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Abstract—Federated learning can achieve distributed machine
learning without sharing privacy and sensitive data of end de-
vices. However, high concurrent access to cloud servers increases
the transmission delay of model updates. Some local models may
be unnecessary with an opposite gradient from the global model,
thus incurring many additional communication costs. Existing
work mainly focuses on reducing communication rounds or
cleaning local defect data, and neither takes into account latency
associated with high server concurrency. To this end, we study an
edge-based communication optimization framework to reduce the
number of end devices directly connected to the parameter server
while avoiding uploading unnecessary local updates. Specifically,
we cluster devices in the same network location and deploy
mobile edge nodes in different network locations to serve as
hubs for cloud and end devices communications, thereby avoiding
the latency associated with high server concurrency. Meanwhile,
we propose a method based on cosine similarity to filter out
unnecessary models, thus avoiding unnecessary communication.
Experimental results show that compared with traditional feder-
ated learning, the proposed scheme reduces the number of local
updates by 60%, and the convergence speed of the evaluated
model increases by 10.3%.

Index Terms—Federated learning, Communication optimiza-
tion, Mobile edge nodes, Model filtering, Clustering.

I. INTRODUCTION

ACHINE learning (ML) [1] has been successfully
applied in a wealth of practical artificial intelligence
(AI) applications in the field of computer vision, natural
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language processing, healthcare, finance, robotics and many
others. These applications enhance the operational efficiency
of the entire manufacturing process and generate huge amounts
of data daily [2] [3]. As a result of industry competition and
data privacy, data is not shared in most industries [4] [5].
Even in the same company, data integration between different
departments is faced with massive resistance [6], not to men-
tion integrating data from various agencies, which is almost
impossible in reality. Besides, with the further development of
big data, the emphasis on data privacy and security has become
a worldwide trend. As the essential technology of Al, federated
learning (FL) [7] [8] is a promising approach to resolve
this challenge. End devices participating in federated learning
only need to train the model locally and send the trained
model to the cloud server for aggregation. In a word, FL can
achieve machine learning under the condition of protecting
data privacy.

However, the communication efficiency of FL still faces
many challenges [9] [10]. On the one hand, the advanced ML
applications deployed in end devices are increasingly using the
complex neural network, so the local updates usually contain
a large gradient vector. In contrast, the network between end
devices and the central server usually exists two problems: a)
The bandwidth of the network is limited, and high-bandwidth
server services are costly; b) The asymmetric property of
internet connections: the uplink is typically much slower than
the downlink. Therefore, when a large number of end devices
participate in FL, there is bound to be a large number of
communication delays. On the other hand, the devices and
data participating in FL have the problems of heterogeneity
and Non-IID, respectively [11], so the local models trained by
these devices and data might not be up to expectations. There
may be updated parameters from unnecessary models. If un-
necessary models are sent to the cloud for aggregation, it will
not only seriously affect the accuracy of model training, but
also increase the additional communication cost. Therefore,
it is critical to minimize the number of end devices directly
connected to the server while avoiding uploading unnecessary
local updates, thus reducing the high communication costs of
FL.

To this end, we discuss how to effectively leverage the
computation and communication resources at the edge to
obtain the best FL performance. We consider a typical mobile
edge computing architecture in which mobile edge nodes [12]
are interconnected with the remote cloud and end devices.
End devices are divided into clusters based on their local
area network (LAN) address. In the local update phase, each
end device calculates the cosine similarity between the local
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model parameters and the global model parameters. If the
similarity between the two is lower than a threshold, the
local model is considered an unnecessary update, thereby
avoiding additional communication costs. In the edge aggre-
gation phase, the mobile edge nodes deployed in each LAN
collect and aggregate necessary updates from local models
and then send the aggregated model to the cloud server for
global aggregation, thereby avoiding the latency associated
with concurrent server connections. Each edge aggregation
consumes computing resources of mobile edge nodes, and
each global aggregation consumes network communication
resources between edge nodes and the cloud server only.
Overall, our main contributions are as follow:

« We introduce a clustering method based on the network
location of end devices. Mobile edge nodes are deployed
in each cluster as communication hubs to decrease the
latency associated with high server concurrency.

o We compare the differences in parameter values and con-
vergence directions and use this difference as a metric to
filter out unnecessary models, thus avoiding unnecessary
communication costs.

