
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 1

Compacting Deep Neural Networks for Internet of
Things: Methods and Applications

Ke Zhang, Member, IEEE, Hanbo Ying, Hong-Ning Dai, Senior Member, IEEE, Lin Li, Yuangyuang Peng, Keyi
Guo, Hongfang Yu, Member, IEEE

Abstract—Deep Neural Networks (DNNs) have shown great
success in completing complex tasks. However, DNNs inevitably
bring high computational cost and storage consumption due to
the complexity of hierarchical structures, thereby hindering their
wide deployment in Internet-of-Things (IoT) devices, which have
limited computational capability and storage capacity. Therefore,
it is a necessity to investigate the technologies to compact DNNs.
Despite tremendous advances in compacting DNNs, few surveys
summarize compacting-DNNs technologies, especially for IoT
applications. Hence, this paper presents a comprehensive study
on compacting-DNNs technologies. We categorize compacting-
DNNs technologies into three major types: 1) network model
compression, 2) Knowledge Distillation (KD), 3) modification
of network structures. We also elaborate on the diversity of
these approaches and make side-by-side comparisons. Moreover,
we discuss the applications of compacted DNNs in various IoT
applications and outline future directions.

Index Terms—Deep Learning, Deep Neural Networks,
Internet-of-Things, Model Compression.

I. INTRODUCTION

WE have experienced the proliferation in the Internet
of Things (IoT), which has been widely deployed in

diverse industrial and economic sectors to connect things, peo-
ple, and processes to form a cyber-physical-social system [1].
Massive data has been generated from various IoT devices and
IoT networks. The IoT data has characteristics of diversity,
heterogeneity, and massive volumes [2]. The data analytics
on enormous IoT data can extract high economic and social
values. However, it is challenging to collect, process, store, and

This work was supported in part by the Sichuan Science and Technology
Program under Grant 2019YFG0405, in part by the Project of Science and
Technology on Electronic Information Control Laboratory, in part by the Joint
Key Research and Development Project between Sichuan and Chongqing
under Grant cstc2020jscx-cylhX0004, in part by the Macao Science and
Technology Development Fund under Macao Funding Scheme for Key R
& D Projects under Grant 0025/2019/AKP.

K. Zhang and Y. Peng are with the School of Computer Science and
Engineering, University of Electronic Science and Technology of China,
Chengdu, China, and Science and Technology on Electronic Informa-
tion Control Laboratory, Chengdu, China. (e-mail: kezhang@uestc.edu.cn;
pengyuanyuan@std.uestc.edu.cn)

H. Ying, L. Li and H. Yu are with the School of Communi-
cation and Information Engineering, University of Electronic Science
and Technology of China, Chengdu, China. (e-mail:{201852011823,
201822010425}@std.uestc.edu.cn, yuhf@uestc.edu.cn)

H.-N. Dai is with Faculty of Information Technology, Macau University of
Science and Technology, Macau, China. (e-mail: hndai@ieee.org)

K. Guo is with the Courant Institute of Mathematical Science, New York
University, New York, USA. (e-mail:keyi.guo@nyu.edu)

Copyright (c) 2021 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

analyze massive IoT data with diverse types (e.g., unstructured,
structured, text, and video data).

The recent advances in computing, big data, and Arti-
ficial Intelligence (AI) bring opportunities to address data
analytics challenges in IoT. In particular, cloud computing
serves as a new computing paradigm to outsource IoT data
to remote cloud servers, which can store and process massive
IoT data. Meanwhile, distributed computing models such as
MapReduce, Hadoop, and Spark can distribute computing and
storage tasks to different computing nodes to balance the
load. Moreover, AI-enabled data analytical methods, such as
Machine Learning (ML) and Deep Learning (DL) algorithms,
can analyze massive IoT data and extract valuable information.

ML approaches that are beneficial to handle structured and
well-labeled data has been widely used in business analy-
sis and decision sciences. At the same time, they cannot
well process unstructured or unlabelled data. In contrast,
DL algorithms based on Artificial Neural Networks (ANNs)
have superior performance than conventional ML methods by
mimicking human brains, which have the strengths to analyze
complex data. Moreover, DL approaches can well process
unstructured data without extensive human interventions.

DL has dramatically changed the way of computing fa-
cilities processing various information. In IoT, the massive
amount of heterogeneous IoT data undoubtedly provides a
stage for DL to demonstrate its strength. Applying DL al-
gorithms to IoT devices can provide users with vital services,
such as intelligent transportation systems, smart manufactur-
ing, traceable logistics, and social networks.

However, DL algorithms often spend a long time in training
DL models via learning from massive data. Moreover, DL
algorithms also require being executed at dedicated computing
facilities, such as the Graphics Processing Unit (GPU) and
Tensor Processing Unit (TPU), to shorten the training time and
achieve high performance. Furthermore, DL models often have
bulky size, thereby leading to extra storage and computational
costs. The stringent computing and storage requirements pre-
vent DL approaches from the wide adoption in IoT scenarios,
in which IoT devices often have limited computing capability
and storage capacity.

Therefore, it is a necessity to investigate the portable
DL approaches, which have less stringent computing and
storage requirements on IoT devices. There are numerous
studies working toward designing lightweight DL approaches.
Because DL approaches are mainly based on Deep Neural
Networks (DNNs), many of the recent advances are based
on compacting neural networks, Knowledge Distillation (KD),

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 2

TABLE I
COMPARISON OF THIS PAPER WITH REPRESENTATIVE SURVEYS

Issues
Refs. [4]

2018
[5]

2020
[6]

2020
[7]

2020
[8]

2020
This

paper

Compacting
networks

Yes Yes Yes Yes No Yes

Knowledge
distillation

Partial Yes Yes No No Yes

Modifying
structures

No No No Partial No Yes

Applications
in IoT

No No No No Partial Yes

and modification of network structures. Despite the advent in
compacting DL models, there are few surveys on summarizing
the studies on designing lightweight DL approaches, especially
for IoT scenarios. For example, Han et al. [3] discussed
several different approaches for compacting DNNs. However,
they did not consider the advent of KD and modification of
network structures, both of which can significantly compact
DNN models.

A. Motivation

There are several recent surveys on DNN compression.
The work [4] presents an overview of model compression
and acceleration of DNNs while it only considers Convolu-
tional Neural Networks (CNNs) and does not consider other
types DNNs, such as Recurrent Neural Networks (RNNs).
Meanwhile, [5] provides a more detailed overview of model
compression and acceleration techniques with a more detailed
elaboration of each type of method. Moreover, [6] mainly
addresses the compression of ML models while having a
simple discussion on RNN compression. Furthermore, [7]
investigates the impact of hardware on model compression,
which nevertheless has not appeared in the previous surveys.
Although these surveys address some issues on model com-
pression and acceleration of DNNs, they seldom address any
issues on practical applications. There is only one recent
work [8] discussing related applications of DL in the network
security perspective while no addressing the comprehensive
IoT ecosystem.

It becomes an inevitable trend to apply DL approaches
to IoT applications due to the strengths of DL. Practical
applications in IoT also pose challenges on model compression
and acceleration, especially distributed IoT with consideration
resource allocation among multiple models. Moreover, the
diversified applications of IoT also bring challenges in de-
ploying compressed DNN models. However, most of existing
studies lack of comprehensive analysis on compacting-DNNs
techniques with consideration of IoT applications.

B. Contributions

This research gap motivates us to present a comprehensive
survey on compacting DNNs for IoT. The core contribution
of this paper is to present the state-of-the-art in compacting-
DNNs techniques for IoT. In contrast of existing surveys,

this paper presents a comprehensive survey on three major
compacting-DNNs techniques as well as holistic applications
of compacted DNN models in IoT. Table I compares this paper
with other existing surveys.

The major contributions of this paper are summarized
as follows. We first present some fundamentals related to
DNN and IoT in Section II. We then categorize the major
compacting-DNNs approaches into three categories: 1) com-
pacting network model in Section III, 2) KD in Section IV,
and 3) modification of network structures in Section V. In each
category, there are several different approaches, as shown in
Fig. 1. Unlike the previous surveys, we mainly concentrate
on the breakthroughs and innovations brought by the latest
advances in compacting DNNs. In terms of IoT applications,
we discuss the role of DNN in different application domains
as well as the role of compression and acceleration methods in
Section VI. We also outline the future directions of this field
in Section VII. We finally conclude the paper in Section VIII.
The abbreviations of important terms are given in Appendix A.

II. OVERVIEW OF DNNS IN IOT

A. Fundamentals of DNN

AI may have come on in leaps and bounds in the last few
years, but it still has a distance away from real intelligence,
which is expected to reason and make decisions like humans.
DL is a type of ML and AI, which imitates the way hu-
mans obtain specific knowledge. Normally, DL algorithms are
stacked with increasingly complex and abstract hierarchical
structures. By using DL, the process of collecting, analyzing,
and interpreting large amounts of data becomes faster and
easier.

The success of DL is mainly attributed to ANNs, which
consist of a number of bionic neurons similar to millions of
neurons in a human brain [9]. Neural networks mimic the
way that human brains achieve perception, recognition, and
inference. The early design of ANNs limits ANN to a three-
layer structure: one input layer, one hidden layer, and one
output layer. DNN that further extends an ANN has multiple
hidden layers between the input layer and the output layer,
where “deep” means the multiple hidden layers. Similar to
ANNs, DNNs can also fit complex nonlinear relationships.
DNNs can be roughly categorized into the following types:
CNNs, RNNs, and other types of DNNs.

1) CNN: CNNs were initially proposed by LeCun et al. [10].
The emergence of AlexNet [11] in 2012 was regarded as the
Renaissance of neural networks and the rise of DL. CNN
mainly contains convolutional layers and sub-sampling layers.
In the convolutional layer, neurons only connect to some ad-
jacent neurons, as in Fig. 2(a). This sparse connection reduces
a large number of parameters and the risk of overfitting [12].
The convolutional layer usually contains several feature maps.
Each feature map is composed of neurons with shared weights
arranged in a rectangle. The convolution kernel is usually
initialized with a random decimal matrix. Sub-sampling can be
regarded as a special convolution process, also called pooling.
Its function is to reduce the number of parameters in the
feature maps and use a feature value to represent a small area.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 3

Sec. II : Overview of DNNs in IoT

A. Fundamentals of DNN

B. Overview of IoT

C. Challenges of DNN in IoT

Sec. III : Compacting Network Model

A. Quantification
Scalar and Vector Quantization

 Fixed-point Quantization

B. Network Pruning

Magnitude-based Pruning

Channel Pruning
C. Low-rank

Decomposition

Sec. IV : Knowledge Distillation

A. Knowledge from Logits

B. Knowledge from Intermediate Layers

C. Mutual Information Distillation

D. Self Distillation

E. Other KD methods

Sec. V : Modification of Network Structures

A. Channel Shuffle/Shift

B. Shortcut Connections

C. Basic Network Units

D. Network Architecture

Search

Depthwise Separable

Convolutions

SE Module

Fire Module

Other Modules

Sec. VI : Applications of Compacted DNNs in IoT

A. Basic Service

Sec. VII : Future Directions

D. Fundamentals of Compacting-DNNs
Technologies

Image Processing and CV

Indoor Localization

Physiological Monitoring

Security and Privacy

B. Upper Applications

Intelligent Transportation Systems

UAV-enabled IoT Applications

Sensing and Surveillance

Wearable IoT Applications

Miscellaneous

A. Exploration of Model

Compression Techniques

B. Automated Model

Compression Methods

C. Deployment of Compacted

DNNs in IoT

D. Blockchain and DL for IoT

Voice and Audio Processing

Fig. 1. Diagrammatic view of the organization of this survey.

Hidden LayersInput
Layer

Output
Layer

Hidden Layers
Input
Layer

Output
Layer

Input Cell Pooling or
Convolution Fully Connected Memory Cell Output Cell

(a) Convolutional Neural Network (b) Recurrent Neural Network

Fig. 2. General structures of CNN and RNN. The main structure of CNNs
consists of convolutional layers, while the main structure in DNNs consists
of memory cells.

Convolution and sub-sampling work together to reduce model
complexity and parameters. Generally, CNN consists of three
parts: 1) input layer, 2) a combination of n convolutional layers
and pooling layers, 3) a fully connected multi-layer perceptron
classifier. Some classic CNN structures include AlexNet [11],
Visual Geometry Group (VGG) [13], GoogleNet [14], and
ResNet [15].

2) RNN: Many practical applications deal with different
types of data such as text, voice, and video, all of which
are nearly related. Moreover, the network’s output is related
to the input at current time and connected to one or more
previous outputs at a specific time. Traditional neural networks
cannot handle this temporal relation. Another problem is that
both the input and output data formats of traditional neural
networks are fixed. In contrast, some practical problems,
such as machine translation, require variable-length input and
output data. Therefore, a more robust model is needed to solve
this problem. RNNs can solve this problem since a neuron in
RNNs can receive the information from both the top layer
and the previous RNN unit [16], as in Fig. 2(b). Commonly-
used RNN methods are multi-layer RNN, bidirectional RNN,
and recursive neural network. Other variants of RNNs include
Long Short-Term Memory (LSTM) [17] and Gated Recurrent

Unit (GRU). [18].
3) Other DNNs: DNN has some other novel network struc-

tures while we only introduce the two most representatives of
them. Hinton proposed Deep Belief Networks (DBNs) [19]
in 2006. A DBN is a generative model that can express
an in-depth representation of training data and its structure,
consisting of multiple restricted Boltzmann machines. DBNs
are usually used as a pre-trained component of other DNNs
and consequently form many neural networks based on DBNs.
The typical example is convolutional DBNs. The Generative
Adversarial Network (GAN) [20] proposed by Goodfellow
is also a variant of DNN. A GAN is composed of two
models: a discriminative model and a generative model. The
responsibility of the discriminative model is to differentiate
the real data and the created data accurately. The generative
model’s role is to generate new data that is sufficiently similar
to the real data. At present, GANs mainly devote to computer
vision and natural language processing, such as improving
image resolution, restoring occlusion images, and generating
images based on text descriptions. The literature [21] intro-
duced GANs in adversarial-image forensics.

B. Overview of IoT

The term “Internet of Things” was first proposed by Ashton
in 1999 to describe which a system can connect objects
attached to sensors in the physical world to the Internet [22].
Today, IoT describes a network of physical objects embedded
in some components, with the purpose of data connection and
exchange with other devices and systems over the Internet.
Nowadays, there are more than 7 billion connected IoT de-
vices. And experts predict that this number will grow to 10
billion by 2020 and 22 billion by 2025 [1].

The proliferation of IoT devices leads to massive IoT data
generated all the time. This volume of IoT data contains
valuable information as well as noise, error, and redundant
information [2]. It is necessary to apply sophisticated ML
methods to process and analyze IoT data. How to reliably

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 4

obtain actual IoT data from a noisy and complex environment
is a problem. It is not enough to gather a massive amount
of IoT data, and it is also essential to implement data anal-
ysis [23]. The analytics on the IoT data can be categorized
into 1) stream analytics and 2) real-time analytics [24]. The
former has no time limit or average time limit while the latter
needs to provide analysis response or output within a strict
time limit when the IoT data reaches the micro-batches [25].

DL is an effective method that can extract useful informa-
tion from massive IoT data. Its high efficiency in complex data
processing may play an essential role in future IoT services.
Compared with ML, DL has a better performance with a
massive amount of data. Furthermore, it also can automatically
extract new features for different problems [26]. In IoT, many
researchers have used DNN to simplify complex problems.
For example, the handover control in wireless systems via
DNN [27], DNN-based complex resource allocation solution
for the collaborative mobile edge computing network [28],
beam management and interference coordination with DNN in
dense millimeter wave networks [29], and the use of a DNN to
speed up resource allocation in wireless networks [30]. In the
area of the smart building [31], DNN is utilized for thermal
comfort modeling. Also, in the field of Internet of Vehicles
(IoV) [32] there is a blockchain-enabled IoV framework with
cooperative positioning methods to improve the positioning
accuracy, system robustness, and security of vehicular Global
Positioning System (GPS). With the introduction of Fifth
Generation (5G) networks, more and more devices will join
the network in the future. In a massive device communication
scenario, most devices spend most of their time in the sleep
state and seldomly need to remain active to save energy. There-
fore, to ensure the efficiency and success of communication, it
is necessary to monitor the equipment’s status. A DNN based
on variational autoencoder was built to detect device activity
in massive machine-type communications under imperfect
channel state information [33].

C. Challenges of DNNs in IoT

There is no doubt that the advantages of DNNs and IoT
complement each other. However, how to effectively combine
DNNs and IoT is a problem that many scientific researchers
attempt to solve. Cloud computing [34] has some inherent
advantages such as virtualization, large-scale integration, high
reliability, high scalability, and relatively low cost. It comprises
three key service models: 1) Infrastructure-as-a-Service (IaaS),
2) Platform-as-a-Service (PaaS), and 3) Software-as-a-Service
(SaaS) [35]. Because of enormous DNN models and com-
putational complexity, it is difficult to compute the inference
results at devices with limited resources. The intuitive solution
is to deploy the DNN model on the server in the cloud
data center. However, with so many computing tasks being
processed in the cloud, the data that needs to be transmitted
is large in scale and quantity, putting tremendous pressure
on the cloud computing infrastructure’s network capacity and
computing power. Besides, almost all applications in IoT
field require ultra-low power consumption, little storage space
consumption, and real-time data processing, especially for

those sensitive to delay or highly interactive. The considerable
amount of data communication has dramatically increased
the pressure on the backbone network and brought massive
expansion and maintenance costs to service providers. In
order to cope with the excessive resource requirements of
DNNs, traditional methods rely on mighty clouds for DNN
calculations. However, using this method may have severe
delays and wasted energy [36]. IoT applications have vital
real-time requirements and user data privacy issues in actual
use. It is more efficient and secure to deploy DNNs at edge
computing nodes instead of remote cloud servers.

