description is one of the most prominent methods. An
ontology represents an explicit specification of a conceptual
model [83], by way of a classical symbolic AI reasoning
method (i.e., an expert system). Modeling an application
domain knowledge through an expert system provides a con-
ceptual hierarchy that supports system integration and inter-
operability via an interpretable way [84], [85].

In our previous work [86], the device resources of smart
manufacturing were integrated by the ontology-based inte-
gration framework, to describe the intelligent manufacturing
resources. The architecture consisted of four layers, namely,
the data layer, the rule layer, the knowledge layer, and the
resource layer. The resource layer represented the entity of
intelligent manufacturing equipment (e.g., manipulators, con-
veyor belt, PLC), which was essentially the field device.
The knowledge layer was essentially the information model
composed of intelligent devices, which was integrated into the
domain knowledge base through the OWL language [87]. The
rule layer was used to gather the intelligent characteristics of
intelligent equipment, such as decision-making and reasoning.
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The data layer included a distributed database for real-time
data storing, and the relational database was used to associate
the real-time data.

Due to the massive amount of data generated from man-
ufacturing devices, it is nearly impossible to consider all
the manufacturing device resources. Thus, it is important to
construct a new manufacturing description model to realize
the reconfiguration of various manufacturing resources. In this
model, the resources can be easily adjusted by running the
model. Therefore, ontology modeling is conducted on a device
and related attributes of an intelligent production line in CM.
The manufacturing resources are mapped to different functions
with different attributes. For instance, the time constraint of
a product manufacturing is divided into a number of time
slots with consideration of features of processes and devices.
Then, the CM resources of a product can be mapped into
computing, cutting, conveying, and other functions with the
limited time slot, as shown in Fig. 4. Next, a customized
product can be produced by different devices with different
time constraints. Accordingly, a product can be represented
by ontology functions.

Meanwhile, after making a reasonable arrangement of dif-
ferent manufacturing functions at different time slots, a DL
algorithm can forecast time slots of working states. The time
slots of working states are important for the reconfiguration of
manufacturing resources. Therefore, in actual applications, a
different attribution of a device and customized products can
be employed as a constraint condition.

C. Edge Computing in Intelligent Sensing
The concept of ubiquitous intelligent sensing is a corner-

stone of smart manufacturing in the Industry 4.0 framework.
Numerous research studies have been conducted in monitoring
manufacturing environments [88]–[90]. Most published results
adopt a precondition-sensing system that only accepts a static
sensing parameter. Obviously, this results in inflexibility and
the sensing parameters are difficult to be adjusted to fulfill
different requirements. Second, although some studies claim
dynamic parameter tuning, the absence of a prediction function
is still an issue. Existing environment sensing (monitoring)
cannot adjust the sensing parameters in advance to achieve a
more intelligent manufacturing response.

As shown in Fig. 5, the manufacturing environment intel-
ligent sensing based on the edge AI computing framework
includes two components: sensors nodes and edge computing
nodes [91]. Generally, smart sensor nodes are equipped with
different sensors, processors, and storage and communication
modules. The sensors are responsible for converting the phys-
ical status of the manufacturing environment into digital sig-
nals, and the communication module delivers the sensing data
to the edge server or remote data centers. The edge computing
servers (nodes) include the stronger processing units, larger
memories, and storage space. These servers are connected
to different sensors nodes and deployed in approximation
to the devices, with the provision of the data storage and
smart computing services by running different AI algorithms.
Meanwhile, the edge computing servers are interconnected
with each other to exchange information and knowledge.

Wireless link
Wired link
Edge computing node Data Information knowledge

Information extraction process

AI
Computing facilities

Sensors

Sensors

Sensors
Sensors

Sensors

Fig. 5. Intelligent sensing based on edge AI computing. Sensor nodes
collect ambient data while edge computing notes can preprocess and
cache the collected data, which can be further transferred to remote
cloud servers for in-depth data analysis.

Especially, the sensing parameters can be adjusted in a flex-
ible monitoring subsystem in the manufacturing environment,
according to different application requirements and the task
priority. To achieve a rapid response high priority system, the
edge AI servers should have access to the sensing data, and
capability to categorize the status of the CM environment.
This can be done by processing the data features through ML
classification algorithms such as logistic regression, SVM, and
classification trees. When the data is out of the safety range, a
certain risk may exist in the manufacturing environment. For
instance, if an anomalous temperature event would happen in
the CM area, the edge server could drive the affected nodes to
increase their temperature sensing frequency, in order to obtain
more environmental details and to make proactive forecasts
and decisions.

The environmental sensing data delivery is another im-
portant component in CM. With the development of smart
manufacturing, a sensing node not only performs sensing but
also transmits the data. With the proliferation of massive
sensing data, sensor nodes have been facing more challenges
from the perspectives of data volume and data heterogeneity.
In order to collect environment data effectively, it is needed
to introduce new AI technologies. The sensor nodes can
realize intelligent routing and communications by adjusting
the network parameters, assigning different network loads and
priorities to different types of data packets. With this optimized
sensing transfer strategy, the AI methods can make adequate
forecasts with reduced bandwidth usage.