« We validate our framework in two FL settings. Extensive
experiments on the MNIST dataset demonstrate that our
approach reduces the number of updates in the network
by 60%, and the convergence speed of the models is
accelerated by 10.3% compared to traditional FL.

The remainder of the paper is organized as follows: After
presenting related work in Section II, we preliminary introduce
federated learning and present the problem definition in Sec-
tion III. The proposed Edge-based communication optimiza-
tion method of federated learning is presented in Section IV.
Experimental evaluation and conclusion are given in Section
V and Section VI, respectively.

II. RELATED WORK

The existing communication optimization work of FL in-
cludes two aspects of reducing communication and end device
cleaning. We summarize the approaches along with references
in Table L.

A. Reduce Communication

The existing work of reducing communication mainly re-
alizes by increasing the computation on edge and algorithm
optimization. It is proposed in [13] that focuses on increasing
the computation on end devices or increasing the number
of end devices to accelerate the convergence speed of the
global model, while it ignores the delay caused by a large
number of end devices concurrently accessing the server.
Besides, a three-layer FL system is proposed in [14] that
aggregates models on two layers of edge servers and cloud
servers, which achieves a good compromise in communication
calculations, but defaults to uploading all local models. As for
algorithm optimization, considering that the data involved in
FL is distributed on multiple end devices, a control algorithm
is proposed in [15] [16] that determines the best trade-off
between local update and global parameter aggregation under
a given resource budget.

However, existing methods of reducing communication as-
sume that all local updates (good or bad) must be uploaded
to the cloud. They do not take into account the fact that some
updates may be unnecessary or malicious.

B. End Device Cleaning

During the training process of FL, unnecessary models may
be uploaded by end devices, leading to the high commu-
nication cost of FL. The dirty devices may perform erratic
updates intentionally, such as the data poisoning attack, or
produce low-quality data unintentionally. It is proposed in [17]
for the first time that considers the existence of unreliable
participants (i.e., participants with low data quality), and
proposes a solution to reduce the impact of these participants
while protecting their privacy. In response to this problem,
each participant trains a local model with its data and only
shares model parameters with other participants, and it uses a
functional mechanism to perturb the objective function of the
neural network in the training process to achieve differential
privacy. Besides, It is proposed in [18] [19] that achieved
reliable end devices selection scheme, but they focus more
on safety issues during training. An approach proposed in
[20] leverages a pre-trained anomaly detection model to detect
abnormal client behaviors and eliminate their adverse impacts.
It seems to speed up the training speed of FL. A clustered
federated learning framework based on the pairwise cosine
similarity clustering between parameter updates is proposed
in [21], which excludes abnormal participants by dividing
customers into different groups and focuses on the impact of
bad local updates on global models. Also, another work [11]
that focuses on data cleaning reduces the risk of poisoning the
global model but ignores the communication efficiency.

Although end devices with better performance can speed up
the training speed of federated learning, they may also affect
the global model’s accuracy due to insufficient training data.

C. Local Update Optimization

Different from most of the previously published methods
that focused on the optimization of a single issue, it is pro-
posed in [22] that takes into account three issues in federation
learning, namely, the local client-side computation complexity,
the communication cost, and the test accuracy. It develops
an algorithm named Loss-based Adaptive Boosting Federate-
dAveraging (LoAdaBoost FedAvg), where the local models
with high cross-entropy loss are further optimized before
model averaging on the server. A work called communication-
mitigated federated learning (CMFL) proposed in [23] that
avoids irrelevant updates by checking whether local updates
conform to the global trend, and ultimately reduces the number
of accumulated communication rounds. However, its judgment
method for the importance of local models is one-sided, and
we also discuss this method later.