Fog computing [37] and edge computing [38] are attrac-
tive supplements to cloud computing. The basic idea of
fog/edge computing is to deploy computing facilities close to
the data source for data processing, rather than transmitting
data to a remote computing facility. In edge computing, the
vast majority of occasions are mobile edge computing [39].
Fog/edge computing-based IoT is a distributed architecture,
which is physically close to the location where data is gener-
ated, thereby making it outstanding in service delivery and
privacy [40]. This architecture consists of two layers: the
edge layer and the cloud layer. The former layer usually
consists of sensors, vehicles, various IoT devices, IoT gate-
ways, and network access points. The cloud layer contains
internet connections and cloud servers. In this way, not all the
data is transmitted to remote clouds, thereby reducing data
transmission.

Because distributed processing through edge computing or
parallel computing through mobile devices will increase addi-
tional transmission costs and energy consumption, Umeda and
Karin [41] proposed a way to divide DL tasks of immediate
layers (hidden layers) based on node processing power. They
distributed a hidden layer to several nodes in a wireless sensing
network and assigned their tasks according to their computing
power in advance. Then each node performs tasks in sequence,
and the output from the previous node will be considered
as the input of the next node. If some nodes are missing,
the remaining tasks will be handed over to the server. The
combination of edge computing and AI has been a new hot
area, being referred to as “Edge Intelligence (EI)” or “edge
AI” [42]. Specifically, according to the amount and path
length of data offloading, EI is categorized into six levels.
The definition is given as follows [43]: 1) Cloud Intelligence,
2) Cloud–Edge Conference and Cloud Training, 3) In-Edge
Co-inference and Cloud Training, 4) On-Device Inference and
Cloud Training, 5) Cloud–Edge Co-training and Inference, 6)
All In-Edge, 7) All On-Device.

There are three ways, as shown in Fig. 3, to deploy DNNs
in IoT: 1) centralized mode, 2) decentralized mode, and 3)
hybrid mode.

(a) Centralized: In this mode, the training and inference
tasks of DNN models are performed at cloud servers. The
training data is generated and collected directly from the end
devices. The training data can be a collated dataset, which can
be directly uploaded to remote clouds. However, this mode has
a high delay and is only suitable for applications that do not
have vital real-time requirements.

(b) Decentralized: In this mode, edge computing nodes

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 5

(a) Centralized (b) Decentralized (c) Hybrid

Cloud

Edge Node

DNN

Fig. 3. DNN model deployment in IoT. (a) The centralized computing tasks are undertaken by the clouds; (b) the decentralized computing tasks are undertaken
by the edge nodes; (c) the hybrid computing tasks are shared by the clouds and edge nodes after being appropriately allocated.

(often deployed with IoT gateways and base stations) can
collect IoT data to train the DNN model locally, thereby
protecting private information. The global DNN model can
be obtained by sharing the local DNN models between the
edge servers. The end devices can download the models from
the local edge computing nodes or download them from other
edge nodes.

(c) Hybrid: The configuration in this mode is the most
flexible. In this case, edge computing nodes are distributed
throughout the entire architecture. The DNN models can be
integrated through distributed updating or centralized training
in the cloud center.

The mixed-mode is the most widely used, but this mode’s
resource scheduling problem is also the most complicated.
How can the scheduling task achieve the response with the
lowest possible delay? Lin et al. [44] proposed a self-adaptive
particle swarm optimization algorithm with genetic algorithm
operators, which cuts down the cost of data transmission as
well as execution and controls the expiry date of applications.
However, this method does not consider the load-balancing
problem.

IoT devices are usually limited by resources, which leads
to the need for distributed DNN models to be deployed
across IoT devices. Regarding the distributed design of DNN
deployment, the existing solutions are categorized into two
categories: 1) focuses on how to compress the DNN model to
reduce the amount of calculation, and 2) focuses on how to
partition the DNN model. Thus, each device is only responsi-
ble for the partial computation, it can afford [45]. DNN models
usually have a very deep structure with many parameters. So,
they often have significant redundancy in the parameterization
of several DL models [46]. Thus, recent studies such as [47]
attempt to convert a deep model to a shallow neural network
even with a similar number of parameters. In this paper, we
mainly investigate the methods of compressing DNNs through
various techniques.

D. Fundamentals of Compacting-DNNs Technologies

As mentioned above, it is necessary to compact existing
DNNs in terms of the model size and the computing cost
so that compacted DNNs can be used in different IoT appli-
cations. In particular, compacting-DNNs technologies aim to
solve model efficiency, which mainly focuses on the storage

cost (i.e., the model size) and the time cost (i.e., the computing
cost) during inference phase of the model. The storage prob-
lem mainly refers to the storage of weight parameters in the
model, which requires enormous footprints for the device. The
time problem mainly refers to the number of computations.

Generally, the methods of compacting DNNs can be cat-
egorized into two categories: 1) compressing the original
model into a compact model and 2) directly training a small-
size model. The main idea of the first group of methods
is to decrease the parameters and computation tasks in a
pre-trained model, typically including quantization, network
pruning, and low-rank decomposition. The second group of
methods includes a) KD and b) modification of network
structures. KD mainly allows a student network to learn and
imitate the output of an excellent teacher network as the
teacher network’s output contains more information than the
original data labels so that the student network with a much
smaller size can have a similar performance to the teacher.
Modification of network structures mainly relies on Network
Architecture Search (NAS) and artificial basic unit design,
which can find small but efficient and representative basic
units. According to specific application scenarios, the modified
model can be scaled up and fine-tuned appropriately, and then
it can be put into use.

III. COMPACTING NETWORK MODEL

From the perspective of lightweight network structures, the
original bloated layer structures can be reduced and stream-
lined through quantization, pruning and low-rank decomposi-
tion techniques.

A. Quantization

Quantization is a method for many models to compress
and accelerate applications. The goal of quantization is to
reduce the overhead of high-precision floating-point calcula-
tions. The earliest quantization used are Product Quantization
(PQ) [48] and Residual Quantization (RQ) [49]. According
to the quantification of objects, quantitative methods have two
categories: 1) scalar and vector quantization and 2) fixed-point
quantization.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 6

TABLE II
COMPARISON OF SCALAR AND VECTOR QUANTIZATION METHODS

ACCORDING TO QUANTIZATION ALGORITHM AND ENCODING METHOD.

References Quantization algorithm Encoding method

Gong et al. [50]
k-means quantization,

PQ, RQ
N/A

Wu et al. [51]
PQ and sharing
block weights

N/A

Gudovskiy et al. [52] similar to RQ N/A

Choi et al. [53]
Hessian weighted

k-means quantization
Huffman codes

Reagen et al. [54] N/A
Based on the

Bloomier filter

1) Scalar and Vector Quantization.: By using these tech-
niques, a codebook and a set of quantization codes represent
the original parameters. The quantization codes describe the
distribution of quantization centers in the codebook. If further
compression is needed, the quantization code can also be
encoded by lossless encoding (e.g., Hoffman encoding). In Ta-
ble II, we briefly compare some scalar and vector quantization
methods.

In [50], Gong et al. proposed the vector quantization method
and explored scalar and vector quantization technology. The
common methods of scalar and vector quantization are k-
means quantization, PQ, and RQ. The k-means quantization
works as follows: given the parameter W ∈ Rm×n, all scalar
values can be collected as w ∈ R1×mn, and the following
values can be obtained by the k-means algorithm:

min

mn∑
i

k∑
j

‖wi − cj‖22 , (1)

where w and c are scalars. Once clustering is done, all w
is assigned a corresponding clustering index, and the cluster
center c1×k forms a codebook. In the prediction stage, the
value of each wij in the codebook can be directly found.
Therefore, the reconstruction matrix is:

Ŵij = cz, where min
z
‖Wij − cz‖22 . (2)

PQ: PQ’s intuition is to partition the vector space into
many disjoint subspaces and then perform quantization in each
of these subspaces since it assumes that the vectors in each
subspace are highly redundant. Concretely, given matrix W ,
it can be partitioned into several submatrices:

W =
[
W 1,W 2, · · · ,W s

]
, (3)

where W i ∈ Rm×(n/s), it is assumed that n can be divided by
s. Then the k-means clustering method is conducted to each
submatrix W i as follows:

min

m∑
z

k∑
j

∥∥wi
z − cij

∥∥2
2
, (4)

where wi
z denotes the z-th row of sub-matrix W i, cij denotes

sub-codebook the j-th row of Ci ∈ Rk×(n/s). For each sub

TABLE III
SCALAR VERSUS VECTOR QUANTIZATION COMPRESSION RATES.

Methods Compression rate
k-means quantization 32/ log2(k)

PQ (32mn)/ (32kn+ log2(k)sm)

RQ m/ (tk + log2(k)tn)

vector, only the corresponding cluster index and codebook are
needed. Thus, the reconstruction matrix is as follows:

Ŵ =
[
Ŵ 1, Ŵ 2, · · · , Ŵ s

]
, (5)

ŵi
j = cij , where min

j

∥∥wi
z − cij

∥∥2
2
. (6)

RQ: RQ’s basic idea is first quantizing the vector into k
centers and then quantizing the residual recursively. Given a
set of vectors wi, i ∈ 1, · · · ,m, they are quantized into k
different vectors by k-means clustering:

min

m∑
z

k∑
j

∥∥wz − c1j
∥∥2
2
. (7)

For each W z , it is represented by its closest center c1j . Next,
the residuals between wz and c1j are calculated for all data
points, and the residuals vector r1z is recursively quantized
into k different code words c2j . Finally, it can reconstruct the
vector by adding its corresponding center at each stage:

ŵz = c1j + c2j + · · ·+ ctj . (8)

It is assumed that t iterations have been performed recursively.
The three methods’ compression rates are different, and the

specific compression rates are compared in Table III. Wu et
al. [51] used a strategy of PQ, which allows less storage space
by sharing block weights. With sharing, dot multiplication is
converted to the addition operation. Gudovskiy et al. [52] used
a method similar to residual quantification. Choi et al. [53]
designed an overall network quantization scheme to minimize
the loss under the proportional compression constraints. This
method mainly introduces Hessian weighted k-means cluster-
ing method to quantify network parameters. Reagen et al. [54]
proposed a novel lossy encoding method based on the weight-
free probability data structure of the Bloomier filter, which did
not accurately store the function mapping.

2) Fixed-point Quantization: This method is a low-
precision quantification of parameters. It uses fixed-point
numbers instead of floating-point numbers to fully use the
advantages of fixed-point calculation over floating-point calcu-
lation, which reduces memory consumption and computational
complexity. Fixed-point quantization is categorized into low-
bit quantization and binary/ternary quantization. In Table IV,
we briefly compare some fixed-point quantization methods.

Low-bit Quantization: There are two rounding methods
for fixed-point quantization [63]: 1) round-to-nearest and 2)
stochastic rounding.

The method of round-to-nearest is defined as:

Round
(
x, 〈IL,FL〉

)
=

bxc, if bxc ≤ x ≤ bxc+

ε

2
;

bxc+ ε, if bxc+
ε

2
≤ x ≤ bxc+ ε,

(9)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 7

TABLE IV
COMPARISON OF FIXED-POINT QUANTIZATION METHODS.

References Quantization
Weight Activation Gradient

HWGQ [55] Binary 2bit Full
DNQ [56] 3bit, 5bit, Dynamic Full Full
BNN [57] Binary Binary Full

XNOR [58] Binary Binary Full
QNN [59] Binary Binary Full
TWN [60] Binary, Ternary Full Full
ATN [61] Ternary Full Full
RTN [62] Ternary Ternary Full

where IL is the integer part of fixed-point numbers, FL is the
decimal part of fixed-point numbers. Both IL,FL are fixed-
point numbers, x is the real value variable, and ε = 2−FL

denote the smallest positive number.
The method of stochastic rounding is defined as:

Round
(
x, 〈IL,FL〉

)
=

bxc, probability 1−

x− bxc
ε

;

bxc+ ε, probability
x− bxc

ε
.

(10)

Irrespective of the rounding mode used, if x lies outside the
range of 〈IL,FL〉, change the result to the lower or the upper
limit of 〈IL,FL〉:

Convert
(
x, 〈IL,FL〉

)
=

2IL−1, probability 1−

x− bxc
ε

;

2IL−1 − 2−FL, probability 1−
x− |x|
ε

;

Round(x, 〈IL, FL〉), otherwise.
(11)

Gupta et al. [63] proposed a new rounding method: stochas-
tic rounding. When an underflow is generated, it is randomly
rounded to one of the two numbers closest to it, and its
probability is inversely proportional to the distance among
them. Inspired by stochastic depth and dropout, Dong et
al. [64] proposed a stochastic quantization algorithm to over-
come the problem of accuracy degradation. The half-wave
gaussian quantization network that was proposed by Cai et
al. [55] is mainly used to quantify the activation value, which
theoretically analyzes how to select an activation function and
uses an approximate method to fit the quantization loss. Xu et
al. [56] proposed a dynamic network quantization framework.
Unlike most existing quantization methods, using the universal
quantization bit width of the whole network, the authors used
a strategy gradient to train agents to learn the bit width of
each layer by bit width controller. Sakr et al. [65] proposed
a statistical method to analyze the impact of the reduced
cumulative accuracy on DL training. Yang et al. [66] defined
low-bit quantization as a differentiable non-linear function
(called quantization function) and proposed a new way to
explain and implement neural network quantization.

Binary/Ternary Quantization: Binary quantization repre-
sents the parameters with 1 bit, which can reduce the storage
and calculation cost of parameters to the greatest extent.
Similar to low-bit quantization, there are two binarization
methods [57]: 1) definition and 2) stochastic.

Algorithm 1: General network pruning algorithm.
Input: Pre-trained model: M ; Dataset for fine-tune: D;

Criterion of network pruning: C.
Output: Lightweight model of Mout.

1 Calculate criterion values of neurons or connections in M ;
2 Compare these values with C;
3 Prune neurons or connections whose values are lower than

C;
4 Fine-tune the network Mout on D.

The definition method is defined as:

xb = sign(x) =

{
+1, if x ≥ 0;
−1, otherwise, (12)

where xb is a binary variable (weight or activation) and x is
a real-valued variable.

The stochastic method is defined as:

xb =

{
+1, probability p = σ(x);
−1, probability 1− p, (13)

where σ is the hardsigmoid function given below:

σ(x) = cilp

(
x+ 1

2
, 0, 1

)
= max

(
0,min

(
1,
x+ 1

2

))
. (14)

Courbariaux et al. [57] quantized the weights and activations
to 1 bit simultaneously and gave the specific implementation
for the internal hardware calculation. Rastegari et al. [58]
binarized the weight and expressed the input as binary. Hubara
et al. [59] proposed a method to train the Quantized Neural
Network (QNN). Lin et al. [67] proposed a Binarized CNN
(BCNN) with a separable filter in binary quantization network,
which applies Singular Value Decomposition (SVD) on BCNN
kernels. Unlike simple matrix approximation, Hou et al. [68]
proposed a proximal Newton algorithm with diagonal Hes-
sian approximation that directly minimizes the loss w.r.t. the
binarized weights.

The ternary quantization is proposed to make up for the low
accuracy of binary quantization. Li et al. [60] introduced the
Three elements Weight Network (TWN) where the weights
of the neural network were limited to +1, 0, and −1. Ding
et al. [61] proposed an asymmetric ternary network based
on TWN. Li et al. [62] proposed a new reparameterized
three-element network to solve the problem of the forward
squeezing behavior of the previous three-valued network and
the saturation behavior of the backward quantization function.

B. Network Pruning

Network pruning is a type of model compression that helps
to address overfitting and lower the complexity. The basic
idea of network pruning is to cut a certain proportion of
unimportant parts. The network pruning technique originated
in the late 1980s. Hanson et al. [69] proposed a magnitude-
based pruning method that minimizes the number of hidden
units by applying a weight decay to these units. Chauvin
et al. [70] and Hassibi et al. [71] recommended measuring
the importance of weights based on the loss function and
then cropped them. Their ideas have had a profound influ-
ence on current works nowadays. The general process of the
pruning algorithm is shown in Algorithm 1. We only discuss

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 8

Before Pruning After Pruning

Fig. 4. Pruning connections and neurons. The dashed lines indicate the pruned
parts.

magnitude-based pruning, channel pruning, and some other
types of pruning.

1) Magnitude-based Pruning: The magnitude-based prun-
ing method makes the weights sparse by removing some
unimportant connections or neurons, as shown in Fig. 4. The
pruning criterion in magnitude-based pruning greatly impacts
final results. Meanwhile, special software and hardware may
achieve better performance. In Table V, we briefly compare
some magnitude-based pruning methods.