Discussion. We present intelligent manufacturing devices
from edge computing-assisted intelligent agent construction,
manufacturing resource description based on ontology, and
edge computing in intelligent sensing. It is a challenge to
upgrade the existing manufacturing devices to improve the
interoperability and the inter-connectivity. Retrofitting instead
of replacing all the legacy machines may be an alternative
strategy in this regard. The legacy manufacturing equipment
can be connected to the Internet by additively mounting sen-
sors or IoT nodes in approximation to existing manufacturing
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Fig. 6. Software-defined industrial networks consist of network
coordinated nodes, SDN routers, SDN controllers, data centers, and
cloud computing servers which can support intensive computing tasks
of AI algorithms.

devices [92], [93]. Moreover, monitors can be attached to
existing machinery to visualize the monitoring process. It is
worth mentioning that retrofitting strategies may apply for the
sensing or monitoring scenarios while they are not suitable or
less suitable for the cases requiring to make active actions
(like control or movement). Furthermore, a comprehensive
plan should be made in advance rather than arbitrarily adding
sensors to the existing production line [94]. Retrofitting strate-
gies also have their limitations, such as a limited number of
internal physical quantities can be monitored in a retrofitted
asset with respect to a newly-designed smart machine.

V. INTELLIGENT INFORMATION INTERACTION IN A
SMART FACTORY

In the CM domain, the information exchange system needs
to fulfill the dynamic adjustment of network resources so
as to produce multiple customized products in parallel. In
order to obtain optimal strategies, many studies have focused
on this topic, and proposed insightful algorithms as well as
strategies [95]. However, there are still two open issues: a
network framework to dynamically adjust network resources,
and the end-to-end (E2E) data delivery. In this section, we
present software-defined industrial networks and AI-assisted
E2E communication to tackle these two challenges.

A. Software-defined industrial networks

Industrial networks are a crucial component in CM, and cus-
tomized product manufacturing groups can be understood as
subnets. Via an industrial network (consisting of base stations,
access points, network gateways, network switches, network
routers, and terminals), the CM equipment and devices are
closely interconnected with each other and can be supported
by edge or cloud computing paradigms [96]. Taking full
advantage of AI-driven software-defined industrial networks,
and relevant networking technologies is an important method
to achieve intelligent information sharing in CM [97], [98].

In conventional industrial networks, network control func-
tions have been fixed at network nodes (e.g., gateways,

routers, switches). Consequently, industrial networks cannot
be adapted to dynamic and elastic network environments,
especially in customized manufacturing. The software-defined
networking (SDN) technology can separate the conventional
network into the data plane and the control plane. In this
manner, SDN can achieve flexible and efficient network
control for industrial networks. It has been reported that a
software-defined industrial network can increase the flexibility
of a dynamical network system while decreasing the cost of
constructing a new network infrastructure [99].

The introduction of AI technologies to SDN can further
bestow network nodes with intelligence. As demonstrated in
Fig. 6, AI technologies are introduced into traditional SDN
so as to form a novel software-defined industrial network
(SDIN). The proposed SDIN contains a number of mapping
network nodes, SDIN related devices, data centers, and cloud
computing servers to support intensive computing tasks of
AI algorithms. Manufacturing devices are connected by their
communication modules, and they are mapped to different
network terminal nodes. On the SDIN level, key devices
such as coordinated nodes and SDIN controllers construct the
SDIN layer. First of all, coordinated nodes are linked with the
ordinary nodes, and deliver network control messages from
other SDN devices. Second, the SDN routers are the key
devices that realize the separation of data flow and control
flow of the entire manufacturing network. In addition, the
SDIN controller is directly connected to the AI server, and
the AI server provides network decisions directly to the SDN
controller.

In the network information process, AI algorithms, such as
deep neural networks, reinforcement learning, SVM, and other
ML algorithms can be executed in a server according to the
state of the network devices, such as load information, commu-
nication rate, received signal strength indicator, and other data.
Then, the AI server returns the optimized results to the SDN
controller, and the results are divided into different instructions
for different network devices in the light of a specific CM task.
Following the above steps, the SDN controllers send a set of
instructions to the routers and the coordination nodes. Finally,
network terminals readjust the related parameters, (e.g., com-
munication bandwidth, transmitted powers) to complete the
data communication process.

Intelligent optimization algorithms (e.g., ant colony or
particle swarm optimization) can find optimal data transfer
strategies – based on the network parameters provided by
the SDIN, or given by the constraints of data interaction.
These algorithms can adjust the latency and energy consump-
tion requirements. Thus SDIN can improve the information
management processes within a CM industry framework,
reducing the cost of dynamically adjusting or reconfiguring
network resources. Moreover, it can improve and propel the
whole manufacturing intelligence. Additionally, by adopting
an AI-assisted SDIN, the production efficiency can be further
improved.

B. End-to-End communication
End-to-end (E2E) or device-to-device communication be-

tween manufacturing entities is a convenient communication
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strategy in industrial networks [100], [101]. E2E communica-
tion provides communication services with lower latency and
higher reliability, as compared to a centralized approach [102].
With effective information interaction via E2E communication,
the entire system can achieve full connectivity. In the context
of CM, data transmission with different real-time constraints
has become a critical requirement [103]. The E2E industrial
communication approach optimizes the usage of network
resources (e.g., network access and bandwidth allocation)
through data communication of varying latency [104], [105].
Meanwhile, in order to realize the E2E communication in the
industrial domain, a hybrid E2E communication network –
based on the AI technology and SDIN – is here constructed
by exploiting different media, communication protocols, and
strategies. The hybrid E2E-based communication mechanism
with the AI assistance can be divided into three layers: the
physical layer, the media access controlling (MAC) layer, and
the routing layer.