In contrast to the above research, our work focuses more
on the communication delay caused by the high concurrency
of the server and the additional communication cost caused
by uploading unnecessary local updates. Our solution is to
compare the differences between local update parameters and
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TABLE I
SOLUTIONS TO COMMUNICATION OPTIMIZATION IN FL
Solutions Ref. Key Ideas Limitations

[12] Increase the computation on end devices before communication. Not take into account the fact
Reduce [13] Asynchronous aggregation in the edge layer and cloud server. that some updates may be
Communication Determine the best trade-off between local update and global parameter aggregation ) P nay

[14][15] X unnecessary or malicious.

under a given resource budget.
[16] Reduce the impact of unreliable participants while protecting privacy. - .
. [17][18] End device trains with its data and only shares model parameters with other participants. High-performance end devices
End Device - - - may reduce the accuracy of
. [19] Reliable end devices selection scheme.

Cleaning - - the global model due to

[20] Propose an anomaly detection model to detect abnormal client. insufficient training data

[10] Exclude abnormal participants by dividing customers into different groups. ) & )
Local Update 21] The local model with large cross-entropy loss is further optimized before global | The method of judging the
Optimization aggregation. importance of local models is

P [22] Avoid irrelevant updates by checking whether local updates conform to the global trend. | one-sided.

global model parameters in multiple dimensions. Besides, we
cluster devices with the same network location to improve
the communication efficiency of learning. We will state our
problem definition in the next section, and give solutions and
experimental results in subsequent sections.

III. PRELIMINARIES AND DEFINITIONS
A. Federated Learning

We consider a horizontal FL [24] system consisting of a
server and N end devices that use the FedAvg algorithm [25]
to train a model collaboratively. Assume that each end device
i (i € N) has an local dataset D;. For a sample data {x;,y,}
with input x;, the task is to find the model parameter w that
characterizes y; with the loss function f;(w). An example of
the loss function is f;(w) = 3(zTw —y;) . y; € R for linear
regression. The loss function on the dataset of end device ¢ is
defined as 1

Fi(w) = = Y fj(w). (1)
1Dl 5.
For convenience, we use | D;| to denote the size of the dataset
and define the total size by D = vazl D;. According to
the FedAvg algorithm, the learning task of the server is to
minimize the following global loss function

N
Flw) =3 ZFw) @)

B. Model Parameters

Machine learning algorithms generally require 7" iterations
to achieve convergence of the loss function. At the beginning
of the training, the server initializes a global model parameter.
In each global iteration, end device ¢ takes multiple local
iterations to calculate its local model parameters using its local
training data D;. The local model parameters of end device &
are defined as

wt =Y - AF; (w), 3)

% %
where A is the learning rate. Due to the inherent complexity

of most machine learning models, (3) is often solved using
gradient-descent techniques [26]. Then the local parameters

wgt) are transmitted to the server. At the server, all local

parameters
N p.
w§t+1) - Z 51“’1@ 4)
i=1

are aggregated to minimize its objective F'(w) in (2) with
a global accuracy e, and then broadcasts w(*1) to all
end devices for next iteration (ie.| VF(w®) ||< ¢ <]
VEw® D) || [27D).

C. Problem Definition

The communication efficiency of FL is related to the trans-
mission time (or what we call the communication time) when
the model is uploaded from the local to the cloud and the total
bits transferred between the local and the cloud. Therefore, our
optimization goal will revolve around these two factors.

The communication time of FL mainly comes from the
upload time of the local update and the download time of the
global model. Since the downlink bandwidth of the network
is much larger than the uplink bandwidth, the download
time is negligible compared to upload time and thus is not
considered in this work. We mentioned earlier that the network
bandwidth of the server is limited, so the number of concurrent
connections to the server is also limited. If all end devices
communicate with the server directly, this may increase the
energy consumption [28]. To verify this point of view, we do a
simple theoretical analysis. Assume that the data transmission
rate is inversely proportional to the number of devices in the
network. Constrained by Shannon’s theorem, the transmission
rate of the model in the network is defined as

v = inverse(u) * B In(1 + i), )
Np

where B is the uplink bandwidth, S/N,, is the signal to noise
ratio and p is the number of devices connected to the server,
and inverse(u) represent a function inversely proportional
to . We assume that S/N, is constant during the learning
time of FL. Denote the model size of w; by M. Because the
dimensions of vectors w; are fixed, we assume that model size
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is constant throughout the FL. Thus, the communication time
of each end device in each global iteration is