TABLE V
COMPARISON OF MAGNITUDE-BASED PRUNING METHODS.

References
Baseline
models

Dataset FLOP%
Compression

rate

Han et al. [72]
LeNet MNIST 16% 12x

AlexNet ImageNet 30% 9x
VGG16 ImageNet 21% 13x

Han et al. [73]
LeNet MNIST - 40x

AlexNet ImageNet - 35x
VGG16 ImageNet - 49x

Guo et al. [74] AlexNet ImageNet - 17.7x

Li et al. [75]
VGG16 CIFAR10 34% -
ResNet CIFAR10 38.6% -

Han et al. [72] proposed to measure the importance of
different weights according to a preset threshold and prune
the connections whose weights are below the threshold. Han
et al. [73] proposed to combine pruning, quantization, and
Huffman coding methods to get a more compact model. Fig. 5
summarizes the whole process. Based on [72], Guo et al. [74]
pointed out that as the network changes, the importance of
parameters will also change, so they proposed splicing to
recover performance after deleting vital connections. Li et
al. [75] proposed to remove the convolution kernel that has
little effect on the output accuracy and its connected feature
maps without causing sparse connections. Hu et al. [76]
defined an average percentage of zeros as a criterion for
evaluating whether the convolution kernel is important. Yang
et al. [77] evaluated importance by introducing a mask for all
convolution kernels. The mask’s value decides the essentiality
of every kernel. Lee et al. [78] considered the absolute value
of the derivative of the normalized objective function as a
criterion for measuring the importance. Ref. [79] presented to
use a multitasking network as a pruner to prune a pre-trained

Train

Connectivity

Prune

Connections

Train Weights

Stage 1: Pruning Less

Number of Weights

Original

Network

Original

Size

Same

Accuracy

9x-13x
Reduction Quantize the

Weights with

Code Book

Retrain Code

Book

Stage 2: Quantization
Less Bits Per Weight

Cluster the

Weights

Same

Accuracy

27x-31x
Reduction

Generate Code

Book

Encode

Weights

Stage 3: Encoding
Huffman Encoding

Encode Index

Same
Accuracy

35x-49x
Reduction

Fig. 5. The three stages compression pipeline (adapted from [73]). Compres-
sion is achieved through pruning, quantization, and encoding.

target network. This approach finishes the pruning procedure
in one go instead of iterative pruning.

2) Channel Pruning: Channel pruning is different from
neuron-level pruning. Compared to removing a single neuron
connection, pruning the entire channel has at least two advan-
tages. First, it does not introduce sparsity, so no special soft-
ware or hardware implementation is required for the generated
model. Second, the inference phase does not require massive
disk storage and runtime memory. Similar to magnitude-based
pruning, the criterion used for channel pruning plays a quite
crucial role in the final performance.

Algorithm 2: Calculating information gain.
Input: Deep separable convolution unit: 〈Li, Di, Pi〉;

Dataset: D.
Output: channel information gain G.

1 According to data set D, calculate the original information
entropy of the Oi layer denoted as Entropyo;

2 while Ai layer has j-th channel do
3 Set the eigenvalues of all positions of the j-th channel in

Ai layer to 0 to obtain the new layer A′i;
4 Convolve A′i with the previous 1× 1 channel

convolution layer to get a new output O′i;
5 Calculate information entropy for this O′i denoted as

Entropyn;
6 Get the channel information gain Gj by equation

Gj = Entropyn − Entropyo;
7 j = j + 1;
8 end

He et al. [80] used a channel selection algorithm to prune
every layer of the model and a least square reconstruction
algorithm to rebuild the output of every pruned layer. Chen et
al. [81] proposed a framework combining channel pruning and
low-rank decomposition. Bao et al. [82] proposed a compres-
sion algorithm based on channel sparsity to prune channels. Hu
et al. [83] contributed to performing channel selection (in the
layer-by-layer way) to minimize the reconstruction error of the
feature maps of the base model and the pruned model. Zhou
et al. [84] proposed to perform a layer-by-layer evaluation
according to the standards of mixed statistics firstly, then erase
channels as well as the corresponding kernels with negative
scores, eventually fine-tune them with the help of KD. Zhang
et al. [85] introduced a pruning algorithm based on channel
selection, which utilizes information gain and a quickly-
recovering method to reconstruct model performance. This

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 9

channel selection algorithm is summarized in Algorithm 2.
3) Other types of pruning: Yang et al. [86] pointed out the

previous methods may not reduce energy consumption. So they
introduced an energy-aware pruning algorithm that conducted
the pruning process according to the consumption of energy.
O’Keeffe et al. [87] changed the whole pruning process by
performing fine-tuning at regular intervals to maintain network
performance and then continue pruning. The pruning technique
proposed by Manessi et al. [88] allows pruning during the
back-propagation stage of network training, which can perform
end-to-end learning and significantly reduce training time.
Huang et al. [89] scaled the output of a specific structure with
a factor and added sparse regularization. This optimization
problem was solved by an improved random accelerated
gradient method.

C. Low-rank Decomposition

The correlation expresses the structural information of the
matrix. If there is a correlation between the rows, there is
redundant information. The low-rank decomposition method
in model compression reduces redundant information by mea-
suring the matrix correlation. The basic idea of low-rank
factorization is to replace the original large weight matrix
with multiple small ones and remove redundant informa-
tion. Matrix-factorization approaches include SVD, Canonical
Polyadic (CP) decomposition, Tucker decomposition, and so
on. As one of the most commonly used methods, SVD is
defined as follows:

X =
[

u1u2 . . . ur
] λ1

. . .
λr

 vT1

...
vTr

 . (15)

The low-rank decomposition of the matrix has played a
significant role in model compression and acceleration of the
CNN. Jaderberg et al. [90] utilized cross-channel and convo-
lution kernel redundancy to complete the acceleration of CNN
by constructing kernels of rank 1. This method is independent
of architecture. Denton et al. [91] used the linear structure
existing in the convolution kernel to derive approximate values
to reduce the calculation costs. Zhang et al. [92] proposed
to use non-linear elements instead of approximate linear
convolution kernel or linear response to reduce the complexity
of the convolution kernel. Tai et al. [93] introduced a new low-
rank tensor decomposition algorithm to eliminate redundancy
in convolution kernels. The algorithm can find a precise global
optimizer for decomposition, which is more effective than the
iterative method. Kim et al. [94] proposed an overall network
compression scheme, which mainly includes three steps: 1)
performing a rank selection of the variational Bayes matrix
decomposition, 2) Tucker decomposition on the kernel tensor,
3) fine-tuning to compensate the cumulative loss of accuracy.
Fan et al. [95] pointed out that the network pruning operation
and the Rectified Linear Units (ReLU) activation function
may generate many zero values during the training process
and put forward an algorithm called convolution segmentation
compression. Wiedemann et al. [96] proposed an efficient
representation of a matrix with low entropy statistics, which
helps to reduce the model size and execution complexity.

Summary and Insights
In this section, we review quantization, network pruning,

and low-rank decomposition techniques. From the collected
literature, we have the following observations.

1) The essence of quantization is to reduce the occupied
space. There are two methods, scalar and vector quantization,
and fixed-point quantization. The former is that multiple
weights share one weight, but the shared weight value needs
to be restored to its original position during inference. That is,
the decoding process is increased, which cannot save inference
time. The latter uses fixed-point numbers to map floating-
point numbers, which can save runtime memory and inference
time. However, the former compresses the model itself to a
much higher degree than the latter. It is more suitable for
occasions where hardware storage space is scarce. The overall
network structure is relatively simple, such as earphones and
smartwatches. The latter is suitable for most occasions.

2) Network pruning attempts to increase the sparsity and
achieves competitive accuracy compared to the baseline mod-
els. This technique suits many pre-trained neural network
models but still has many defects. It is usually hard to
determine the criterion which determines the upper limit of
the model’s performance after pruning. Several existing studies
introduce additional hyperparameters while the adjustment
of hyperparameters is time-consuming. Meanwhile, repetitive
fine-tuning is required for performance recovery after pruning,
which is also time-consuming.

3) The low-rank decomposition technology can be effectively
applied to the compression and acceleration of the fully
connected layer. However, there is currently no particularly
effective implementation method for the convolutional layer.
Low-rank decomposition is computationally expensive and not
easy to implement. Furthermore, parameter compression can
only be performed layer by layer.

IV. KNOWLEDGE DISTILLATION (KD)
The basic idea of KD is to transfer the dark knowledge

in the complex teacher model to the simple student model.
Generally speaking, the teacher model has strong ability and
performance, while the student model is compact. Through
KD, the student model can have an approximated (or even
surpassed) performance as the teacher model to achieve similar
prediction results with less complexity. The general algorithm
for KD training is shown in Algorithm 3. In recent years,
diverse KD methods have been developed. We categorize
major KD methods into the following types: A) knowledge
from logits, B) knowledge from intermediate layers, C) mutual
information distillation, D) self-KD, and E) other KD methods.
Fig. 6 depicts several representative KD structures.

A. Knowledge from Logits
Fig. 6(a) depicts the method of KD from logits. The neural

network proposed by Hinton et al. [97] usually uses softmax
output layer to generate class probability. The output layer
converts each class’s logit, zi, to probability qi by comparing
it with other logits. In particular, we have,

qi =
exp (zi/T)∑
j exp (zj/T)

, (16)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 10

(a) Knowledge from Logits:
Guide through the parameters
of the fully connected layers,
such as softmax.

Teacher

Student

(b) Knowledge from Intermediate Layers:
Guide through the parameters of the
intermediate layers, such as feature map,
attention map.

Teacher

Student

(c) Knowledge from Mutual Information:
Guide through the parameters of the mutual
information in the intermediate layers.

Teacher

Student

Mutual
Information

(d) Self Knowledge Distillation:
Change its own convolution kernel or
conducted knowledge distillation between
the same structures in the network structure.

Teacher

Student

Fig. 6. Representative KD structures. The difference between four structures lies in the different sources of knowledge.

Algorithm 3: Algorithm for general KD training. The
algorithm receives as input the trained parameters WT of a
teacher, the randomly initialized parameters WS of a student,
and two indices h and g corresponding to hint/guided layers,
respectively. Let WHint be the teacher’s parameters up to
the hint layer h. Let WGuided be the student’s parameters
up to the guided layer g.

Input: WS; WT; h; g.
Output: W∗

S.
1 WHint ←

{
W1

T, . . . ,W
h
T

}
;

2 WGuided ←
{
W1

S, . . . ,W
g
S

}
;

3 W∗
Guided ← argmin

WHint

L (WGuided);

4 WS ←
{
W∗1

Guided, . . . ,W
∗g
Guided

}
;

5 W∗
S ← argmin

WS

L (WS).

where T is the distillation temperature and normally set to
1. Using a higher value for T produces a softer probability
distribution on the class. Each case of transfer concentration
contributes a cross entropy gradient dc/dzi to each logit and
zi of the distillation model If the redundancy model has
logits vi that generate the soft target probability pi, and the
transfer training is conducted at temperature T , the gradient
is composed of:

∂C

∂zi
=

1

T
(qi − pi) =

1

T

(
exp (zi/T)∑
j exp (zj/T)

− exp (vi/T)∑
j exp (vj/T)

)
.

(17)
If the distillation temperature is higher than the logit, it can
be approximated:

∂C

∂zi
≈ 1

T

(
1 + zi/T

N +
∑

j zj/T
− 1 + vi/T

N +
∑

j vj/T

)
. (18)

If assumed that logits are zero for each transmission case, than
Σjzj = Σjvj = 0, the above formula is simplified as follows:

∂C

∂zi
≈ 1

NT 2
(zi − vi) . (19)

Hinton et al. [97] first proposed a KD framework based on
knowledge transfer [98]. They learned useful information from

large models to train small models with close performance.
This framework compresses a group of teacher networks into a
student network with similar depth. Huang et al. [99] improved
the neural selectivity transfer on the basis of knowledge
dismantling, aiming at the pain point of KD, which is only
applicable to the classification of softmax. Yu et al. [100]
proposed two new loss functions to simulate the communica-
tion between the deep teacher network and the small student
network: one is based on the absolute teachers, the other is
based on the relative teacher network. Mirzadeh et al. [101]
introduced multi-step knowledge extraction technology and
used a medium-sized network (teacher assistant) to fill the
gap between students and teachers.

B. Knowledge from Intermediate Layers

This method registers directly between the teacher network
and the student network by fitting features and feature maps.
Fig. 6(b) depicts the method of KD from intermediate layers.
Romero et al. [102] distilled a wide and deep network into
a thin and deep network. The method proposed by Yim et
al. [103] was not fitting the output of a large model but fitting
the relationship between a large model and a small model
layer by layer to refine the teacher network and the student
network. The structure of the model proposed by Zagoruyko
et al. [104] allows the teacher network to guide the student
network’s attention maps learning by generating the attention
maps. Zhang et al. [105] proposed a teaching KD method that
is effective on small datasets. Shen et al. [110] proposed using
a confrontation-based learning strategy to extract different
knowledge from different training models.

C. Mutual Information Distillation

The method of mutual information distillation is shown in
Fig. 6(c). Peng et al. [106] proposed correlation congruence for
KD, which transmits the information at the instance level and
the correlation between instances. Ahn et al. [111] considered
maximizing the lower bound of mutual information change

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 11

TABLE VI
COMPARISON OF KD BASED ON KNOWLEDGE OF DISTILLATION SOURCES AND RELATED DETAILS.

References Knowledge from Details
Hinton et al. [97] Logits Cross Entropy
Huang et al. [99] Logits Cross Entropy and maximum mean discrepancy

Yu et al. [100] Logits Hints and attention
Mirzadeh et al. [101] Logits Use teacher assistant
Romero et al. [102] Intermediate layers MSEloss in a certain middle layer

Yim et al. [103] Intermediate layers Gram matrix loss in multiple middle layers
Zagoruyko et al. [104] Intermediate layers Attention transfer loss in multiple middle layers

Zhang et al. [105] Intermediate layers Adaptive selection a middle layer
Peng et al. [106] Mutual information Correlation between multiple instances

Crowley et al. [107] Self structures With the same structure, use cheap convolution blocks
Park et al. [108] Structured knowledge Use a relational potential function to transfers the information

Lopez-Paz et al. [109] Privileged information Use pair-wise distillation and holistic distillation

between two neural networks and proposed an information
theory framework for knowledge transfer. Tung et al. [112]
proposed a new form of KD loss, which was inspired by a
similar input pattern in a well-trained network.

D. Self Distillation

The method of self distillation is shown in Fig. 6(d). The
training of the self-distillation framework directly points to the
student model. Therefore, it not only provides less training
time but also has higher accuracy. Crowley et al. [107] re-
placed the original convolution blocks with cheap convolution
blocks while keeping the same student network as teacher
network. The authors showed that with the same parameters,
the student network had better results than the teacher net-
work. Zhang et al. [113] proposed a self-distillation training
framework to improve the accuracy of the model.

E. Other KD methods

The Graph-based distillation method is a KD technique used
in graph neural networks. Lee et al. [114] proposed a new
method for extracting dataset-based knowledge from teacher
networks using attention networks. Ma et al. [115] proposed a
multi-task knowledge extraction method for graph representa-
tion learning that uses graph metrics based on network theory
as an auxiliary task through multi-task learning.

Meanwhile, Park et al. [108] proposed distance and angular
distillation losses to compensate for structural differences in
the relationship. Tian et al. [116] captured correlation and
high-order output correlation by comparing target families
and adapted them to extract knowledge from one neural
network to another. Liu et al. [117] considered transferring
structural information from large networks to small networks
for intensive prediction tasks and proposed paired distillation
with paired similarities by establishing static diagrams and
global distillation with antagonistic training to extract overall
knowledge. Gao et al. [118] proposed residual KD, which
further distilled the knowledge by introducing an assistant.

Moreover, Vapnik et al. [109] considered a learning
paradigm called learning using privileged information. Lopez-
Paz et al. [119] unified distillation and privileged information

as generalized distillation, i.e., a framework for learning data
representation from multiple machines. Tang et al. [120] pro-
posed a method for multitask learning to preserve privileged
information.

Wang et al. [121] and Xu et al. [122] combine KD with
GAN. Uijlings et al. [123] proposed that a group of source
classes with boundary box annotations be used to revisit
the knowledge transfer of training object detectors on the
target class of weakly supervised training images. Anil et
al. [124] proposed large-scale distributed neural network train-
ing through online distillation. Furlanello et al. [125] trained
and parameterized the same student network as the teacher
network, making the student network outperform the teacher
network. Tan et al. [126] used model distillation to learn a
global additive explanation describing the relationship between
input characteristics and model predictions. Heo et al. [127]
proposed a method for knowledge transfer by extracting
activation boundaries formed by cryptogenic neurons. He et
al. [128] made some improvements to traditional distillation
methods for the semantics split task. Liu et al. [129] transferred
“knowledge” from multiple deep teacher networks to a deep
network student network. Yang et al. [130] proposed a KD
method based on transferring feature statistics from the teacher
network to the student network. Song et al. [131] proposed a
framework that transfers knowledge from a large pre-training
model to a small model and performs both pre-training and
fine-tuning at the same time.