In the physical layer, according to the advantages and
disadvantages of the involved communication technologies,
different communication media include optical fiber [106],
network cable [107], and wireless radio [108]. Generally, in-
dustrial communications can be divided into wired or wireless
communications. On the one hand, wired communications typ-
ically exhibit high-stability and low-latency. A representative
case is an industrial Ethernet, which is based on a common
Ethernet and runs improved Ethernet protocols, such as Ether-
CAT [109], EtherNet/IP [110], and Powerlink [111]. On the
other hand, wireless networks have been adopted in applica-
tions with relatively high flexibility [112], [113]. Nowadays,
an increasing number of mobile elements have been incor-
porated in manufacturing systems; therefore, wireless media
has been widely exploited in mobile communications [114].
Conventional strategies on fixed and static industrial networks
may not fulfill the emerging requirements on flexible network
configurations. The AI and related technologies, such as deep
reinforcement learning, optimization theory and game theory,
can play significant roles in improving the communication
efficiency in the physical layer, e.g., determining the optimal
communication between wired and wireless networks while
achieving a good balance between network operational cost
and network performance.

In the MAC layer, different devices have different require-
ments for E2E communications according to their specific
functions. Although many different MAC protocols have been
proposed (e.g., CSMA–Carrier Sense Multiple Access) [115],
CDMA–Code Division Multiple Access) [116], TDMA–Time
Division Multiple Access) [117] and their improved versions,
these methods still lack flexibility, and do not fulfill the
emerging requirements of industrial applications. Generally,
industrial E2E communications can be divided into two cat-
egories: periodic communications and aperiodic communica-
tions. Similarly, AI plays an important role in the MAC layer.
An example is a hybrid approach that combines the CSMA and
TDMA, with an intelligent optimization method, to improve
the efficiency of the E2E communication. In particular, the two
categories of communication requirements (high and low real-
time or periodic and aperiodic communications) are classified

by the AI-based method (e.g., naı̈ve Bayes). Next, an improved
hybrid MAC is constructed on top of the CSMA and TDMA.
TDMA and CSMA schemes deal with the periodic and aperi-
odic data flows of the E2E communications. The size of this
proposed mechanism can be adjusted in accordance with the
AI-optimized results of a real application.

The network routing is also another key component of
E2E communications. The key node of the routing path
plays an important role in the E2E communications as well.
However, the performances of routing key nodes are impacted
by the workload; for instance, the amount of forwarded data.
Similarly, AI plays a significant role in the routing layer. The
predicted state parameters, such as communication rate and
network loads of key nodes, can be obtained by using historical
data from the network node status by algorithms, such as deep
neural networks or deep reinforcement learning (e.g. deep Q-
learning).

VI. FLEXIBLE MANUFACTURING LINE

A flexible manufacturing production line realizes customiza-
tion. AI-driven production line strategies and technologies,
such as collective intelligence, autonomous intelligence, and
cross-media reasoning intelligence, have accelerated the global
manufacturing process. Therefore, the subjects of cooperative
operation between multiple agents, dynamic reconfiguration
of manufacturing, and self-organizing scheduling based on
production tasks are presented in this section.

A. Cooperative multiple agents

Cooperation among multiple agents is necessary to dynam-
ically construct collaborative groups for the completion of
customized production tasks [118]. As discussed in Section IV,
multiple agents with edge computing provide a better option
than a single device to build a collaborative operation to realize
CM [78], [119]. Therefore, by combining the edge computing-
assisted intelligent agents and different AI algorithms, a novel
cooperative operation can be constructed as shown in Fig. 7.
The strategy of cooperative operation by multiples agents can
be divided into the order of submission, task decomposition,
cooperative group, and subgroup assignment.

The working process of a flexible manufacturing produc-
tion line can be described as follows. First, according to
the customers’ requirements, the CM product orders are is-
sued to the manufacturing system through the recommender
system. After receiving the product orders, the AI-assisted
task decomposition algorithms take the product orders as the
input, the device working procedure as the output, and the
product manufacturing time as a constraint; these algorithms
are mainly executed at the remote cloud server. A product
order can be divided into multiple subtasks, which are sent to
all the agents via the industrial network. After the negotiation,
agents return the answers to the edge server, which handles the
working subtasks according to corresponding conditions and
constraints. Next, the AI-assisted cost-evaluation algorithm
calculates the cost of a producing group (i.e., cooperative
manufacturing group) from the historical data. Then, the edge
agents intelligently select suitable device agents to finish the
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Fig. 7. Cooperative multiple agents. The strategy of cooperative multiple agents can be divided into i) the order of submission, ii) task
decomposition, iii) cooperative group and iv) subgroup assignment.

product order after considering the whole cooperative group
performances, such as producing time and product quality.
Moreover, the edge agents send the selection result to the
device agents, which are chosen to take part in the producing
order. The main cooperative group is constructed based on the
working steps.