M M
Teom = — = S ) (6)

v inverse(p) * B xIn(1+ 3

It is easy to see that 7., is monotonically decreasing
in p. Therefore, a natural question is how to efficiently
utilize a given amount of network resources to maximize the
communication efficiency of model training? Based on the
above analysis, we can narrow the problem down to reducing
the number of devices (i) connected to the server.

In addition, in each global iteration, each end device mini-
mizes its objective wz(t) in (3) using local training data. Due
to the heterogeneity of end devices and the non-IID of local
data, the local models vary greatly [23]. The gradient of some
models may be in the opposite direction of the global model.
In other words, in the model aggregation phase, some local
models with unsatisfactory training effects can not only fail
to accelerate the convergence of the model but also occupy a
large amount of network transmission resources. Therefore, it
is desirable to filter the unnecessary local model from the end
devices to cut the additional communication cost.

Formally, we define §; as the bits uploaded from the end
device 7 in the #*" iteration. For a given number of end devices
N, the total bits uploaded from local in the tth iteration is
then T, = vazl ;. Let w* denote the target global model
aprameter. We seek the solution to the following problem:

T
min Ty,

2" ™
s.t. w* = argmin F(w).

IV. EDGE-BASED MODEL FILTERING AND DEVICE
CLUSTERING OF FEDERATED LEARNING

We present our solution to improve the communication
efficiency of FL, which we call Edge-based Communication
Optimization for Distributed Federated Learning (eFL). For
the problems raised in the previous section, we have given
corresponding solutions.

A. Model filtering

Models that are independent of the convergence of the
global model are called malicious local models or dirty
models. During transmission, we refer to this as unnecessary
models. Our purpose is to detect unnecessary models and
avoid uploading unnecessary models, thereby reducing unnec-
essary communication costs. In related work, we mentioned
that the CMFL determines the importance of local updates
by calculating the number of identical symbolic parameters
between global and local updates, i.e., any updates satisfying
+ Zjvzl I(sgn(uj) = sgn(t;)) < threshold are considered
insignificant and will not be uploaded, where %, is the param-
eter of the global model in the last iteration, and u; is the
parameter of the local model in the current iteration.

Intuitively, though the sign of parameter in an update deter-
mines the direction (increase or decrease) to which the model
should be improved along the dimension of that parameter, the

dist(L, G)

/" cos(L, G)

(a) Low-dimensional space.

(b) High-dimensional space.

Fig. 1. Illustration of cosine similarity between model parameters in different
dimensions. Low-dimensional model parameters are represented as vectors,
and high-dimensional model parameters are represented as planes.

o
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[ Global model 1
| parameters
discard

Local model
parameters

N

Cosine similarity algorithm

z"

Fig. 2. The workflow of model filtering.

value of the parameter also reflects how much the parameter
changes in each direction. For example, in a typical softmax
regression model, the value of the model parameters can be
understood as the softmax probability value of each category,
so the corresponding parameter values between the local
update and the global model should be similar. If the signs
of the corresponding parameters are the same, but the values
are very different, unquestionable, we think that the two model
parameters are not related. A natural question is: is there any
other way to determine the correlation between global and
local updates?

We turn our attention to machine learning and edge com-
puting, which are the basis of federated learning. Euclidean
distance and cosine similarity algorithms are commonly used
in machine learning to judge similarity. Euclidean distance
measures the absolute distance of each point in space, which
is directly related to the coordinates of each point, while
cosine distance measures the included angle of the space
vector, which is more reflected in the difference in direction.
Considering that the model parameters imply the convergence
direction of the model, the cosine similarity is more suitable
for detecting the unnecessary model than the Euclidean dis-
tance.