Summary and Insights
In this section, we review the most representative KD

methods. Table VI compares several representative KD meth-
ods from knowledge extraction and implementation details.
The fully-connected layer plays a role of “extracting knowl-
edge from logits” while softmax is usually used. In general,
KD methods are more suitable for classification networks.
“Knowledge from intermediate layers” makes full use of the
information in the teacher network to better guide the student
network.

Compared with the methods of obtaining knowledge from
logits, obtaining knowledge from the intermediate layers is

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 12

(a) ShuffleNet Unit (b) ShiftNet Unit (c) AddressNet Unit

1x1 GConv

Channel

Shift

Address

Shift

1x1 GConv

Add/

Concatenate

BN+ReLU

BN

 ReLU

Identity/

Avg Pooling

Input

Output

1x1 GConv

Channel

Shift

Address

Shift

1x1 GConv

Add/

Concatenate

BN+ReLU

BN

 ReLU

Identity/

Avg Pooling

Input

Output

Feature map

Shift

1x1 Conv

Feature map

Shift

1x1 Conv

Add/

Concatenate

BN+ReLU

Identity/

Avg Pooling

BN+ReLU

 ReLU

Input

Output

Feature map

Shift

1x1 Conv

Feature map

Shift

1x1 Conv

Add/

Concatenate

BN+ReLU

Identity/

Avg Pooling

BN+ReLU

 ReLU

Input

Output

Input

1x1 GConv

Channel

Shuffle

3x3 Conv

1x1 GConv

Add

BN+ReLU

BN

Output

 ReLU

Input

1x1 GConv

Channel

Shuffle

3x3 Conv

1x1 GConv

Add

BN+ReLU

BN

Output

 ReLU

Fig. 7. Basic units of ShuffleNet, ShiftNet and AddressNet (adapted
from [132]), they replaced the 1×1 convolution, 3×3 convolution, and 1×1
and 3× 3 convolution units based on the bottleneck structure, respectively.

more general. “Mutual information” is an improvement based
on “intermediate layers”. Mutual information can strengthen
the interdependence between the teacher network and the
student network, thereby reducing training time. In “Self
distillation”, the structure of the teacher and student network
is almost the same. The student network can either replace
the teacher network’s convolution blocks with cheap ones or
adopt the teacher’s shallow feature maps to guide the whole
knowledge distillation process.

The essence of KD lies in the fact that the student network
uses soft tags provided by the teacher network for better
training. Therefore, both the teacher network’s structure and
the mechanism of information using have a significant impact
on the KD methods’ effect. Only a suitable network and a
suitable KD method can cooperatively lead to outstanding
performance.

V. MODIFICATION OF NETWORK STRUCTURES

In this section, we explore how to design lightweight models
by modifying the network structure. This process can be
achieved through modifications of channels, filters, connec-
tions between the neurons, the active functions, and other
components. Table VII compare the representative network
structures.

A. Channel Shuffle/Shift

The compact DNNs can be achieved by modifying the
network structure through channel shuffle or shift. Zhang et
al. [133] designed a novel compact network architecture for
mobile devices called ShuffleNet, as shown in Fig. 7(a). Since
feature maps are more important than 1× 1 convolutions for
small models, they applied a group convolution mechanism to
the 1× 1 pointwise convolutions to reduce the computational
cost required for 1 × 1 convolutions. To avoid the group
convolution’s boundary effect, the authors came up with a
new group convolution being followed by a channel shuffle
operation to help to effectively mix each group’s information
flow in the group convolution.

In contrast, Wu et al. [134] introduced ShiftNet, as shown
in Fig. 7(b). In this design, the spatial convolutions extract
the space information in different channels and the kernel size
has a great influence on the model’s size and computation

GConv 1

Feature map

Feature map

GConv 2

CopyCopy

Pointer shiftPointer shift

Memory Copy

Inplace

(a) Channel Shuffle (b) Channel Shift

Fig. 8. The compare between Channel Shuffle and Channel Shift (adapted
from [134]). Channel shuffle needs to copy and transfer all feature map data,
while channel shift only needs to move the data of two units and the offset
of the start pointer by two units.

cost. As a result, they proposed to shift the feature map in
different directions as an alternative to spatial convolution.
In this way, they could achieve a similar spatial convolution
function in a parameters-free and FLOP-free channels way and
got good performance in lightweight models. He et al. [132]
absorbed benefits from the previous two studies and proposed
AddressNet. The authors found that a simple reduction of
the FLoating-point Operations Per Second (FLOPS) and pa-
rameters does not shorten the inference time. Therefore, they
adopted three time-saving shift operations as the alternative of
channel shuffle, spatial convolution, and shortcut connection
to alleviate the bottleneck. Fig. 7(c) shows the basic unit of
AddressNet, which replaces the channel shuffle operation with
the channel shift operation.

Fig. 8 shows the difference between these two operations.
Although the two processes are not the same, the experimental
results prove that they have a similar accuracy. Meanwhile, the
latter is more time-saving than the former. Secondly, it replaces
the 3 × 3 convolution by address shift, which is identical to
the feature map shift operation of ShiftNet while only having
four directions. Finally, based on the shortcut of the bottleneck
module, they proposed the shortcut shift, allocating a piece of
continuous space in advance for the concatenations operation
to further reduce the time overhead.

B. Shortcut Connections

Shortcut connections, also called residual connections, were
proposed in [15] to solve the problem of vanishing gradients in
DNNs. Those connections can integrate lower-dimensional and
more detailed information with higher-dimensional informa-
tion and provide a shorter path for back-propagation, making
the error propagation smoother.

He et al. [15] found that the problem of vanishing gradients
heavily affects the network convergence and the network
degradation also becomes heavier when the network goes
deeper. To solve the above problems, they proposed the deep
residual learning framework and introduced residual mapping.
Assume that the original mapping is H(x). They introduce
a residual mapping: F (x) = H(x) − x, and then add x to
the output of F (x) with the shortcut connection. As a result,
the original mapping H(x) is transformed into F (x) + x.
It made the training process easier. Due to the shortcut
connection, the shallower layers can directly receive the error

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 13

from the deeper layers, without worrying about the situation
that the error gradient tends to 0 as the depth increases.
The entire process does not introduce additional parameters
and computational complexity. In 2017, an improved version
called ResNeXt [135] was proposed to ameliorate the topology
design to obtain higher accuracy with less complexity.

Since ResNet and some other models demonstrated the
benefit from shortcut connections, Huang et al. [136] proposed
DenseNet based on a similar idea. In DenseNet, the input of
each layer is a concatenation of the outputs of all preceding
layers, consequently obtaining more abundant information
for the input to achieve better performance. since there are
some redundant connections in DenseNet, Huang et al. [137]
proposed CondenseNet by combining DenseNet with learned
group convolutions. The learned group convolutions find the
unimportant input connections in DenseNet and then prune
them. Zhao et al. [138] proposed a rule for customizing the
number of feature maps, introducing a compression layer
composed of 1× 1 convolution, and combining learned group
convolutions to achieve parameter reduction. Moreover, Zhu
et al. [139] proposed SparseNet, in which only log(l) previous
output feature maps would concatenate as the l layer’s input
at any given location in the network. As a result, the number
of connections is further reduced compared to DenseNet.

Coincidentally, Fooladgar and Fahimeh also proposed a
lightweight structure named RDenseNet [146] after investi-
gating ResNet and DenseNet. RDenseNet achieves impressive
results on experiments on multiple datasets.

C. Basic Network Units

1) Depth-wise Separable Convolutions: In traditional con-
volution networks, convolutions need to complete the dual
mapping of spatial correlation and channel correlation. Since
2014, Google gradually released Inception family models to
explore ways to separate these two mapping correlations. And
the Xception [143] is the extreme version for this design,
where the channel correlation mapping and the spatial correla-
tion mapping are completely separated. Moreover, the efficient
depth-wise separable convolution unit was developed. Experi-
ments showed that Xception achieves a higher utilization rate
of the parameters, better performance, and accuracy than its
predecessor - InceptionV3 with the same parameters.

Howard et al. [144] proposed the MobileNet and elaborated
the compression capability of depthwise separable convolu-
tions in terms of the parameters and computation cost. To im-
prove their model’s generalization ability, they also proposed
two global parameters to adjust the width and calculation
complexity to achieve a better trade-off between efficiency
and accuracy in different application scenarios.

After studying the Inception series models and ResNet, Gao
et al. [147] proposed RINet, a combination of both Inception
and ResNet models. RINet adopts Inception’s multi-branch
multi-scale convolution structure and incorporates ResNet’s
residual connection structure to achieve computational reduc-
tion and training acceleration, as shown in Fig. 9.

2) SE Module: Unlike most of the studies to improve the
information representation capabilities of CNNs in terms of

CConconcaatteenanattee

1x11x1

CCononvv

3x33x3

CConvonv

5x55x5

CCononvv

3x33x3 m maaxx

popoololiingng

IInpunputt

((aa)) IInncceeppttiioonn mmoodduullee

OOututputput

((bb)) RReesisidduuaall bblloocckk

CConcaoncatteenanattee

kxkkxk C Convonv

kxk Ckxk Convonv

IInpunputt

OOututputput

CConcaoncatteenanattee

3x33x3

CCononvv

5x55x5

CConvonv

1x11x1

CConvonv

3x3 m3x3 maaxx

poolpooliingng

IInpunputt

1x11x1

CConvonv

1x11x1

CCononvv

((cc)) RRIINNeett uunniitt

3x3 m3x3 maaxx

poopoolliingng

OOututputput

Fig. 9. The structures of Inception module, Residual block, and RINet unit
(adapted from [147]), where he RINet unit is a combination of Inception
module and Residual block.

spatial correlation, Hu et al. [140] chose to achieve this goal
by starting from channel correlation. They released a new
neural network called SENet, in which Squeeze-and-Excitation
(SE) module is the basic unit. The SE module improves the
network’s ability of information representation by explicitly
modeling the dependencies between channels and adaptively
calibrating channels’ feature responses. In this way, the essen-
tial features can be strengthened, consequently suppressing the
unimportant features. Later, Wu et al. [148] combined SENet
and depthwise separable convolutional networks to propose
an impressive network CT-SECN for super-resolution image
processing.

Since SENet was designed mainly based on conventional
CNNs, it is not suitable for the case that multiple network
layers are connected each other and the feature maps are
dynamically adjusted like ResNet and DenseNet. To address
this issue, Wu et al. [145] proposed a novel network called
DESNet, which combines the advantages of DenseNet and
SENet and demonstrates superior performance.

3) Fire Module: For the existing neural network models,
it is easy to find multiple CNN models meeting the condition
when an accuracy level is given. For the same accuracy level,
smaller models usually have more flexibility, convenience, and
low cost during the training and deploying process. To this
end, Han et al. [141] tried to design models with comparable
accuracy but fewer parameters than the well-known models.
Furthermore, they successfully trained a network referred to as
SqueezeNet with the same precision as AlexNet while having
50× fewer parameters. Based on SqueezeNet, Wu et al. [149]
proposed a small and efficient convolution network called
SqueezeDet for the auto-driving application.

4) Other Modules: In [142], Li et al. found that k× k ker-
nels mainly extract features in a specific spatial pattern while
they are less important than other components in the entire
model. Therefore, they performed binarization on the k × k
convolution kernels to cut down parameters. Meanwhile, [150]
introduced scalable neural networks, which achieve neural
network compression and acceleration simultaneously. More-
over, Li et al. [151] designed an intensely-inverted residual
block unit, which introduces inverted residual structure and
multi-scale low-redundancy convolution kernels. The inverted
residual structure expands the input dimension at the first 1×1

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 14

TABLE VII
COMPARISON OF DIFFERENT STRUCTURES.

Models Basic structures Improved components Improved methods Reduction/Improvement

Zhang et al. [133]
ShuffleNet

Depth-wise
separable

convolutions

1× 1

convolutions

Group convolution,
channel shuffle,

shortcut connections
Wider feature maps

Wu et al. [134]
ShiftNet

3× 3

convolutions
Feature map shift,

shortcut connections
Parameters and computational cost

He et al. [132]
AddressNet

ShuffleNet
and

ShiftNet

3× 3

convolutions
and feature
map shift

Address shift,
channel shift,

short shift
Inference time

He et al. [15]
ResNet

Conventional
convolution

Mapping
rules

Shortcut connections/
bottleneck structure

Training time, deeper network

Huang et al. [136]
DenseNet

Connections,
kernels,

input integration

Fully-connected,
narrower kernels,

add to concatenation
Parameters and feature reuse

Hu et al. [140]
SENet

Channel
dependencies

Training channels
selectively

Representation capability

Iandola et al. [141]
SqueezeNet

Convolutional
rules

Reformulated kernels
distribution

(reduce 3× 3 kernels)
and stride

Parameters and bigger Activation Maps

Li et al. [142]
SEPNets

Kernel
quantization

Binarized k × k kernels,
shortcut connections

Parameters and computational cost

Chollet. [143]
Xception /

Howard et al. [144]
MobileNet

Inception
family
models

Convolutional
rules

Depth-wise Separable
convolutions

Parameters and computational cost

Huang et al. [137]
CondenseNet

DenseNet
Full

connection
Learned group

convolution
Parameters

Zhu et al. [139]
SparseNet

CondenseNet

Full
connection

log(l)

connections
Parameters

Zhao et al. [138]
RSNet

Output
channel
number

Adaptive output
channels under
the number of
input channels

Parameters and features

Wu et al. [145]
DESNet

SENet
Generalization

for multi-connected
structure

Fully-connected
SENet

Parameter usage

layer so that the following depthwise layer can extract more
features while the 1×1 group convolution layer compresses the
features and reduces the computational complexity. In addi-
tion, Liu and Di [152] also proposed a new activation function
f(x) = x tanh (ex), which can achieve rapid convergence
of the model, thereby improving the performance of image
recognition.

D. Network Architecture Search (NAS)

NAS is a method to find the optimal network structure
configuration in the search space through reinforcement learn-
ing. However, when the search space is enormous, the direct
application of NAS results in a high computational cost. In
general, neural networks often have the repetition of unit
structures, e.g., the same convolution kernel group, the same
non-linear unit structure, or even the same connection com-
position. Therefore, can we find a universal expression of a

convolution unit through NAS and then stack the convolutional
units together to achieve a high accuracy after fine-tuning
them?

Driven by this idea, Zoph et al. [153] proposed a network
construction method that searches the basic unit of the network
through NAS on a small dataset and then transfers this unit to a
large dataset. They validated this method on the CIFAR10 and
ImageNet datasets and obtained a new small network called
NASNet. This approach not only reduces the time required
for directly searching the optimal model on large datasets
but also enhances the network’s generalization ability because
small units usually have stronger generalization capabilities.
In [154], Tan et al. studied the model-scaling problem and
found that carefully-balancing the width, depth, and resolution
of the network can effectively improve the performance of the
network. They then design a primary network to achieve the
balance of the three factors via the realization by NAS. To fur-

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 15

ther reduce the search space, they proposed to use a composite
parameter to uniformly scale these three dimensions.

Summary and Insights
This section reviews the commonly-used structures, opera-

tions, and modules in designing lightweight networks. We also
introduce methods for finding a model’s basic units from small
datasets. Table VII compares the representative network struc-
tures. Among the above-mentioned basic structures, shortcut
connections and depthwise separable convolutional modules
have been widely adopted with many derivative extensions.
Meanwhile, both SE module and Fire module have also
performed well. As an emerging lightweight network design
tool, NAS has also been in the limelight and it is expected to
receive a growing popularity in the future. The above methods
that have been widely used in various network structures are
orthogonal to other compacting-DNNs techniques. Thus, re-
searchers shall integrate them together to achieve outstanding
performance.

VI. APPLICATIONS OF COMPACTED DNNS IN IOT

In this section, we describe application scenarios of
compacting-DNNs technologies in IoT. We categorize those
applications into basic services and upper applications.

A. Basic Services

Basic services can be categorized into the following types.
1) Image Processing and Computer Vision (CV): There is

a large amount of data in the form of images and videos in
IoT applications. With the continuous development of mobile
cameras, high-resolution images and videos have continued
to be produced. Meanwhile, the advances of image sensors
(inside a camera) also proliferate the wide adoption of diverse
cameras in IoT scenarios, such as surveillance in cities, face
recognition, and product-quality control (e.g., detecting flaws
of products [155]). There are individual needs for different
applications of collected images of cameras.

In general, DL algorithms can be widely used for image
processing and computer vision. DL methods can be used to
improve images in aspects such as denoising, defogging, de-
blurring, enhancement, super-resolution, repairing, restoration,
and coloring. Besides image-processing tasks, DL techniques
can also be used in computer-vision tasks, such as semantic
segmentation, instance segmentation, target detection, target
recognition, and target tracking. Moreover, DL also plays an
important role in video processing and augmented reality.

In the above applications, portable or compacted DL models
are expected to be deployed at IoT devices or at mobile
cameras. Take the identity-recognition application as an ex-
ample [156]. There are wide deployments of face-recognition
devices at public agencies for identity recognition, authentica-
tion, and authorization. However, it is challenging to directly
deploy conventional DL-based face recognition models at
resource-limited devices. Thus, compacted DNNs and portable
DL models are a necessity to address this issue.

2) Voice and Audio Processing: We have also experienced
the proliferation of many audio-processing applications in IoT.
For example, various IoT devices deployed in a production line
can be used to collect ambience sound, which can be used to
identify possible flaws of the production line [157], [158].
Meanwhile, human-computer interaction (HCI) applications
also demonstrate the efficiency in interacting through voice,
especially for voice recognition and voice process at mobile
devices and wearable devices. DL methods also have the
strengths in processing voice and audio information.