The main cooperative group may not be well suited for real
applications, especially for complicated CM tasks. Therefore,
an AI-based method for constructing a suitable-size coop-
erative subgroup is an important step for dealing with the
mentioned problem. A possible strategy is to use cognitive ap-
proaches such as the Adaptive Control of Thought—Rational
(ACT-R) model [120]. These subtasks cooperative groups can
be mapped to the digital space (i.e., edge agent) and form
even lower level subgroups, all interconnected by the conveyor,
logistics systems, and industrial communication systems. Each
subgroup can delegate the same edge agent, to provide the
management and customers with manufacturing services. The
characteristics of the subgroups are partly derived from the
process constraints and the physical constraints of the plant.
In principle, the higher the constrains the deeper the task tree
will expand, from more abstract tasks to particular atomic
targets achievable by the present devices. This structure can
be replicated with a probabilistic graphical model or with a
fuzzy tree.

After all the agents have been assigned with subtasks,
they form two level-cooperative groups. The formation of
these cooperative groups is beneficial to resource manage-
ment. Then, according to the manufacturing task attributes,
multiple agents complete the producing task. During this
period, the corresponding device agents send their status data
to edge servers timely, and the manufacturing process can
be monitored by analyzing these data in the entire system.
In contrast to the AI-driven cooperative operation between
multiple agents, conventional methods often rely on human
operators who participate in the whole process or computer-
assisted operators also requiring human interventions. These
methods inevitably result in huge operational expenditure.

B. Dynamic reconfiguration of manufacturing Systems

With the scientific development of the industrial market
and manufacturing equipment, different industrial devices
present different performance requirements representing mul-
tiple function trends [121]. For instance, the latest Computer
Numerical Control (CNC) machine tool can complete a wide
range of tasks, from lathing to milling functions. On the
other hand, a dedicated manufacturing line does not meet
new industrial requirements, especially for customized produc-
tion [122]. The trend today is towards reconfiguration and re-
programmability of manufacturing processes [123]. Although
several studies have investigated the problem and presented
meaningful results [124], [125], most of them lack intelligent
design to fulfill the emerging requirements of dynamic recon-
figuration of manufacturing systems, especially for customized
manufacturing. In particular, the work [124] focuses on the
communications between agents while [125] investigates the
relationship between manufacturing flexibility and demands.
Thus, AI technologies have seldom been adopted in these
studies. At present, ontology (as shown in Section IV) of-
fers insights into dynamic reconfiguration of manufacturing
resources [102], [126].

A schematic of the dynamic reconfiguration process based
on the ontology inference is shown in Fig. 8. Each customized
product invokes several processing procedures. First, a person-
alized product manufacturing-related device (such as cutting,
materials handling device) is selected by ontology reasoning
based on the device function. Then, the second selection of the
devices involved in the manufacturing is finished according
to ontology results with respect to the related manufacturing
process, the manufacturing time, manufacturing quality, and
other parameters of a device. Finally, a CM production line
is constructed. Specifically, when the production line receives
a production task, the raw material for a specific type of
products is delivered from an autonomous warehouse. Then,
the production line completes the manufacturing tasks in the
process sequence. Furthermore, when one of the manufac-
turing devices breaks down during the process, automatic
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switching of the related machining equipment by ontology
inference is conducted. Meanwhile, the reasoning mechanism
reflects the reconstruction function of a flexible production of
the production line.

The presented approach leads to optimal process planning
and functional reconstruction. Besides, it shows the strengths
of ontology modeling and reasoning. In practice, only ontology
and constraints need to be established according to the above
description. According to Jena syntax1, the corresponding API
interface can be invoked to meet the task requirements of this
scenario. In the future, other AI algorithms are expected to be
integrated with ontology inference.

C. Self-organizing Schedules of Multiple Production Tasks

Product orders generally have stochastic and intermittent
characteristics as the arrival time of orders is usually un-
certain [127]. This may result in having to share produc-
tion resources among multiple tasks. Therefore, creating self-
organizing schedules with a time slot based on multiple agents
for multiple production tasks is paramount [71]. The mech-
anism of self-organizing schedules for multiple production
tasks can be divided into three steps: task analysis, task
decomposition, and task execution.

As shown in Fig. 9, in terms of initialization, when a new
production task is processed by the multi-tasking production
line, the new production tasks are divided into multiple steps
by an AI-based method executed at the cloud. Additionally,
according to the process lead time, the producing period can
be decomposed into time slots of different lengths. Moreover,
for one working step in a time slot, edge agents select all idle
device agents by comparing the mapping relationship between
working steps and device agent functions. This processed
time slot information is then broadcasted to all the agents
simultaneously. Then, idle device agents choose the working
step by price bidding or negotiating with others, according

1Jena syntax defines a set of rules, principles, and procedures to specify
the semantic web framework of Apache Jena (https://jena.apache.org/getting
started/index.html).
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Fig. 9. Self-organization of schedules of multiple production tasks
consists of three steps: task analysis, task decomposition and task
execution.

to the manufacturing requirements and self-conditions (e.g.,
manufacturing time and quality). These results are broadcasted
to other agents, including different servers. Next, the edge
agents update the working state of the idle device agent in
the corresponding time slot. These procedures are repeated
until the new task steps are allocated within a certain or fixed
time. Lastly, multiple agents finish the scheduling of the new
production task in a self-organization manner.

Self-organization of schedules with multiple agents and
time slots can effectively complete simultaneous production
tasks using a flexible production. Furthermore, production
line efficiency is improved. Consequently, all manufacturing
resources, including different devices and subsystems, are
more intelligent to finish the multiple production tasks au-
tonomously. In contrast, conventional methods often require
huge human resources in scheduling and planning production
tasks [128]. Despite the recent advances in computer-aid meth-
ods [129], they still require substantial human interventions
and cannot meet the flexible requirements.