Coincidentally, we also found an angle-based anomaly de-
tection method (ABOD) in a data cleaning algorithm based on
edge computing [29]. ABOD contains a set of points to form
a cluster, for each point o, ABOD examines the angle Zxoy
for each pair of points z, y such that x # o and y # o, then
according to the variance of the angle at a point to determine
whether the data is an outlier. The discovery in edge computing
confirms our conjecture that the cosine similarity focusing on
angle change is more suitable as a model filtering algorithm.
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To eliminate local updates that are not related to global
convergence, our first task is to determine the trend of the
global model. Since the local training is based on the global
model parameters of the previous iteration, end devices cannot
know the global trend of the current iteration before global ag-
gregation. Fortunately, the difference between two consecutive
global updates verified in [23] is about 0.05, and the maximum
does not exceed 0.21, so the global model parameters of the
previous iteration can be used as a good evaluation of the
new update. So far, we have transformed the model filtering
problem into the problem of calculating the cosine similarity
between the local update parameters in the current iteration
and the global model parameters in the previous iteration.

In order to better understand the model parameters in the
geometric space, we abstract the model parameters into two-
dimensional vectors and higher-dimensional space planes, as
shown in Fig. 1. We use G for global model parameters and L
for local model parameters. As can be seen from the figure, the
cosine distance is more reflected in the difference in direction
than in position. If the position of L is kept unchanged,
and the parameters of G change in each dimension, then the
cosine distance is changing at this time (because the angle has
changed).

To facilitate calculation, all end devices participating in FL
need to vectorize the local update parameters and the global
model parameters before model filtering. Assuming that the
current local update parameters trained by the device are L; =
[l1,12,...,15], and the global update parameters in the previous
iteration are Gy_1 = [g1, g2, ---, gs), then their cosine distance
can be calculated as follows:

Similarity, ., ) = cos(L, Gi—1)
— <Lt7Gt71>
|Lt||Gt—1\s (8)
> =1l % g5)

V)2 <[5 (977

where ( , ) is the scalar product operator.

According to the trigonometric function theorem, the range
of the cosine value is between [-1,1]. The more cosine
approaches 1, the closer the two vectors are; The more
cosine goes to -1, the more they go in the opposite direction;
When cosine is close to 0, it means that these two vectors
are almost orthogonal. In general, it is not consistent with
our reading habits if the similarity is less than 0, so the
similarity is usually normalized within the range of [0,1].
That is, Similarityy, a,_,) = 0.5 x cos(Li, Gy—1) + 0.5.
Clearly, when Similarity, @, ,) approaches 0, it indicates
that the effectiveness of local model is higher. Conversely, the
effectiveness of the local model is lower.

The model parameter is set to NULL only when the
Similarity,, @, ,) of the local model is less than the
threshold, indicating that the model update is unnecessary and
will not participate in the subsequent calculation. Algorithm 1
details the local training process in function LOCAL UPDATE.
Fig. 2 illustrates the workflow of filtering out unnecessary
models in federated learning. The setting of the threshold will
be described in detail in the experimental section.

Global
aggregation

Fig. 3. The architecture of edge-based communication optimization for
distributed federated learning.

B. Clustering at the Edge

Compared with LAN bandwidth, WAN bandwidth is a very
scarce resource. Recent work shows that WAN bandwidth
between network sites is, on average, 15 times smaller than
LAN bandwidth within a site, and in the worst case is 60 times
smaller. It confirms the scarcity of WAN bandwidth between
different regions and gives us another piece of information:
LAN bandwidth is much greater than WAN bandwidth.

Taking advantage of LAN bandwidth that is much greater
than WAN bandwidth, we consider having end devices com-
municate as much as possible within the LAN. Therefore, we
plan to realize the joint communication of FL in LANs and
WANS. In short, it is the idea of clustering, which enables end
devices to form clusters in a way and then communicate with
the cloud server in clusters.