In the above scenarios, it is necessary to deploy portable
DL models at small devices, which have limited resources.
Price et al. [159] proposed a speech recognizer with DNN-
based acoustic model. The specially designed hardware can
more effectively store the sparse weight matrix. Moreover,
the quantization is also exploited to reduce the consumption
of memory. In addition, the speech recognition processor
proposed by Zheng et al. [160] adopts the idea of BCNN,
in which the authors accelerated the processing of BCNN
from the hardware level. The main approaches include 1)
maximizing the reuse of data stream to minimize memory
access, 2) pruning the bit-level regularization to compress the
weight matrix. 3) using self-learning on the chip to update the
weights at runtime.

3) Indoor Localization: The increasing demands for
context-aware IoT applications lead to the flourishing indoor-
localization services. Different from Global Positioning Sys-
tem (GPS), which heavily relies on satellite signals, indoor-
localization services often are achieved by processing and ana-
lyzing radio signals, such as WiFi and Bluetooth at IoT devices
since GPS signals cannot be well received indoor environment.
It is also challenging to process indoor-localization radio
signals at IoT devices. DL methods have also demonstrated
their strengths in indoor-localization services.

Shao et al. [161] use a lightweight CNN model to achieve
precise non-directional positioning. They mainly use WiFi
signals and magnetic field fingerprints for indoor localization.
After fusing the types of signals, they use a CNN for a
localization task (i.e., a classification task). However, the
training dataset is quite limited while there are a large number
of classification points in this scene. To address this issue the
authors also proposed a two-part training method. Meanwhile,
Jiang et al. [162] used RFID and DBN for indoor positioning.
The authors designed a DBN with four hidden layers for ex-
tracting features to estimate the position. Moreover, Samadani
et al. [163] used channel status information and DL methods
for indoor positioning.

4) Physiological Monitoring: The wide adoption of var-
ious wearable IoT devices and video cameras also boosts
diverse physiological-monitoring applications, from entertain-
ment, education, medical care, and industry domains. The
physiological-monitoring applications often require human
posture estimation and activity recognition. DL models can
well process these physiological-monitoring tasks.

Tao et al. [164] recognized human activities with the help of
mobile devices. The authors proposed a bidirectional LSTM to
obtain excellent results. Meanwhile, Zhu et al. [165] used the
data of inertial sensors in mobile devices to recognize human

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 16

activities. The authors proposed a deep LSTM and adopted a
semi-supervised learning method.

Human activities often carry information with personal char-
acteristics, which can be further used for identity verification.
Deb et al. [166] proposed a way of passive authentication
in smartphones. When people use mobile phones, the data
collected by the motion sensors in the mobile phones are
passively authenticated with the help of the Siamese LSTM
proposed by the authors. Moreover, Qin et al. [167] utilized
human biometric gait information and DNN for authentication.

5) Security and Privacy: The wide application of DL
models also poses security and privacy issues. There is a
line of studies in providing privacy and security protection in
different IoT scenarios. He et al. [168] found that smart grid
is vulnerable to False Data Injection (FDI) attacks. Therefore,
they proposed a DBN-based method to identify FDI attacks;
this method significantly improves the detection accuracy of
FDI attacks. Moreover, the work [169] proposed a wide and
deep method to detect electricity thieves in power grids. In
addition to attack detection, privacy protection is also crucial.
Therefore, DeepCoin [170] proposed RNN combined with
blockchain technology to simultaneously identify attacks and
protect data privacy. Moreover, Yin et al. [171] also used a
RNN model to identify the types of network attacks and the
experimental results verified its good performance. Despite the
advances of DL models, they often have poor generalization
ability. The authors [172] proposed a deep belief network
combined with improved genetic algorithms to improve gen-
eralization ability.

In Internet of medical things and healthcare systems, the
shared and uploaded medical data are usually encrypted to
protect the patient’s data privacy in medical data. In [173],
the authors proposed a data-search method based on encrypted
images; this method improves the data-search accuracy while
preserving data privacy.

In the training process of Distributed DL (DDL), each
node needs to share original data or parameters; this process
may be vulnerable to network attacks and privacy leakage.
In [174], the authors combined the original architecture with
an additive homomorphic encryption algorithm to ensure pri-
vacy and security of the data. Meanwhile, Liu et al. [175]
proposed a layer-wise importance propagation algorithm to
improve the privacy protection. Li et al. [176] proposed a
secure and privacy-preserving DDL that combines encryption
and signature algorithms to ensure data security. Moreover,
Saharkhizan et al. [177] introduced a cyber-attack detection
method for IoT devices and systems. They utilized a decision
tree to merge a set of LSTM modules and get an aggregated
result at the final stage.

B. Upper Applications

The upper applications can be categorized into Intelligent
Transportation Systems (ITS), UAV-enabled IoT applications,
environmental sensing and surveillance, and wearable IoT
applications, as shown in Fig. 10.

1) Intelligent Transportation Systems (ITS): The prolifera-
tion of diverse IoT nodes in ITS leads to massive ITS data,

which can be used to detect traffic bottlenecks, identify traffic
jams, optimize traffic control. Due to the resource limitation
of IoT nodes, ITS data has often been outsourced to remote
clouds, which cannot fulfill the latency and context-aware
demands of ITS applications. Thus, the advent of mobile
edge computing can offload the computing tasks to nearby
edge nodes, which nevertheless cannot process computational-
intensive tasks, like DL algorithms.

There are a few attempts towards the solutions to these
issues. In particular, this work [178] presented a composite
CNN structure, which combined factorization convolutional
layers and compression layers. This new CNN model could
significantly reduce the model size and decrease the computa-
tion costs with competitive accuracy in the classification task
of traffic signs. Realistic experimental results on Jetson TX2
(an edge device developed by NVidia) have further verified the
effectiveness of the proposed model. Meanwhile, pruning is
highly versatile and has a wide range of applications including
real-time target detection and real-time drone applications. Be-
fore deploying a model [179], pruning operations are generally
required to reduce the size and the model’s inference time.
Jetbot is a self-driving car model with Jetson Nano as the
core of its calculation. Jetson Nano’s volume is very small,
but it can provide 470 GFLOPS computing power. Pruner
which utilizes the pruning method they mentioned above to
lightweight the model is a key procedure in the whole process.
Consequently, the pruner reduced the size of the model to
achieve real-time detection. Impressively this model can reach
60 Frames Per Second (FPS) in the inference phase.

In ITS, autonomous driving has received extensive attention
recently. Driver gesture recognition is a key component of
advanced diver assistance systems, which has potential value
in applications such as autonomous driving, driver behavior
understanding, human-computer interaction, and driver atten-
tion analysis. Liu et al. [180] designed a novel network
RM–ThinNet, which uses a lightweight model to estimate the
driver’s posture. Extensive experimental results also demon-
strate the effectiveness of the proposed model. In [181], the
authors used LSTM to build a short-term traffic flow prediction
model based on the driving data of private cars and minibusses.
In [182], the LSTM is not only used to extract time-series
information but also is combined with stack auto-encoder to
extract spatial information in traffic data, thereby achieving
more accurate traffic flow prediction.

2) UAV-enabled IoT Applications: Unmanned Aerial Ve-
hicle (UAV) hardware has weak computing power hence
needs fewer algorithm parameters, less memory, and short
inference time to achieve real-time target detection. Traditional
solutions are not quite suited for UAV scenarios. Zhang et
al. [183] utilized the channel pruning method to deal with
this problem. Concretely they pruned the YOLOv3 model to
learn an efficient deep target detector through channel pruning.
In order to enhance the channel-level sparsity, they used L1
regularization on the channel scale factor. In this way, they
obtain a “slim” object detector with a small scale factor. The
final results showed that SlimYOLOv3 is faster and better than
YOLOv3 in real-time drone applications.

Matching aerial images with actual road landmarks (also

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 17

Compacting DNNs

Technologies

Intelligent Transportation System Sensing and Surveillance

UAV-enabled IoT Wearable IoT Applications

Compacting

Network
Knowledge

Distillation

Modification of

Network structures

Fig. 10. Upper applications of compacting-DNNs technologies in IoT.

known as “air road matching”) is a key technology to enhance
the navigation of Unmanned Aerial Systems (UAS) in GPS-
denied urban environments. Considering that UAS usually has
limited computing power and storage space, the authors [184]
propose a lightweight CNN architecture for cross-domain air
road matching. In particular, this neural network structure
has two branches, each of which uses CNN as the feature
extraction module. Each branch uses MobileNetV2 block as
the basic block and partially shares the weights between each
other.

The quality of images taken by drones is easily affected
by weather and ambient light. In order to obtain a better
quality of remote sensing images, Wu et al. [185] designed
a model namely SlimRGBD, which enables drones to au-
tomatically implement denoising operations when they took
unclear photos. They trained a GAN model in advance to
generate enough noisy images for the drone to learn the noise
distribution. They then applied a structure similar to ResNet
to achieve the denoising effect for noisy images. However,
both these two networks are relatively bulky and complex so
that they may not be suitable for UAVs with limited resources.
Therefore, the authors used channel pruning to reduce the size
of the networks so that the models are more portable for UAV
scenarios.

It is challenging to achieve the autonomous navigation and
control of UAVs. Baldini et al. [186] proposed a lightweight
learning model for autonomous navigation and landing of
UAVs. In particular, the proposed framework consists of a
new online pose estimation approach which consists of a CNN
for image regression and two different sizes of LSTMs for
position and orientation estimations. The CNN module named
ResNet18, utilized an attention mechanism as the same as SE
module and shortcut connections. This new approach boosts a
25% improvement compared to its counterparts in estimation
accuracy.

There are trade-offs between classifier accuracy and com-
putation complexity, considering limited resources UAVs. Ra-

jagopal et al. [187] presented a novel and effective model
based on a multi-objective optimization method for scene
recognition. Concretely, the proposed approach allows the
UAV to capture frames. Meanwhile, an optimal multi-objective
particle swarm optimization is used to a CNN to derive
a model. This novel method achieved the highest accuracy
and lowest computation time compared to other counterparts.
Kyrkou et al. [188] came up with a lightweight CNN called
EmergencyNet for drone-based emergency monitoring. Emer-
gencyNet that utilizes atrous convolutions to capture multi-
resolution features is capable of being efficiently executed at
UAVs, consequently achieving higher performance compared
to existing models with minimal memory requirements.

3) Environmental Sensing and Surveillance: The
lightweight DNNs can be used for IoT, which has been
deployed for environmental sensing and surveillance. Huynh
et al. [189] developed a framework called DeepMon to
optimize diverse CNNs on mobile GPUs and proposed
an efficient and energy-saving DL inference system for
mobile devices. First, they leveraged the similarity between
consecutive frames of the video to design an intelligent
caching mechanism for the convolutional layer. Second, they
accelerated the high-dimensional matrix multiplication in the
convolutional layer through matrix decomposition, which
is the bottleneck in running convolutional layers on GPUs.
DeepMon uses the adjusted Tucker-2 [94] decomposition to
further reduce the cut-down time of the convolutional layer.

Regarding sensing applications, Yao et al. [190] developed
a new general compression method for neural networks after
absorbing the idea of dropout to drop hidden elements. Specif-
ically, the redundant nodes are deleted as much as possible to
reduce the size of the network after finding the optimal dropout
probability of each hidden element in the network. Moreover,
this framework also compresses sparse neural networks into
dense structures with smaller sizes. Furthermore, the proposed
model can be directly used in IoT devices without extra mod-
ifications. Extensive experiments also verify the effectiveness

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 18

Upper Applications

ITS applications

[178] [179] [180] [181]
[182]

UAV-enabled IoT

[183] [184] [185] [186]
[187] [188]

Sensing and surveillance

[189] [94] [190] [192]
[193] [194]

Wearable IoT applications

[195] [196] [197] [198]
[199] [200]

Miscellaneous

[201] [202] [203] [204]

Fig. 11. Summary of compacting-DNNs technologies in IoT applications

of the proposed framework.
Moreover, lightweight DNNs can also be used in other

sensing and surveillance scenarios. In particular, Wang et
al. [191] combined the structure of the inverted residuals
in MobileNetV2 and the SE module in SENet to design
a lightweight neural network for weather monitoring. This
model can effectively reduce the memory cost. Moreover,
Yang et al. [192] combined the depth-wise separable con-
volution unit and SE Module to design a lightweight neural
network for fire detection. Since fire detection is mainly
based on color and different color channels have different
sensitivity levels, the authors introduced a channel multiplier
to emphasize the color channels to get a better detection result.

Zhao et al. [193] proposed a DL technique for intelligent-
edge surveillance. They utilized depth-wise separable con-
volution to reduce computational cost and combine edge
computing with cloud computing to reduce network traffic.
This method reaches 16 frames per second at the edge device
and the cost at the edge device is only one-tenth of that of the
centralized server. Experiments show the convincing results
of the proposed technique in terms of computational cost and
accuracy. To achieve good accuracy and comparative precision,
Yassine et al. [194] adopted MobileNet with transfer-learning
approach to construct a DL model for human detection for
video surveillance.

4) Wearable IoT Applications: DL methods can also be
used for wearable IoT devices. However, it is also challenging
to deploy DNNs at the limited resources of IoT devices.
There are several studies working on designing portable DL
models for wearable IoT devices. In particular, Bhattacharya
et al. [195] devised a framework namely SparseSep, which
leverages the sparsity of the fully connected layer and the
separation of the convolution kernel, reaching the goal of
no retraining, no cloud offloading, a low-resource platform,
and minimizing model changes. The framework SparseSep
consists of a layer compression compiler, a runtime frame-
work called sparse inference runtime, and a separator called
convolutional separation runtime. Extensive experiments were
conducted on diverse embedded platforms such as Qualcomm
Snapdragon, ARM Cortex, and Nvidia Tegra to further demon-
strate the effectiveness of SparseSep.

Meanwhile, Richoz et al. [196] introduced three indepen-
dent lightweight DNNs into wearable devices, corresponding
to three types of sensors, namely motion sensors, sound sen-
sors, and visual sensors. On this basis, the multimodal fusion
methods are used to better recognize the transportation pattern.
Moreover, with the help of wearable devices, Loh et al. [197]
classified the collected electrocardiogram signals for cardiac
arrhythmia detection. Specifically, discrete wavelet transform

and CNN were used to classify the collected signals. Through
the quantization and pruning of CNN, a certain amount of
parameters are reduced. Furthermore, Lu et al. [198] proposed
a lightweight I3D-based network for gesture recognition. This
model has spatio-temporal separable 3D convolution and fire
modules, which can effectively extract discriminative features.

ElectroEncephaloGraphy (EEG) classification is essential
to be deployed in wearable IoT devices. Complex LSTMs
that have been widely used in sequential applications can
hardly be deployed at wearable devices due to computations
and memory requirements. Nazari et al. [199] proposed a
multi-level binarized LSTM by introducing binary LSTMs
to cope with these problems. By using quantization meth-
ods, this algorithm brings performance efficiency with EEG
classification to wearable IoT applications. For human activity
recognition using wearable sensors, Tang et al. [200] proposed
a lightweight CNN with a set of low dimensional Lego filters
stacking for convolutional filters. The proposed CNN can
greatly reduce computation cost and memory cost while it is
faster and more accurate than its counterparts.

5) Miscellaneous: Portable DNNs have been used in other
distributed IoT scenarios. Model compression is an important
research area for deploying DL models on the IoT. However,
due to extreme memory limitations, even the compressed
model cannot be accommodated by a single device. Therefore,
researchers considered distributing the model on multiple
devices, but the main problem is the cost of memory and
communication overhead.

In particular, Bhardwaj et al. [201] proposed network
of neural networks, which compresses a large, pre-trained
“teacher” network into several separate and compact “stu-
dent” modules without accuracy loss. They also proposed a
knowledge distribution algorithm based on network science,
allowing the teacher model to traverse each student network
on the generated disjoint partitions. Moreover, Han et al. [202]
proposed the efficient speech recognition engine, which can be
used to speed up the prediction of LSTM. The pruning method
used is a perceptible method of load balancing, which makes
the pruned model easy to process in parallel. And in the weight
quantization stage, analyze the weight dynamic range of all
matrices in each LSTM layer to avoid data overflow. Thakker
et al. [203] proposed a method to compress RNN by using
Kronecker Product (KP). The authors also proposed hybrid
KP RNNs to reduce the accuracy loss caused by using KP. As
a result, hybrid KP divides the matrix into an unconstrained
upper part and a lower part. Jahromi et al. [204] proposed an
enhanced stacked LSTM method for malware detection in IoT.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 19

Summary and Insights
DL methods have been widely used in IoT because of their

powerful capabilities of data processing. Fig. 11 summarizes
the above upper applications of compacting-DNNs technolo-
gies. We find that DNN deployment methods vary with the
diversity of IoT devices. Meanwhile, the compression of DNN
is also significant, especially at ultra-small IoT devices. When
compacting-DNNs technologies are applied in IoT scenarios,
they should be adapted to fulfill the characteristics of IoT
devices. Moreover, there is a trade-off between performance
and resources.