However, we have to admit that AI-driven self-organization
of schedules does not get rid of humans in the loop of
the entire production process. The main goal of AI-driven
methods is to save unnecessary human resource consumption
and mitigate other operational expenditures. In this manner,
human workers can concentrate on planning and optimizing
the overall production procedure instead of conducting te-
dious and repetitive tasks. Meanwhile, an appropriate human
intervention is still necessary when full automation is not
achievable or is partially implemented. In this sense, AI-driven
methods can also assist human workers to give intelligent
determinations.

https://jena.apache.org/getting_started/index.html
https://jena.apache.org/getting_started/index.html
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a conveyor, and a cyber-physical system. (b) The implementation of customized candy wrapping line consists of diverse devices.

VII. CASE STUDY

In the section, a case study is presented, showcasing the
following aspects: prototype platform construction, big data
analysis using AI technology for preventive maintenance, and
cloud-assisted customization service.

A. Prototype platform construction

We implement a prototype of the AI-assisted CM frame-
work, namely a customized candy wrapping production line.
As shown in Fig. 10a, the framework includes the following
components: CM devices, the industrial network, a conveyor,
and a cyber-physical system. All components are connected
through the industrial network, i.e., OPC Unified Architecture
(OPC UA) and Data Distribution Service (DDS). Fig. 10b
illustrates the implementation of customized candy wrapping
line. The candy packing line mainly includes the production
stations and the logistics transmission system. In the logis-
tics transmission system, the packing box is continuously
transferred by the conveyor belts or AGVs. The production
stations are distributed discretely between the mainline and
the branch line, and RFID tags are adopted to obtain the
operation information. The equipment types of the production
stations include the materiel feeding, candy grasping, box
delivery, and finished goods storage. The presented system
meets the requirements of small-batch production. In partic-
ular, the packaged candy followed the taste, flavor and color
preferences given by the customers. The system includes four
layers, all of which are connected by the industrial IoT with
different link functions.

The first layer is the device layer, including five robots, two
AGVs, a conveyor system, and a warehouse. The device layer
performs the basic functions of an intelligent production line,
such as carrying, clipping, loading raw material, and unloading
final products. Cognitive robots can be vertically integrated
into a cyber-physical system in smart manufacturing [130].

The industrial network layer (second layer) plays a key
role in the information interaction and intelligent connection
of different communication technologies – e.g., industrial

wireless local networks (Wi-Fi, ZigBee), industrial Ethernet,
industrial NFC (Near Field Communication), and mobile
communications. There are three sub-networks for finishing
different latency communication functions [131]. Specifically,
wired industrial networks are employed as the inner equipment
to achieve higher real-time performance. In this aspect, the
wireless industrial networks were mainly adopted in the mon-
itoring system while the mobile wireless local networks also
helped to achieve higher-level flexibility [132]; for instance,
mobile wireless nodes were dynamically deployed to monitor
the industrial environment status.

The third layer is the computing layer, which is mainly
involved with the analysis, computing, and knowledge mining
of big data. A commercial solution has been adapted to build a
cloud platform. XenServer developed by Citrix is used to real-
ize the virtualization of the server cluster consisting of multiple
virtual machines and the management of virtual machines.
Meanwhile, we also establish a big data analytics framework,
which is a software architecture based on a cloud platform for
big data storage and distributed computing. Apache Hadoop,
an open-source solution, is used to provide the non-relational
database HBase and the computing architecture of YARN
(Yet Another Resource Negotiator). On top of the big data
framework, the AI-assisted optimization algorithms (such as
deep learning models) have been deployed to realize intelligent
applications. To meet different latency requirements in the
platform, a hybrid computing paradigm, orchestrating the
cloud and edge computing paradigms, is adopted. Explicitly,
edge computing is used to deal with real-time tasks, while
cloud computing was focused on completing time-insensitive
tasks, such as historical data processing. The deployment of
edge computing enables cloud service characteristics such as
mobile computing, scalability, and privacy policy [133].

The fourth layer is the service layer. In this level, a large
number of manufacturing resources are stored at the cloud
platform, which offers different AI services. Pattern recogni-
tion, accurate modeling, knowledge discovery, reasoning, and
decision-making capabilities are provided.
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The working process of the platform is as follows. First,
customers select candy products according to their preferences,
which included the color, taste, quantity, and variety of the can-
dies in an AI recommender web service system. Then, these
proposed schemes and candy order parameters are delivered
to the manufacturing cloud through the web service, and the
web server was connected to the cloud via the Internet. The
related product orders are created according to the submitting
information. These orders were decomposed into different
working steps by the ontology-based manufacturing system.
Next, the multiple agents completed the production tasks in
a self-organized way. After obtaining the working steps, the
manufacturing devices are assembled into collaborative groups
to finish all tasks. Thereafter, the platform finished the candy
wrapping task.

During the product manufacturing process, the manufactur-
ing data is collected by sensors and is then transmitted to the
cloud or nearby edge servers. The analyzed results provide key
information for product monitoring. More importantly, these
results can be used to adjust the processes and procedures to
ensure higher quality and increase the production efficiency
of the whole system. The model-driven method with ontology
proposed in [134] was used to achieve interoperability and
knowledge sharing in a manufacturing system across multiple
platforms in the product lifecycle. When multiple tasks were
needed to be finished in the platform, the manufacturing re-
source reconstruction methods were employed for production
scheduling. The cloud-based manufacturing semantic model
proposed in [135] was used to obtain general task construc-
tion and task matching. After implementation, three candy-
wrapping tasks with ten different candies were processed in
the AI-assisted platform at the same time, which represented
a typical production line model for mass wrapping, and the
first-in-first-out (FIFO) scheme was adopted accordingly.

B. Big data analysis using AI technology for preventive main-
tenance

Preventive maintenance for smart manufacturing has re-
ceived attention in the literature [136]–[141]. A system ar-
chitecture for an active preventive maintenance system was
proposed in [142]. Based on this architecture, an improved
preventive maintenance mechanism was constructed by merg-
ing cloud computing and edge computing with deep learn-
ing, as shown in Fig. 11. The smart preventive maintenance
system was composed of CM devices, industrial networks,
big data processing centers, and applications for preventive
maintenance. The data pipeline consisted of three main steps,
data collection, data processing, and data mining and analysis
using AI.

From the perspective of preventive maintenance, the related
data collection represented the fundamental step in the fol-
lowing analysis. Different data, including the environmental
data, product processing data, device working status, and
device logs were collected and transmitted to the computing
servers, such as cloud and edge computing servers, through
the industrial network or industrial IoT. Edge computing and
cloud computing paradigms presented in [143] were employed
to address elastic and virtual manufacturing resources, which
provided opportunities for real-time monitoring of produc-
tion Key Performance Indicators (KPIs) and smart inven-
tory management. The computing servers were responsible
for data processing and for device maintenance. The data
includes different types of manufacturing device-related data.
First, redundant and misleading data were removed during
the data collection process. Then, the abstract data for real-
time or historical big data analysis was used for equipment
maintenance. The AI-based techniques (e.g., deep learning)
have been regarded as the most effective way for system and
equipment fault recognition based on big data analysis, so
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these techniques were adopted in this step. Consequently, the
manufacturing maintenance knowledge base was built on top
of big data. Note that AI techniques play an important role in
extracting knowledge from massive and heterogeneous manu-
facturing data, consequently achieving the intelligence [144].
The manufacturing data includes 1) structured data such as
data stored in a rational database and 2) non-structured data
such as text, documents, sound, image, and video. Diverse
AI algorithms such as ontology learning, natural language
processing, and deep learning can be leveraged.

Furthermore, in our previous work [142], a big data solution
for active preventive maintenance in manufacturing environ-
ments was proposed. This approach essentially combined a
real-time active maintenance mechanism with an offline pre-
diction method. The real-time performance was considered as
the main feature of a manufacturing system, especially equip-
ment maintenance. Therefore, to achieve the system mainte-
nance tasks, the hybrid edge and cloud computing paradigm
for big data analysis represented a better option for preventive
maintenance. Specifically, the equipment maintenance tasks
can be divided into online and offline tasks. On the one
hand, as edge servers being deployed close to the equipment
can provide low-latency (real-time) service, edge computing
was adopted for dealing with the data online. On the other
hand, cloud servers have powerful computing capabilities,
and offline big data processing was executed at the cloud
layer. Moreover, the analysis result was delivered to the man-
agement or data visualization system. The segmented model
provided in [145] for preventive maintenance of semiconductor
manufacturing equipment, including both parametric and non-
parametric models, was used for preventive maintenance.

Consequently, big data with AI is a key technology for
equipment maintenance in smart manufacturing. Big data helps
to build comprehensive condition monitoring and prediction
systems, which can provide preventive maintenance scheduling
according to the equipment status. Integrated with the AI-
based methods, big data analysis can construct a maintenance
knowledge library and decrease the cost of operation and
maintenance management of a smart manufacturing system.

C. Cloud-assisted customization service
Unlike traditional manufacturing, CM can provide cus-

tomized services. In other words, customers can participate in
the process of intelligent manufacturing [146], [147]. Recently,
cloud computing has been proven to provide support for
customers taking part in the production process and drive the
customization services in a seamless manner [131], [148],
allowing different data services to be quickly accessed by
customers.

Therefore, the integration of cloud computing with cus-
tomization services can improve the user experience of cus-
tomization services. We name such integration of cloud com-
puting with customization services as cloud-assisted cus-
tomization services. As shown in recent studies [149], [150],
cloud-assisted customization services are well suited to of-
fer a better user experience to the customer. In particu-
lar, cloud-assisted customization services are user-centric,
demand-driven, and service-oriented.

Assisted 
design

Social
network

Product
recommendation

Remote 
monitoring

Experiences
Feedback

Edge nodes Cloud servers

Data

Collection Analysis
Information Knowledge

Product
design

Processing
analysis

Product
manufacturing

Product
checking

Logistics Market
trends

CM

AI

CS

Fig. 12. The cloud-assisted customization services cover the entire
produce life cycle: early stage, middle stage and later stage.