VII. FUTURE DIRECTIONS

The future directions of compacting DNNs can be catego-
rized into four major directions: exploration of model com-
pression techniques, automated model compression methods,
deployments of compacted DNNs in IoT, and Blockchain as
well as deep learning for IoT.

A. Exploration of model compression techniques

New model compression techniques are expected to further
reduce the model size despite several recent attempts. For ex-
ample, Guo et al. [205] proposed a single-path one-shot model,
which has a simplified structure, in which feature maps can be
generated with cheap operations. Meanwhile, the authors [206]
pointed out that traditional network pruning discards invalid
filters, so they utilized filter grafting to reactivate them from
the perspective of improving accuracy. On the other hand,
other studies attempt to introduce new activation functions so
as to improve the convergence and enhance the computing
efficiency. For example, Zoph et al. [153] proposed a new
activation function f(x) = x tanh (ex), which can achieve fast
convergence and can help speed up the model training process.
Starting from the model optimization method, Ma et al. [207]
proposed a Bayesian optimization framework to replace the
traditional method of error guiding model optimization and
achieved dramatically improved efficiency. Other compression
techniques should be further explored in the future.

B. Automated model compression methods

Along with the trend of Automated ML, model compres-
sion is also expected to be automated. In particular, using
NAS for acceleration is becoming a new model compression
method [208]. The work [209] adopted NAS as a model search
framework that applied supervised learning to help the network
find the optimal parameters and produce impressive results.
Following this idea, studies [154] and [154] proposed similar
frameworks. On the other hand, GAN has also become an-
other direction in automated model compression. For example,
Meng et al. [210] used the idea of GAN to let the generator
generate the cropped network, and discriminator to determine
whether it belongs to the original network or the cropped
network so as to perform more effective network structured
cropping. Future studies may harness other techniques to
achieve automated model compression.

C. Deployment of compacted DNNs in IoT

In the deployment of compacted DNNs in IoT, there are a
number of issues to be solved. On the one hand, partitioning
strategies [211], [212] were used though, the joint consid-
eration of compacted DNNs with the partitioning strategies
is still a problem to be solved. In particular, it is worth-
while to investigate the load-balancing problem caused by
the distribution of compacted DNNs deployed at either IoT
devices or edge nodes and the integration of input and output
generated by each DNN at each computing facility. On the
other hand, the communication cost caused by transmitting
DNNs models between IoT devices and edge nodes (or clouds)
needs to be considered in deployment of compacted DNNs.
Although there are some preliminary results such as [201],
which splits the teacher’s knowledge into multiple disjoint
partitions and consequently let the student modules be disjoint
and compressed, there are still a number of issues to be solved
in the future.

D. Blockchain and deep learning for IoT

As a public distributed ledger, blockchain is an ideal
complement to IoT with several key characteristics including
decentralization, traceability, privacy and security protection.
Ferrag et al. [213] reviewed different blockchain applications
for IoT and left some challenging discussions. Moreover, Dai
et al. [214] presented a novel paradigm called blockchain of
things bringing four major merits: 1) interoperability across
IoT devices, 2) traceability, 3) reliability of IoT data, 4)
autonomic interactions of IoT systems. Despite the advances,
many areas remain challenging, such as intrusion detection.
From the collected literature, we believe that DL is a powerful
tool for data-driven tasks. It is quite promising to integrate
blockchain technology with deep learning in the future.

VIII. CONCLUSION

This paper presents a state-of-the-art survey on compacting
DNNs for IoT scenarios. We first give an overview of DNNs as
well as IoT, discuss the challenges in using DNNs in IoT, and
elaborate on the fundamentals of compacting-DNNs technolo-
gies. We next categorize compacting-DNNs technologies into
three types: compacting network model, KD, and modification
of network structures. In each type of compacting DNNs
approaches, we also elaborate on the exact techniques and
implemented models. Moreover, we discuss the applications of
compacted DNNs in IoT and point out several future directions
in this area. We believe that this comprehensive survey will
further foster the wide adoption of DL for IoT.

APPENDIX A
LIST OF ABBREVIATIONS

Abbreviation Description
5G Fifth Generation
AI Artificial Intelligence
ANN Artificial Neural Network
ATN Asymmetric Ternary Network
BCNN Binarized CNN

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 20

CNN Convolutional Neural Network
CP Canonical Polyadic
CV Computer Vision
DBN Deep Belief Network
DDL Distributed DL
DL Deep Learning
DNN Deep Neural Network
EEG ElectroEncephaloGraphy
EI Edge Intelligence
FDI False Data Injection
FLOPS FLoating-point Operations Per Second
FPS Frames Per Second
GAN Generative Adversarial Network
GPS Global Positioning System
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
IaaS Infrastructure-as-a-Service
IoT Internet of Things
IoV Internet of Vehicles
ITS Intelligent Transportation Systems
KD Knowledge Distillation
KP Kronecker Product
LSTM Long Short-Term Memory
ML Machine Learning
NAS Network Architecture Search
PaaS Platform-as-a-Service
PQ Product Quantization
QNN Quantized Neural Network
RFID Radio Frequency Identification
ReLU Rectified Linear Units
RNN Recurrent Neural Network
RQ Residual Quantization
SaaS Software-as-a-Service
SE Squeeze-and-Excitation
SVD Singular Value Decomposition
TPU Tensor Processing Unit
TWN Three elements Weight Network
UAS Unmanned Aerial Systems
UAV Unmanned Aerial Vehicle
VGG Visual Geometry Group

REFERENCES

[1] “What Is the Internet of Things (IoT)?,” https://www.oracle.com/
internet-of-things/what-is-iot.html, May 2020.

[2] H.-N. Dai, R. C.-W. Wong, H. Wang, Z. Zheng, and A. V. Vasilakos,
“Big data analytics for large scale wireless networks: Challenges and
opportunities,” ACM Computing Surveys, vol. 52, no. 5, pp. 99:1–36,
2019.

[3] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[4] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “Model compression and
acceleration for deep neural networks: The principles, progress, and
challenges,” IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 126–
136, 2018.

[5] R. Mishra, H. P. Gupta, and T. Dutta, “A survey on deep neural network
compression: Challenges, overview, and solutions,” arXiv:2010.03954
[cs, eess], Oct. 2020.

[6] T. Choudhary, V. Mishra, A. Goswami, and J. Sarangapani, “A com-
prehensive survey on model compression and acceleration,” Artificial
Intelligence Review, vol. 53, no. 7, pp. 5113–5155, 2020.

[7] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
Proceedings of the IEEE, vol. 108, pp. 485–532, Apr. 2020.

[8] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep
learning for cyber security intrusion detection: Approaches, datasets,
and comparative study,” Journal of Information Security and Applica-
tions, vol. 50, p. 102419, 2020.

[9] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[10] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551,
1989.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60,
p. 84–90, May 2017.

[12] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in ECCV, 2014.

[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv:1409.1556 [cs], Apr. 2015.

[14] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1–9, 2015.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016.

[16] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85 – 117, 2015.

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, p. 1735–1780, Nov. 1997.

[18] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
and Schwenk, “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation,” pp. 1724–1734, Oct.
2014.

[19] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality
of Data with Neural Networks,” Science, vol. 313, no. 5786, pp. 504–
507, 2006.

[20] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
nets,” in Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’14, (Cambridge,
MA, USA), p. 2672–2680, MIT Press, 2014.

[21] E. Nowroozi, A. Dehghantanha, R. M. Parizi, and K.-K. R. Choo, “A
survey of machine learning techniques in adversarial image forensics,”
Computers & Security, vol. 100, p. 102092, 2021.

[22] “The Internet of Things (IoT): An Overview | Internet Society,” https://
www.internetsociety.org/resources/doc/2015/ iot-overview, May 2020.

[23] S. Verma, Y. Kawamoto, Z. M. Fadlullah, H. Nishiyama, and N. Kato,
“A Survey on Network Methodologies for Real-Time Analytics of
Massive IoT Data and Open Research Issues,” IEEE Communications
Surveys Tutorials, vol. 19, no. 3, pp. 1457–1477, 2017.

[24] A. Akbar, F. Carrez, K. Moessner, and A. Zoha, “Predicting complex
events for pro-active IoT applications,” in 2015 IEEE 2nd World Forum
on Internet of Things (WF-IoT), Dec. 2015.

[25] N. Mohamed and J. Al-Jaroodi, “Real-time big data analytics: Ap-
plications and challenges,” in 2014 International Conference on High
Performance Computing Simulation (HPCS), pp. 305–310, July 2014.

[26] H. Li, K. Ota, and M. Dong, “Learning IoT in Edge: Deep Learning for
the Internet of Things with Edge Computing,” IEEE Network, vol. 32,
pp. 96–101, Jan. 2018.

[27] Z. Wang, L. Li, Y. Xu, H. Tian, and S. Cui, “Handover control
in wireless systems via asynchronous multiuser deep reinforcement
learning,” IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4296–
4307, 2018.

[28] J. Chen, S. Chen, Q. Wang, B. Cao, G. Feng, and J. Hu, “iraf: A
deep reinforcement learning approach for collaborative mobile edge
computing IoT networks,” IEEE Internet of Things Journal, vol. 6,
no. 4, pp. 7011–7024, 2019.

[29] P. Zhou, X. Fang, X. Wang, Y. Long, R. He, and X. Han, “Deep
learning-based beam management and interference coordination in
dense mmwave networks,” IEEE Transactions on Vehicular Technol-
ogy, vol. 68, no. 1, pp. 592–603, 2019.

[30] M. Lee, G. Yu, and G. Y. Li, “Learning to branch: Accelerating resource
allocation in wireless networks,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 1, pp. 958–970, 2020.

[31] W. Zhang, W. Hu, and Y. Wen, “Thermal comfort modeling for smart
buildings: A fine-grained deep learning approach,” IEEE Internet of
Things Journal, vol. 6, no. 2, pp. 2540–2549, 2019.

[32] Y. Song, Y. Fu, F. R. Yu, and L. Zhou, “Blockchain-enabled internet
of vehicles with cooperative positioning: A deep neural network
approach,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3485–
3498, 2020.

[33] T. Zhao, F. Li, and P. Tian, “A deep-learning method for device
activity detection in mmtc under imperfect csi based on variational-
autoencoder,” IEEE Transactions on Vehicular Technology, pp. 1–1,
2020.

[34] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-
the-art and research challenges,” Journal of Internet Services and
Applications, vol. 1, no. 1, pp. 7–18, 2010.

https://www.oracle.com/internet-of-things/what-is-iot.html
https://www.oracle.com/internet-of-things/what-is-iot.html
https://www.internetsociety.org/resources/doc/2015/iot-overview
https://www.internetsociety.org/resources/doc/2015/iot-overview

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 21

[35] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow,
and P. A. Polakos, “A comprehensive survey on fog computing: State-
of-the-art and research challenges,” IEEE Communications Surveys
Tutorials, vol. 20, no. 1, pp. 416–464, 2018.

[36] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge ai: On-demand ac-
celerating deep neural network inference via edge computing,” IEEE
Transactions on Wireless Communications, vol. 19, no. 1, pp. 447–457,
2020.

[37] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, MCC ’12, (New York,
NY, USA), p. 13–16, Association for Computing Machinery, 2012.

[38] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5,
pp. 637–646, 2016.

[39] S. Dahmen-Lhuissier, “ETSI - new white paper: Etsi’s mobile edge
computing initiative explained,” ETSI.

[40] B. Omoniwa, R. Hussain, M. A. Javed, S. H. Bouk, and S. A. Malik,
“Fog/edge computing-based IoT (feciot): Architecture, applications,
and research issues,” IEEE Internet of Things Journal, vol. 6, no. 3,
pp. 4118–4149, 2019.

[41] K. Umeda, T. Nishitsuji, T. Asaka, and T. Miyoshi, “Processing
assignment of deep learning according to sensor node capacity,” in
2019 Seventh International Symposium on Computing and Networking
Workshops (CANDARW), pp. 67–70, 2019.

[42] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen,
“In-edge AI: Intelligentizing mobile edge computing, caching and
communication by federated learning,” IEEE Network, vol. 33, no. 5,
pp. 156–165, 2019.

[43] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762,
2019.

[44] B. Lin, Y. Huang, J. Zhang, J. Hu, X. Chen, and J. Li, “Cost-driven off-
loading for dnn-based applications over cloud, edge, and end devices,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 8, pp. 5456–
5466, 2020.

[45] Y. Chang, X. Huang, Z. Shao, and Y. Yang, “An efficient distributed
deep learning framework for fog-based IoT systems,” in 2019 IEEE
Global Communications Conference (GLOBECOM), pp. 1–6, 2019.

[46] M. Denil, B. Shakibi, L. Dinh, M. A. Ranzato, and N. de Freitas,
“Predicting Parameters in Deep Learning,” in Advances in Neural
Information Processing Systems 26 (C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger, eds.), pp. 2148–
2156, Curran Associates, Inc., 2013.

[47] L. J. Ba and R. Caruana, “Do deep nets really need to be deep?,” in
Proceedings of the 27th International Conference on Neural Informa-
tion Processing Systems - Volume 2, NIPS’14, (Cambridge, MA, USA),
p. 2654–2662, MIT Press, 2014.

[48] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 33, no. 1, pp. 117–128, 2011.

[49] Y. Chen, G. Tao, and C. Wang, “Approximate nearest neighbor search
by residual vector quantization,” Sensors (Basel, Switzerland), vol. 10,
pp. 11259–11273, 12 2010.

[50] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing Deep
Convolutional Networks using Vector Quantization,” arXiv:1412.6115
[cs], Dec. 2014.

[51] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolu-
tional neural networks for mobile devices,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 4820–4828,
2016.

[52] D. A. Gudovskiy and L. Rigazio, “ShiftCNN: Generalized Low-
Precision Architecture for Inference of Convolutional Neural Net-
works,” arXiv:1706.02393 [cs], June 2017.

[53] Y. Choi, M. El-Khamy, and J. Lee, “Towards the Limit of Network
Quantization,” arXiv:1612.01543 [cs], Nov. 2017.

[54] B. Reagen, U. Gupta, R. Adolf, M. M. Mitzenmacher, A. M. Rush,
G.-Y. Wei, and D. Brooks, “Weightless: Lossy Weight Encoding For
Deep Neural Network Compression,” arXiv:1711.04686 [cs, stat], Nov.
2017.

[55] Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning with
low precision by half-wave gaussian quantization,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 5406–5414, 2017.

[56] Y. Xu, S. Zhang, Y. Qi, J. Guo, W. Lin, and H. Xiong, “Dnq: Dynamic
network quantization,” in 2019 Data Compression Conference (DCC),
pp. 610–610, 2019.

[57] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized Neural Networks: Training Deep Neural Networks with
Weights and Activations Constrained to +1 or -1,” arXiv:1602.02830
[cs], Feb. 2016.

[58] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-
Net: ImageNet Classification Using Binary Convolutional Neural Net-
works,” arXiv:1603.05279 [cs], Aug. 2016.

[59] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized Neural Networks: Training Neural Networks with Low
Precision Weights and Activations,” arXiv:1609.07061 [cs], Sept. 2016.

[60] F. Li, B. Zhang, and B. Liu, “Ternary Weight Networks,”
arXiv:1605.04711 [cs], May 2016.

[61] J. Ding, J. Wu, and H. Wu, “Asymmetric ternary networks,” in
2017 IEEE 29th International Conference on Tools with Artificial
Intelligence (ICTAI), pp. 61–65, 2017.

[62] Y. Li, X. Dong, S. Q. Zhang, H. Bai, Y. Chen, and W. Wang, “RTN:
Reparameterized Ternary Network,” arXiv:1912.02057 [cs], Dec. 2019.

[63] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
Learning with Limited Numerical Precision,” arXiv:1502.02551 [cs,
stat], Feb. 2015.

[64] Y. Dong, R. Ni, J. Li, Y. Chen, J. Zhu, and H. Su, “Learning Ac-
curate Low-Bit Deep Neural Networks with Stochastic Quantization,”
arXiv:1708.01001 [cs], Aug. 2017.

[65] C. Sakr, N. Wang, C.-Y. Chen, J. Choi, A. Agrawal, N. Shanbhag, and
K. Gopalakrishnan, “Accumulation Bit-Width Scaling For Ultra-Low
Precision Training Of Deep Networks,” arXiv:1901.06588 [cs], Jan.
2019.

[66] J. Yang, X. Shen, J. Xing, X. Tian, H. Li, B. Deng, J. Huang, and
X. Hua, “Quantization Networks,” arXiv:1911.09464 [cs], Nov. 2019.

[67] J. Lin, T. Xing, R. Zhao, Z. Zhang, M. Srivastava, Z. Tu, and
R. K. Gupta, “Binarized convolutional neural networks with separable
filters for efficient hardware acceleration,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW),
pp. 344–352, 2017.

[68] L. Hou, Q. Yao, and J. T. Kwok, “Loss-aware Binarization of Deep
Networks,” arXiv:1611.01600 [cs], May 2018.

[69] S. J. Hanson and L. Y. Pratt, “Comparing biases for minimal network
construction with back-propagation,” in Proceedings of the 1st Interna-
tional Conference on Neural Information Processing Systems, NIPS’88,
(Cambridge, MA, USA), p. 177–185, MIT Press, 1988.

[70] Y. Chauvin, Advances in Neural Information Processing Systems 2.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990.