Based on the multiple different services provided by cloud
computing, the customization service can be achieved from the
production cycle perspective, as shown in Fig. 12. The entire
production cycle was divided into three stages: early stage,
middle stage, and later stage. In the early stage of product
production, customers can select more suitable products by
the intelligent recommender system. As for the intelligent
recommender system, big data analysis is adapted to integrate
the order data, the production data, and the packing line
status. Spark MLlib is adapted to realize the personalized
recommendation, which has advantages on algorithm, experi-
ence, and performance. Moreover, using cloud-assisted design,
customers can also design the manufacturing products without
a professional background in a digital simulation environment,
virtual reality (VR), and/or augmented reality (AR). In the
middle stage of the production, CM can provide other personal
customization services. For instance, customers can remotely
monitor the details of the production process via a digital twin
or a virtual production line system. Then, logistics information
of different stages can be sent to specific users via cloud
computing and mobile Internet. At the later stage, customers
can provide feedback on their user experience; this feedback
can be used to improve the manufacturing process.

An important difference between intelligent manufactur-
ing and traditional manufacturing lies in the fact that users
can participate in the production process via cloud-assisted
technologies in intelligent manufacturing. Through industrial
cloud computing, CM can provide customers and users with
customization services. This type of customization service
is to motivate participation and construct a new production
shopping experience.

In terms of the market trend prediction, the more the
market data gathered, the more accurate the results. Differ-
ent algorithms can assist in the data-driven decision-making
process. For example, shape mining is a framework based
on engineering design data [151] and has been applied to
passenger car design. Further, the apriori and C5.0 algorithms
for data mining are able to extract rules from databases [152].

The platform used in the experiment, cannot only finish on-
demand candy production based on the customization param-
eters but also adapt to changes in the market. The constructed
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platform can increase the efficiency of the entire system
of candy wrapping. This methodology, in combination with
the aforementioned decision-making algorithms, constitutes a
proof of concept of a seamless CM production pipeline.

Discussion. It is worth mentioning that the number of
interactions between customization and production should also
be limited although cloud-assisted customization services can
greatly improve user experience [153]. In practice, there is
a trade-off between customization interactions and product
manufacturing. From the user experience perspective, the more
customization interactions lead to a better user experience.
However, the increased number of customization interactions
may also increase the expenditure and prolong the produc-
tion time of products, consequently affecting user experience.
Therefore, it can enhance customization services to provide
users with some well-designed product samples accompanied
by tutorials in advance.

VIII. CHALLENGES AND ADVANCES

The convergence of AI technologies, IoT, SDN, and other
new ICTs in smart factories, while it can significantly increase
the flexibility, intelligence, and efficiency of CM systems
it also poses challenges. In this section, we discuss these
challenges as well as recent advances.

A. Smarter devices in customized manufacturing

In a CM environment, the equipment does not only per-
form the basic functions of automation but also needs to be
intelligent and flexible. From the point of view of stand-alone
equipment, the devices should have the following functions:
parameter sensing, data storage, logical inference, information
interaction, self-diagnostics, hybrid computing support, and
preventive maintenance. From the perspective of the physical
layer, the realization of CM is increasingly complex, as stan-
dard devices or equipment cannot accomplish this complicated
task. Therefore, devices need to have both collaborative ability
and swarm intelligence to collaborate with each to complete
complex tasks. Devices with the above functions can meet the
requirements of personalized production and adapt to the trend
of achieving the automation and intelligence of manufacturing.
Therefore, CM devices must be based on the integration
and deep fusion of advanced manufacturing technologies,
automation technologies, information technology, image tech-
nology, communication technologies, and AI technologies to
realize the local and swarm intelligence. In this aspect, to
be realizable in a generic context, further progress needs to
be made in AI and in AI/robotics integration. However, as
shown in Section VII, CM is already realizable in restricted
environments.

Extensive studies have been conducted in the respective
technologies to support CM [154]–[156]: intelligent connec-
tivity, data-driven intelligence, cognitive Internet of things, and
industrial big data. Unfortunately, most of these studies have
mainly focused on single-device intelligence. Although these
studies provide useful suggestions towards smarter devices,
there is a still huge gap between realistic smart devices and
the current solutions. We consider that an ideal method for

realizing smart devices in manufacturing should integrate a
series of methods to ensure the CM with edge intelligence that
offers adaptability and response to a wide range of scenarios.
These different methods or algorithms can be orchestrated by
a central AI unit, which decides which algorithm is more
useful for a particular task (combining a symbolic AI approach
with machine learning). Meanwhile, a good balance between
intelligence and cost is still a challenge that needs to be
addressed in the future.

B. Information interaction in CM
Most manufacturing frameworks represent the distributed

systems, where high-efficient communications between differ-
ent components are needed [157], [158]. On the one hand,
different components of CM need not only effective connec-
tions but also highly efficient information interactions. As
shown in early parts of this paper, the CM systems must
incorporate different information interaction technologies and
algorithms. On the other hand, due to the device hetero-
geneity and the increased demands of communications, the
CM information interactive systems have to transmit massive
data with different latency requirements. Consequently, the
networks of CM need to be optimized to fulfill the diverse
requirements of different applications, such as media access,
moving handover, and congestion control. In other words, CM
needs as a basis of a highly efficient information interaction
system, which integrates multiple information technologies,
including the absorbing DL and other AI algorithms. This
system particularly depends on efficient and reasonable in-
formation interaction. With the development of manufacturing
techniques, an increased number of studies have focused on
the massive volume of communications and a large number of
connections [159]. Based on network performance optimiza-
tion methods, researchers have developed several industrial
networks [160], [161]. As different information transfer pro-
tocols exist with different requirements, such as time-sensitive
and time-insensitive data transfer, the construction of a more
efficient interaction industrial network represents another im-
portant challenge of future research. Existing studies mostly
focus on high-speed communications, rather than efficient
interaction with intelligent networks. These methods usually
only meet the basic requirements of industrial networks, such
as bandwidth and delay.