[71] B. Hassibi, D. G. Stork, and G. J. Wolff, “Optimal brain surgeon and
general network pruning,” in IEEE International Conference on Neural
Networks, pp. 293–299 vol.1, 1993.

[72] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” in Proceedings of the 28th
International Conference on Neural Information Processing Systems
- Volume 1, NIPS’15, (Cambridge, MA, USA), p. 1135–1143, MIT
Press, 2015.

[73] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huff-
man Coding,” arXiv:1510.00149 [cs], Oct. 2015.

[74] Y. Guo, A. Yao, and Y. Chen, “Dynamic Network Surgery for Efficient
DNNs,” arXiv:1608.04493 [cs], Nov. 2016.

[75] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
Filters for Efficient ConvNets,” arXiv:1608.08710 [cs], Mar. 2016.

[76] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network Trimming:
A Data-Driven Neuron Pruning Approach towards Efficient Deep
Architectures,” arXiv:1607.03250 [cs], July 2016.

[77] C. Yang, Z. Yang, A. M. Khattak, L. Yang, W. Zhang, W. Gao, and
M. Wang, “Structured pruning of convolutional neural networks via l1
regularization,” IEEE Access, vol. 7, pp. 106385–106394, 2019.

[78] N. Lee, T. Ajanthan, and P. H. S. Torr, “SNIP: Single-shot Network
Pruning based on Connection Sensitivity,” arXiv:1810.02340 [cs], Oct.
2018.

[79] V. K. Verma, P. Singh, V. P. Namboodiri, and P. Rai, “A ”Net-
work Pruning Network” Approach to Deep Model Compression,”
arXiv:2001.05545 [cs, stat], Jan. 2020.

[80] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in 2017 IEEE International Conference on
Computer Vision (ICCV), pp. 1398–1406, 2017.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 22

[81] Z. Chen, J. Lin, S. Liu, Z. Chen, W. Li, J. Zhao, and W. Yan,
“Exploiting weight-level sparsity in channel pruning with low-rank
approximation,” in 2019 IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 1–5, 2019.

[82] C. Bao, C. Yu, T. Xie, and X. Hu, “Convolutional neural network
channel pruning based on regularized sparse,” in 2019 IEEE 4th
International Conference on Signal and Image Processing (ICSIP),
pp. 679–684, 2019.

[83] Y. Hu, S. Sun, J. Li, J. Zhu, X. Wang, and Q. Gu, “Multi-loss-
aware channel pruning of deep networks,” in 2019 IEEE International
Conference on Image Processing (ICIP), pp. 889–893, 2019.

[84] Y. Zhou, G. Liu, and D. Wang, “A hybrid statistics-based channel prun-
ing method for deep cnns*,” in 2019 IEEE International Conference
on Systems, Man and Cybernetics (SMC), pp. 780–785, 2019.

[85] K. Zhang, K. Cheng, J. Li, and Y. Peng, “A channel pruning algorithm
based on depth-wise separable convolution unit,” IEEE Access, vol. 7,
pp. 173294–173309, 2019.

[86] T. Yang, Y. Chen, and V. Sze, “Designing energy-efficient convolutional
neural networks using energy-aware pruning,” in 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 6071–
6079, 2017.

[87] S. O’Keeffe and R. Villing, “Evaluating extended pruning on object
detection neural networks,” in 2018 29th Irish Signals and Systems
Conference (ISSC), pp. 1–6, 2018.

[88] F. Manessi, A. Rozza, S. Bianco, P. Napoletano, and R. Schettini,
“Automated pruning for deep neural network compression,” in 2018
24th International Conference on Pattern Recognition (ICPR), pp. 657–
664, 2018.

[89] Z. Huang and N. Wang, “Data-Driven Sparse Structure Selection for
Deep Neural Networks,” arXiv:1707.01213 [cs], Sept. 2018.

[90] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up Convolu-
tional Neural Networks with Low Rank Expansions,” arXiv:1405.3866
[cs], May 2014.

[91] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting
linear structure within convolutional networks for efficient evaluation,”
in Proceedings of the 27th International Conference on Neural Infor-
mation Processing Systems - Volume 1, NIPS’14, (Cambridge, MA,
USA), p. 1269–1277, MIT Press, 2014.

[92] X. Zhang, Jianhua Zou, Xiang Ming, K. He, and J. Sun, “Efficient
and accurate approximations of nonlinear convolutional networks,” in
2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1984–1992, 2015.

[93] C. Tai, T. Xiao, Y. Zhang, X. Wang, and W. E, “Convolutional neural
networks with low-rank regularization,” arXiv:1511.06067 [cs, stat],
Feb. 2016.

[94] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compres-
sion of Deep Convolutional Neural Networks for Fast and Low Power
Mobile Applications,” arXiv:1511.06530 [cs, stat], Nov. 2015.

[95] S. Fan, H. Yu, D. Lu, S. Jiao, W. Xu, F. Liu, and Z. Liu, “Cscc:
Convolution split compression calculation algorithm for deep neural
network,” IEEE Access, vol. 7, pp. 71607–71615, 2019.

[96] S. Wiedemann, K. Müller, and W. Samek, “Compact and compu-
tationally efficient representation of deep neural networks,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 31, no. 3,
pp. 772–785, 2020.

[97] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a
Neural Network,” arXiv:1503.02531 [cs, stat], Mar. 2015.

[98] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’06, (New York, NY,
USA), p. 535–541, Association for Computing Machinery, 2006.

[99] Z. Huang and N. Wang, “Like What You Like: Knowledge Distill via
Neuron Selectivity Transfer,” arXiv:1707.01219 [cs], Dec. 2017.

[100] L. Yu, V. O. Yazici, X. Liu, J. van de Weijer, Y. Cheng, and
A. Ramisa, “Learning metrics from teachers: Compact networks for
image embedding,” in 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2902–2911, 2019.

[101] S.-I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa,
and H. Ghasemzadeh, “Improved Knowledge Distillation via Teacher
Assistant,” arXiv:1902.03393 [cs], Feb. 2019.

[102] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and
Y. Bengio, “FitNets: Hints for Thin Deep Nets,” arXiv:1412.6550 [cs],
Mar. 2015.

[103] J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation:
Fast optimization, network minimization and transfer learning,” in
2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 7130–7138, 2017.

[104] S. Zagoruyko and N. Komodakis, “Paying More Attention to Attention:
Improving the Performance of Convolutional Neural Networks via
Attention Transfer,” arXiv:1612.03928 [cs], Feb. 2017.

[105] Z. Zhang, G. Ning, and Z. He, “Knowledge Projection for Deep Neural
Networks,” arXiv:1710.09505 [cs, stat], Oct. 2017.

[106] B. Peng, X. Jin, D. Li, S. Zhou, Y. Wu, J. Liu, Z. Zhang, and
Y. Liu, “Correlation congruence for knowledge distillation,” in 2019
IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 5006–5015, 2019.

[107] E. J. Crowley, G. Gray, and A. Storkey, “Moonshine: Distilling with
Cheap Convolutions,” arXiv:1711.02613 [cs, stat], Jan. 2019.

[108] W. Park, D. Kim, Y. Lu, and M. Cho, “Relational knowledge distilla-
tion,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3962–3971, 2019.

[109] V. Vapnik and R. Izmailov, “Learning using privileged information:
Similarity control and knowledge transfer,” J. Mach. Learn. Res.,
vol. 16, p. 2023–2049, Jan. 2015.

[110] Z. Shen, Z. He, and X. Xue, “MEAL: Multi-Model Ensemble via
Adversarial Learning,” arXiv:1812.02425 [cs, stat], Dec. 2018.

[111] S. Ahn, S. X. Hu, A. Damianou, N. D. Lawrence, and Z. Dai,
“Variational information distillation for knowledge transfer,” in 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 9155–9163, 2019.

[112] F. Tung and G. Mori, “Similarity-preserving knowledge distillation,” in
2019 IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 1365–1374, 2019.

[113] L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, and K. Ma, “Be your own
teacher: Improve the performance of convolutional neural networks
via self distillation,” in 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 3712–3721, 2019.

[114] S. Lee and B. C. Song, “Graph-based Knowledge Distillation by Multi-
head Attention Network,” arXiv:1907.02226 [cs, stat], July 2019.

[115] J. Ma and Q. Mei, “Graph Representation Learning via Multi-task
Knowledge Distillation,” arXiv:1911.05700 [cs, stat], Nov. 2019.

[116] Y. Tian, D. Krishnan, and P. Isola, “Contrastive Representation Distil-
lation,” arXiv:1910.10699 [cs], Oct. 2019.

[117] Y. Liu, C. Shun, J. Wang, and C. Shen, “Structured Knowledge
Distillation for Dense Prediction,” arXiv:1903.04197 [cs], Apr. 2019.

[118] M. Gao, Y. Shen, Q. Li, and C. C. Loy, “Residual Knowledge
Distillation,” arXiv:2002.09168 [cs], Feb. 2020.

[119] D. Lopez-Paz, L. Bottou, B. Schölkopf, and V. Vapnik, “Unifying
distillation and privileged information,” arXiv:1511.03643 [cs], Nov.
2015.

[120] F. Tang, C. Xiao, F. Wang, J. Zhou, and L.-w. H. Lehman, “Retaining
privileged information for multi-task learning,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD ’19, (New York, NY, USA), p. 1369–1377,
Association for Computing Machinery, 2019.

[121] X. Wang, R. Zhang, Y. Sun, and J. Qi, “Kdgan: Knowledge distil-
lation with generative adversarial networks,” in Advances in Neural
Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, 3-8 December
2018, Montréal, Canada, pp. 783–794, 2018.

[122] Z. Xu, Y.-C. Hsu, and J. Huang, “Training Shallow and Thin Networks
for Acceleration via Knowledge Distillation with Conditional Adver-
sarial Networks,” arXiv:1709.00513 [cs], Apr. 2018.

[123] J. R. R. Uijlings, S. Popov, and V. Ferrari, “Revisiting knowledge trans-
fer for training object class detectors,” in 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 1101–1110, 2018.

[124] R. Anil, G. Pereyra, A. Passos, R. Ormandi, G. E. Dahl, and G. E.
Hinton, “Large scale distributed neural network training through online
distillation,” arXiv:1804.03235 [cs, stat], Apr. 2018.

[125] T. Furlanello, Z. C. Lipton, M. Tschannen, L. Itti, and A. Anandkumar,
“Born Again Neural Networks,” arXiv:1805.04770 [cs, stat], June
2018.

[126] S. Tan, R. Caruana, G. Hooker, P. Koch, and A. Gordo, “Learning
Global Additive Explanations for Neural Nets Using Model Distilla-
tion,” arXiv:1801.08640 [cs, stat], Dec. 2018.

[127] B. Heo, M. Lee, S. Yun, and J. Y. Choi, “Knowledge Transfer via
Distillation of Activation Boundaries Formed by Hidden Neurons,”
arXiv:1811.03233 [cs, stat], Dec. 2018.

[128] T. He, C. Shen, Z. Tian, D. Gong, C. Sun, and Y. Yan, “Knowledge
adaptation for efficient semantic segmentation,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 578–587, 2019.

[129] I.-J. Liu, J. Peng, and A. G. Schwing, “Knowledge Flow: Improve
Upon Your Teachers,” arXiv:1904.05878 [cs, stat], Apr. 2019.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 23

[130] J. Yang, B. Martinez, A. Bulat, and G. Tzimiropoulos, “Knowledge
distillation via adaptive instance normalization,” arXiv:2003.04289
[cs], Mar. 2020.

[131] K. Song, H. Sun, X. Tan, T. Qin, J. Lu, H. Liu, and T.-Y. Liu,
“LightPAFF: A Two-Stage Distillation Framework for Pre-training and
Fine-tuning,” arXiv:2004.12817 [cs], Apr. 2020.

[132] Y. He, X. Liu, H. Zhong, and Y. Ma, “Addressnet: Shift-based primi-
tives for efficient convolutional neural networks,” in 2019 IEEE Winter
Conference on Applications of Computer Vision (WACV), pp. 1213–
1222, 2019.

[133] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 6848–6856, 2018.

[134] B. Wu, A. Wan, X. Yue, P. Jin, S. Zhao, N. Golmant, A. Gholaminejad,
J. Gonzalez, and K. Keutzer, “Shift: A zero flop, zero parameter
alternative to spatial convolutions,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9127–9135, 2018.

[135] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 5987–5995,
2017.

[136] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269,
2017.

[137] G. Huang, S. Liu, L. v. d. Maaten, and K. Q. Weinberger, “Con-
densenet: An efficient densenet using learned group convolutions,” in
2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 2752–2761, 2018.

[138] Q. Zhao, J. Liu, B. Zhang, S. Lyu, N. Raoof, and W. Feng, “Inter-
pretable Relative Squeezing bottleneck design for compact convolu-
tional neural networks model,” Image and Vision Computing, vol. 89,
pp. 276 – 288, 2019.

[139] L. Zhu, R. Deng, M. Maire, Z. Deng, G. Mori, and P. Tan, “Sparsely
Aggregated Convolutional Networks,” arXiv:1801.05895 [cs], Feb.
2019.

[140] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 7132–7141, 2018.

[141] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5MB model size,” arXiv:1602.07360 [cs], Feb.
2016.

[142] Z. Li, X. Wang, X. Lv, and T. Yang, “SEP-Nets: Small and Effective
Pattern Networks,” arXiv:1706.03912 [cs], June 2017.

[143] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1800–1807, 2017.

[144] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications,”
arXiv:1704.04861 [cs], Apr. 2017.

[145] Y. Wu, “Deep convolutional neural network based on densely connected
squeeze-and-excitation blocks,” AIP Advances, vol. 9, p. 065016, 06
2019.

[146] F. Fooladgar and S. Kasaei, “Lightweight Residual Densely Connected
Convolutional Neural Network,” arXiv:2001.00526 [cs], Jan. 2020.

[147] K. Gao, Q. Zhang, and H. Wang, “A lightweight residual-inception
convolutional neural network,” Journal of Physics: Conference Series,
vol. 1237, pp. 032–058, jun 2019.

[148] Y. Wu, X. Zhou, P. Liu, J. Tan, and L. Guo, “Lightweight Convolu-
tional Neural Network with SE Module for Image Super-Resolution,”
Procedia Computer Science, vol. 139, pp. 144 – 150, 2018.

[149] B. Wu, A. Wan, F. Iandola, P. H. Jin, and K. Keutzer, “Squeezedet:
Unified, small, low power fully convolutional neural networks for
real-time object detection for autonomous driving,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 446–454, 2017.

[150] L. Zhang, Z. Tan, J. Song, J. Chen, C. Bao, and K. Ma, “SCAN: A
Scalable Neural Networks Framework Towards Compact and Efficient
Models,” arXiv:1906.03951 [cs], May 2019.

[151] Y. Li, D. Zhang, and L. Dah-Jye, “Iirnet: A lightweight deep neural
network using intensely inverted residuals for image recognition,”
Image and Vision Computing, vol. 92, p. 103819, Dec. 2019.

[152] X. Liu and X. Di, “TanhExp: A Smooth Activation Function
with High Convergence Speed for Lightweight Neural Networks,”
arXiv:2003.09855 [cs], Mar. 2020.

[153] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8697–
8710, 2018.

[154] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks,” arXiv:1905.11946 [cs], May 2019.

[155] J. Wan, X. Li, H. N. Dai, A. Kusiak, M. Martı́nez-Garcı́a, and D. Li,
“Artificial-intelligence-driven customized manufacturing factory: Key
technologies, applications, and challenges,” Proceedings of the IEEE,
pp. 1–22, 2020.

[156] M. Sajjad, M. Nasir, K. Muhammad, S. Khan, Z. Jan, A. K. Sangaiah,
M. Elhoseny, and S. W. Baik, “Raspberry pi assisted face recognition
framework for enhanced law-enforcement services in smart cities,”
Future Generation Computer Systems, vol. 108, pp. 995 – 1007, 2020.

[157] K. Zhang, J. Long, X. Wang, H.-N. Dai, K. Liang, and M. Imran,
“Lightweight searchable encryption protocol for industrial internet of
things,” IEEE Transactions on Industrial Informatics, 2020.

[158] J. Huang, L. Kong, H. Dai, W. Ding, L. Cheng, G. Chen, X. Jin,
and P. Zeng, “Blockchain-based mobile crowd sensing in industrial
systems,” IEEE Transactions on Industrial Informatics, vol. 16, no. 10,
pp. 6553–6563, 2020.

[159] M. Price, J. Glass, and A. P. Chandrakasan, “14.4 a scalable speech rec-
ognizer with deep-neural-network acoustic models and voice-activated
power gating,” in 2017 IEEE International Solid-State Circuits Con-
ference (ISSCC), pp. 244–245, 2017.

[160] S. Zheng, P. Ouyang, D. Song, X. Li, L. Liu, S. Wei, and S. Yin, “An
ultra-low power binarized convolutional neural network-based speech
recognition processor with on-chip self-learning,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 66, no. 12, pp. 4648–
4661, 2019.

[161] W. Shao, H. Luo, F. Zhao, Y. Ma, Z. Zhao, and A. Crivello, “Indoor po-
sitioning based on fingerprint-image and deep learning,” IEEE Access,
vol. 6, pp. 74699–74712, 2018.