Recently, wireless mobile communications (e.g., 5G sys-
tems) and optical fiber communications have achieved great
development [162], [163]. The 5G technology for smart fac-
tories is still in its infancy, and there are still a number of issues
such as deployment, accessing and spectrum management to
be addressed. A hybrid industrial network with the latest
communication technologies and AI (including deep learning,
integrated learning, transfer learning, etc.) can be a promising
solution for information interaction, which should consider
different data flows according to different applications of
intelligent CM.

C. Dynamic reconfiguration of manufacturing resources
Intelligent manufacturing, especially CM, involves a dy-

namic reorganization of the available resources and extreme
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flexibility. The essence of CM is to provide customized
products, which have the characteristics of small-batch, short
processing cycle, and flexible production. Therefore, manufac-
turing resources need constant readjustment and reorganiza-
tion [164]. In addition, customized products are thought of as
a variety of processing crafts. Moreover, the increasing com-
plexity of the industrial environments makes the management
of the resources even more difficult. A factory nowadays is
a system consisting of many sub-systems, which can produce
emergent behaviors through the interaction of the subsystems.
Therefore, the dynamic reconstruction of manufacturing re-
sources is one of the main challenges towards achieving a
generic CM facility. In this aspect, a number of strategies have
been proposed [165], [166] in this domain.

Recently, knowledge reasoning, knowledge graph, trans-
fer learning, and other AI algorithms have attained great
progress [167]–[169]. In our opinion, hybrid AI methods
combining the latest knowledge reasoning technologies with
swarm intelligence can be a promising solution for dynamic
reconstruction, which may consider different application sce-
narios of CM. Manufacturing-based process optimization with
ML technologies may be one of the effective methods to
reorganize resources. Moreover, digital twin technologies may
be the driving technologies to improve resource reconfigura-
tion [170]–[172].

D. Practical deployment and knowledge transfer
Although the AI-assisted CM framework is promising to

foster smart manufacturing, several challenges in industrial
practice arise before the formal adoption of this framework.
The first non-technical challenge mainly lies in the cost of
upgrading existing manufacturing machinery, digitizing man-
ufacturing equipment, and purchasing computing facilities as
well as AI services. This huge cost may be affordable for small
and medium-sized enterprises (SMEs). With respect to up-
grading manufacturing production lines for SMEs, retrofitting
legacy machines can be an economic solution as discussed
in Section IV-C. In particular, diverse sensors and IoT nodes
can be attached to existing manufacturing equipment to collect
diverse manufacturing data. Those sensors and IoT nodes can
be collected with the Internet so as to improve the interconnec-
tivity of legacy machines. For example, Raspberry Pi models
mounted with sensors can be deployed in workrooms to collect
ambient data [92], [173]. Besides hardware upgrading, soft-
ware tools as well as AI services should be also purchased and
adopted by manufacturing enterprises. Similarly, the economic
solution for SMEs is to outsource manufacturing data to cloud
services providers or Machine learning as a service (MLaaS)
provider who can offer on-demand computing services. Never-
theless, outsourcing confidential data to untrusted third parties
may increase the risks of security and privacy leakage. Thus,
it is a prerequisite to enforce privacy and security protection
schemes on manufacturing data before outsourcing. Moreover,
the expenditure of system operating and training personnel
should not be ignored in practical deployment.

Another challenge is the effective technology transfer from
research institutions to enterprises. Technology transfer in-
volves many non-technical factors and multiple parties. The

non-technical issues of technology transfer include marketing
analysis, intellectual property management, technical invention
protection, commercialization, and financial returns. Many
frontier technological innovations often end up with unsuc-
cessful technology transfer due to ignorance of the non-
technical factors [174]. One of the main obstacles in tech-
nology transfer lies in the technology readiness level (TRL)
gap between research and industrial practice. In particular,
research institutions often focus on research results at TRL 1-
3 implying basic feasibility and effectiveness while industrial
enterprises often require transferred technologies at TRL 7-8
or even higher levels meaning prototype demonstration and
real deployment [175]. We admit that there is still a long way
for the AI-assisted CM framework before reaching TRL 7-
8. The investigation of the technology transfer of AI-assisted
CM will be a future direction. Both researchers and industrial
practitioners are expected to work together to realize AI-
assisted CM.

IX. CONCLUSION

Recent advances in AI technologies have had an impact
on the manufacturing industry, especially within customized
smart manufacturing. In this article, AI-assisted customized
manufacturing architectures – incorporating IoT, edge intelli-
gence, and cloud computing paradigms – have been proposed.
These key AI-enabled technologies have been validated in
an industrial packaging scenario. Further, each of the aspects
composing these architectures have been carefully reviewed.

The fusion of AI and manufacturing provides a potential
solution for customized manufacturing. Future research will
be directed towards tackling the challenges related to smart
manufacturing devices, effective information interaction, dy-
namic reconstruction of manufacturing resources, and practical
deployment issues.
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