[162] H. Jiang, C. Peng, and J. Sun, “Deep belief network for fingerprinting-
based rfid indoor localization,” in ICC 2019 - 2019 IEEE International
Conference on Communications (ICC), pp. 1–5, 2019.

[163] S. M. Samadani, Y. Savaria, and C. Nerguizian, “Indoor localiza-
tion using channel state information with regression artificial neu-
ral networks,” in 2020 IEEE 91st Vehicular Technology Conference
(VTC2020-Spring), pp. 1–4, 2020.

[164] D. Tao, Y. Wen, and R. Hong, “Multicolumn bidirectional long short-
term memory for mobile devices-based human activity recognition,”
IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1124–1134, 2016.

[165] Q. Zhu, Z. Chen, and Y. C. Soh, “A novel semisupervised deep
learning method for human activity recognition,” IEEE Transactions
on Industrial Informatics, vol. 15, no. 7, pp. 3821–3830, 2019.

[166] D. Deb, A. Ross, A. K. Jain, K. Prakah-Asante, and K. V. Prasad,
“Actions speak louder than (pass)words: Passive authentication of
smartphone* users via deep temporal features,” in 2019 International
Conference on Biometrics (ICB), pp. 1–8, 2019.

[167] Z. Qin, G. Huang, H. Xiong, Z. Qin, and K. R. Choo, “A fuzzy
authentication system based on neural network learning and extreme
value statistics,” IEEE Transactions on Fuzzy Systems, pp. 1–1, 2019.

[168] Y. He, G. J. Mendis, and J. Wei, “Real-time detection of false data
injection attacks in smart grid: A deep learning-based intelligent
mechanism,” IEEE Transactions on Smart Grid, vol. 8, no. 5, pp. 2505–
2516, 2017.

[169] Z. Zheng, Y. Yang, X. Niu, H. Dai, and Y. Zhou, “Wide and deep
convolutional neural networks for electricity-theft detection to secure
smart grids,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 4, pp. 1606–1615, 2018.

[170] M. A. Ferrag and L. Maglaras, “Deepcoin: A novel deep learning and
blockchain-based energy exchange framework for smart grids,” IEEE
Transactions on Engineering Management, vol. 67, no. 4, pp. 1285–
1297, 2019.

[171] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach for
intrusion detection using recurrent neural networks,” Ieee Access,
vol. 5, pp. 21954–21961, 2017.

[172] Y. Zhang, P. Li, and X. Wang, “Intrusion detection for iot based on
improved genetic algorithm and deep belief network,” IEEE Access,
vol. 7, pp. 31711–31722, 2019.

[173] C. Guo, J. Jia, K.-K. R. Choo, and Y. Jie, “Privacy-preserving image
search (ppis): Secure classification and searching using convolutional

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 24

neural network over large-scale encrypted medical images,” Computers
& Security, vol. 99, p. 102021, 2020.

[174] Y. Aono, T. Hayashi, L. Wang, S. Moriai, et al., “Privacy-preserving
deep learning via additively homomorphic encryption,” IEEE Transac-
tions on Information Forensics and Security, vol. 13, no. 5, pp. 1333–
1345, 2017.

[175] X. Liu, H. Li, G. Xu, S. Liu, Z. Liu, and R. Lu, “Padl: Privacy-aware
and asynchronous deep learning for iot applications,” IEEE Internet of
Things Journal, vol. 7, no. 8, pp. 6955–6969, 2020.

[176] Y. Li, H. Li, G. Xu, T. Xiang, X. Huang, and R. Lu, “Toward secure and
privacy-preserving distributed deep learning in fog-cloud computing,”
IEEE Internet of Things Journal, vol. 7, no. 12, pp. 11460–11472,
2020.

[177] M. Saharkhizan, A. Azmoodeh, A. Dehghantanha, K. K. R. Choo,
and R. M. Parizi, “An ensemble of deep recurrent neural networks
for detecting iot cyber attacks using network traffic,” IEEE Internet of
Things Journal, vol. 7, no. 9, pp. 8852–8859, 2020.

[178] J. Zhou, H.-N. Dai, and H. Wang, “Lightweight convolution neural
networks for mobile edge computing in transportation cyber physical
systems,” ACM Transactions on Intelligent Systems and Technology,
vol. 10, no. 6, pp. 67:1–20, 2019.

[179] “Bringing the Power of AI to Millions of Devices,” https://www.nvidia.
com/en-us/autonomous-machines/embedded-systems/ jetson-nano/ ,
May 2020.

[180] Y. Liu, P. Lasang, S. Pranata, S. Shen, and W. Zhang, “Driver pose esti-
mation using recurrent lightweight network and virtual data augmented
transfer learning,” IEEE Transactions on Intelligent Transportation
Systems, vol. 20, no. 10, pp. 3818–3831, 2019.

[181] L. Yu, J. Zhao, Y. Gao, and W. Lin, “Short-term traffic flow prediction
based on deep learning network,” in 2019 International Conference on
Robots Intelligent System (ICRIS), pp. 466–469, 2019.

[182] Y. Tian, C. Wei, and D. Xu, “Traffic flow prediction based on stack
autoencoder and long short-term memory network,” in 2020 IEEE 3rd
International Conference on Automation, Electronics and Electrical
Engineering (AUTEEE), pp. 385–388, IEEE, 2020.

[183] P. Zhang, Y. Zhong, and X. Li, “SlimYOLOv3: Narrower, Faster
and Better for Real-Time UAV Applications,” in 2019 IEEE/CVF
International Conference on Computer Vision Workshop (ICCVW),
pp. 37–45, 2019.

[184] Y. Zhao and T. Wang, “A lightweight neural network framework for
cross-domain road matching,” in 2019 Chinese Automation Congress
(CAC), pp. 2973–2978, 2019.

[185] C. Wu, B. Ju, Y. Wu, and N. Xiong, “Slimrgbd: A geographic
information photography noise reduction system for aerial remote
sensing,” IEEE Access, vol. 8, pp. 15144–15158, 2020.

[186] F. Baldini, A. Anandkumar, and R. M. Murray, “Learning Pose Esti-
mation for UAV Autonomous Navigation and Landing Using Visual-
Inertial Sensor Data,” in 2020 American Control Conference (ACC),
pp. 2961–2966, 2020.

[187] A. Rajagopal, G. P. Joshi, A. Ramachandran, R. T. Subhalakshmi,
M. Khari, S. Jha, K. Shankar, and J. You, “A deep learning model based
on multi-objective particle swarm optimization for scene classification
in unmanned aerial vehicles,” IEEE Access, vol. 8, pp. 135383–135393,
2020.

[188] C. Kyrkou and T. Theocharides, “Emergencynet: Efficient aerial image
classification for drone-based emergency monitoring using atrous con-
volutional feature fusion,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 13, pp. 1687–1699, 2020.

[189] L. N. Huynh, Y. Lee, and R. K. Balan, “DeepMon: Mobile GPU-
Based Deep Learning Framework for Continuous Vision Applications,”
in Proceedings of the 15th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’17, (New York, NY,
USA), p. 82–95, Association for Computing Machinery, 2017.

[190] S. Yao, Y. Zhao, A. Zhang, L. Su, and T. Abdelzaher, “DeepIoT:
Compressing Deep Neural Network Structures for Sensing Systems
with a Compressor-Critic Framework,” in Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems, SenSys ’17, 2017.

[191] C. Wang, P. Liu, K. Jia, and S. Chen, “Lightweight models for weather
identification,” in 2019 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA ASC), pp. 64–68,
2019.

[192] H. Yang, H. Jang, T. Kim, and B. Lee, “Non-temporal lightweight fire
detection network for intelligent surveillance systems,” IEEE Access,
vol. 7, pp. 169257–169266, 2019.

[193] Y. Zhao, Y. Yin, and G. Gui, “Lightweight deep learning based intel-
ligent edge surveillance techniques,” IEEE Transactions on Cognitive
Communications and Networking, vol. 6, no. 4, pp. 1146–1154, 2020.

[194] B. Yassine, G. Larbi, and L. Hicham, “Human detection in surveillance
videos using mobilenet,” in 2020 2nd International Conference on
Computer and Information Sciences (ICCIS), pp. 1–5, 2020.

[195] S. Bhattacharya and N. D. Lane, “Sparsification and separation of deep
learning layers for constrained resource inference on wearables,” in
Proceedings of the 14th ACM Conference on Embedded Network Sen-
sor Systems CD-ROM, SenSys ’16, (New York, NY, USA), p. 176–189,
Association for Computing Machinery, 2016.

[196] S. Richoz, L. Wang, P. Birch, and D. Roggen, “Transportation mode
recognition fusing wearable motion, sound, and vision sensors,” IEEE
Sensors Journal, vol. 20, no. 16, pp. 9314–9328, 2020.

[197] J. Loh, J. Wen, and T. Gemmeke, “Low-cost dnn hardware acceler-
ator for wearable, high-quality cardiac arrythmia detection,” in 2020
IEEE 31st International Conference on Application-specific Systems,
Architectures and Processors (ASAP), pp. 213–216, 2020.

[198] Z. Lu, S. Qin, L. Li, D. Zhang, K. Xu, and Z. Hu, “One-shot learning
hand gesture recognition based on lightweight 3d convolutional neural
networks for portable applications on mobile systems,” IEEE Access,
vol. 7, pp. 131732–131748, 2019.

[199] N. Nazari, S. A. Mirsalari, S. Sinaei, M. E. Salehi, and M. Daneshtalab,
“Multi-level binarized lstm in eeg classification for wearable devices,”
in 2020 28th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing (PDP), pp. 175–181, 2020.

[200] Y. Tang, Q. Teng, L. Zhang, F. Min, and J. He, “Layer-wise training
convolutional neural networks with smaller filters for human activity
recognition using wearable sensors,” IEEE Sensors Journal, vol. 21,
no. 1, pp. 581–592, 2021.

[201] K. Bhardwaj, C.-Y. Lin, A. Sartor, and R. Marculescu, “Memory- and
communication-aware model compression for distributed deep learning
inference on IoT,” ACM Trans. Embed. Comput. Syst., vol. 18, Oct.
2019.

[202] S. Han, Y. Wang, H. Yang, W. Dally, J. Kang, H. Mao, Y. Hu, X. Li,
Y. Li, D. Xie, H. Luo, and S. Yao, “Ese: Efficient speech recognition
engine with sparse lstm on fpga,” pp. 75–84, 02 2017.

[203] U. Thakker, J. Beu, D. Gope, C. Zhou, I. Fedorov, G. Dasika, and
M. Mattina, “Compressing RNNs for IoT devices by 15-38x using
Kronecker Products,” arXiv:1906.02876 [cs, stat], June 2019.

[204] A. N. Jahromi, S. Hashemi, A. Dehghantanha, R. M. Parizi, and
K. K. R. Choo, “An enhanced stacked lstm method with no random
initialization for malware threat hunting in safety and time-critical
systems,” IEEE Transactions on Emerging Topics in Computational
Intelligence, vol. 4, no. 5, pp. 630–640, 2020.

[205] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun, “Single
Path One-Shot Neural Architecture Search with Uniform Sampling,”
arXiv:1904.00420 [cs], Apr. 2019.

[206] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and
D. Doermann, “Towards optimal structured cnn pruning via generative
adversarial learning,” in 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2785–2794, 2019.

[207] X. Ma, A. R. Triki, M. Berman, C. Sagonas, J. Cali, and M. Blaschko,
“A bayesian optimization framework for neural network compression,”
in 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 10273–10282, 2019.

[208] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “GhostNet: More
Features from Cheap Operations,” arXiv:1911.11907 [cs], Nov. 2019.

[209] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive Neural Architecture
Search,” in Computer Vision – ECCV 2018, (Cham), pp. 19–35,
Springer International Publishing, 2018.

[210] F. Meng, H. Cheng, K. Li, Z. Xu, R. Ji, X. Sun, and G. Lu, “Filter
Grafting for Deep Neural Networks,” arXiv:2001.05868 [cs], Feb.
2020.

[211] H. Jeong, “Lightweight offloading system for mobile edge computing,”
in 2019 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), pp. 451–452, 2019.

[212] B. Lin, Y. Huang, J. Zhang, J. Hu, X. Chen, and J. Li, “Cost-driven off-
loading for dnn-based applications over cloud, edge, and end devices,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 8, pp. 5456–
5466, 2020.

[213] M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. Maglaras,
and H. Janicke, “Blockchain technologies for the internet of things:
Research issues and challenges,” IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 2188–2204, 2019.

[214] H. Dai, Z. Zheng, and Y. Zhang, “Blockchain for internet of things: A
survey,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8076–8094,
2019.

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 25

Ke Zhang (M’09) received the B.S. and M.S. de-
grees from the University of Electronic Science and
Technology of China (UESTC) in 2002 and 2006,
respectively, and the Ph.D. degree from the School
of Computer Science and Engineering, UESTC, in
2010. He is currently an Associate Professor with
the School of Computer Science and Engineering,
UESTC, Chengdu, China. Ke Zhang has published
more than 60 research articles in many journals
and conferences. He is also the reviewer of many
prestigious international conferences and journals,

and he owns more than 14 national invention patents. His research interests
include the internet of things, AI, big data, computer networks, and data
fusion. His scientific research at UESTC started with designing an intelligent
firewall system based on an Intel IXA network processor. Much of his focus
has been on sensor networks, AI, and big data since 2006, participated in
several research projects, such as the National Natural Science Foundation of
China, the Sichuan Science and Technology Program, and Aviation Science
Fund Projects and so on. He is also a Senior Member of the China Computer
Federation (CCF) and the CCF’s Member of the committee of experts on
computer applications.

Hanbo Ying received the B.E. degree in network
engineering from the University of Electronic Sci-
ence and Technology of China (UESTC), Chengdu,
China, in 2018. And now he is currently pursuing the
M.A.Eng degree in Information and Communication
at UESTC. His current research interests include
big data, compression and acceleration in neural
networks and internet of things.

Hong-Ning Dai (SM’16) is currently with Faculty of
Information Technology at Macau University of Sci-
ence and Technology as an associate professor. He
obtained the Ph.D. degree in Computer Science and
Engineering from Department of Computer Science
and Engineering at the Chinese University of Hong
Kong. His current research interests include internet
of things big data and blockchain technology. He
has served as editors for Computer Communications
(Elsevier), Connection Science (Taylor & Francis),
IEEE Access, guest editors for IEEE Transactions on

Industrial Informatics, IEEE Transactions on Emerging Topics in Computing,
IEEE Open Journal of the Computer Society.

Lin Li received the B.E. degree in communication
engineering from Chongqing University, in 2017.
He is currently pursuing the M.A.Eng. degree with
the University of Electronic Science and Technology
of China (UESTC). His research interests include
computer vision, GAN and the internet of things.

Yuanyuan Peng received the B.E. degree in Internet
of Things engineering from Southwest Petroleum
University, in 2019. And now she is pursuing the
MA.Eng degree in Computer Science and Engeneer-
ing at University of Electronic Science and Tech-
nology of China (UESTC). Her research interests
include blockchain, IoT, compression and accelera-
tion in neural networks.

Keyi Guo is pursuing a B.A. degree in Mathematics
at New York University and is expected to graduate
in 2021. Her research interests include big data,
numerical optimization and the internet of things.

Hongfang Yu professor at School of Communi-
cation and Information Engineering of University
of Electronic Science and Technology of China
(UESTC), She received her M.S. degree and Ph.D.
degree in Communication and Information Engi-
neering in 1999 and 2006 from UESTC, respec-
tively. Her current research interests include data
center networking, network (function) virtualiza-
tion, cloud/edge computing, distributed AI and
Blockchain.

	Introduction
	Motivation
	Contributions

	Overview of DNNs in IoT
	Fundamentals of DNN
	Overview of IoT
	Challenges of DNNs in IoT
	Fundamentals of Compacting-DNNs Technologies

	Compacting Network Model
	Quantization
	Scalar and Vector Quantization.
	Fixed-point Quantization

	Network Pruning
	Magnitude-based Pruning
	Channel Pruning
	Other types of pruning

	Low-rank Decomposition

	Knowledge Distillation (KD)
	Knowledge from Logits
	Knowledge from Intermediate Layers
	Mutual Information Distillation
	Self Distillation
	Other KD methods

	Modification of network structures
	Channel Shuffle/Shift
	Shortcut Connections
	Basic Network Units
	Depth-wise Separable Convolutions
	SE Module
	Fire Module
	Other Modules

	Network Architecture Search (NAS)

	Applications of Compacted DNNs in IoT
	Basic Services
	Image Processing and Computer Vision (CV)
	Voice and Audio Processing
	Indoor Localization
	Physiological Monitoring
	Security and Privacy

	Upper Applications
	Intelligent Transportation Systems (ITS)
	UAV-enabled IoT Applications
	Environmental Sensing and Surveillance
	Wearable IoT Applications
	Miscellaneous

	Future Directions
	Exploration of model compression techniques
	Automated model compression methods
	Deployment of compacted DNNs in IoT
	Blockchain and deep learning for IoT

	Conclusion
	Appendix A: List of Abbreviations
	References
	Biographies
	Ke Zhang
	Hanbo Ying
	Hong-Ning Dai
	Lin Li
	Yuanyuan Peng
	Keyi Guo
	Hongfang Yu