Our first option is to select an end device in the LAN
that acts as a cluster head. The inspiration comes from the
traditional wireless sensor network (WSN) [30] [31], in which
the cluster head is responsible for collecting the information
collected by the sensor and sending it to the sink node. From
this, we envision deploying cluster head devices to collect all
local updates on the LAN and send them to the cloud server for
global aggregation. To verify if our insight holds in practice,
we do a theoretical analysis. Suppose there are p end devices in
a LAN, and the local update size at the end device is &, then the
total bits that the cluster head needs to transmit to the cloud are
px k. In other words, the size of the data packet communicated
between a single device and the server has changed from & to
pk. According to the definition of communication time in the
foregoing, Teom = %, we can see that the greater the M, the
greater the communication time 7,,,. Therefore, the cluster
head device can not reduce the training communication time
but increase the transmission delay.

For the issue that existed in the first option, our second
option considers deploying mobile edge nodes to collect local
updates by using their computing resources in the LAN.
Mobile edge computing (MEC) [32] [33] is a network archi-
tecture that provides services and cloud computing resources
required by users on the edge side, which can accelerate the
rapid download of various applications in the network. In the
previous study, the mobile edge node was proposed, and a
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Algorithm 1 Edge-based communication optimization of fed-
erated learning(eFL)
1: procedure GLOBAL AGGREGATION

2: Input: Devices set N, LAN address A; of device i.

3: Initialize: global model parameters Gj.

4: for each iteration t = 1,2,... do

5: for all device i € N do

6: cluster,, « {i| A; = An};

7: end for

8: Gt {},

9: for all cluster,, do in parallel

10: G! + EDGE AGGREGATION(clustery,,
Gi-1);

11: end for

12: Gy ﬁ Zc'm,,tth Cm,t;

13: end for

14: end procedure
15: function EDGE AGGREGATION(cluster,,, Gy_1)

16: for all device ¢ € cluster,, do in parallel
17: L; «+ LOCAL UPDATE(i, Gy_1);

18: C™ « {L; | L; is not NULL};

19: end for

20: Cont < %nl Sr.com Lis

21: return C,, ¢

22: end function
23: function LOCAL UPDATE(i, G;_1)
24: Split local dataset D; to minibatch set B;.

25: for each local epoch j = 1,2, ... do
26: for cach b € B; do

27: L+ L; — )\VF([M),

28: end for

29: end for

30: if Similarityp, a,_,) < f then
31: L; +NULL;

32: end if

33: return L;

34: end function

moving route was designed for the edge node to maximize
the throughput and minimize the transmission latency [34].
Therefore, we can use the computing resources of mobile edge
nodes to solve the problems mentioned above.

Assuming that the LAN address of end device i is A;, then
the device clustering process can be represented as follows

cluster,, = {i | A; = An}. 9)

That is, according to the different LAN where the devices are
located, they can be divided into multiple clusters, and each
cluster is independent of the other. Algorithm 1 details the
clustering process in procedure GLOBAL AGGREGATION.

In each global iteration, local models from the same cluster
are uniformly uploaded to the cloud by mobile edge nodes.
Also, considering that the mobile edge node has computing
resources, we use its computing resources to do edge aggre-
gation of local models in the cluster. Therefore, each mobile
edge node will get a cluster model after edge aggregation. The

cluster model of cluster,, is defined as

> 2w,

m

Fn(w) = (10)

i€cluster,,

where D,, = Ziedusterm D;. After this edge aggregation,
all the cluster models of LAN will be sent to the cloud
for aggregation to minimize the global loss function, then
the next round of training iteration is performed. Algorithm
1 details the edge aggregation process in procedure EDGE
AGGREGATION. Fig. 3 details the architecture of eFL.

C. Algorithm Analysis

Assuming that the target global model parameters are w*,
and the global model parameters we finally trained are w.
Therefore, we can calculate the loss value of federated learning
as L(w*) = |F(w)— F(w*)|, where F(.) represents the global
loss function. As the number of training iterations (7) ap-
proaches infinity, the time complexity of Algorithm 1 is limited
to limy_, oo L(w*) = %[O(55) + O(Zz;l shy)], where 7 is
the learning rate and sh represents the threshold of model
filtering. Since sh is constant and 7' can be reduced after
filtering out unnecessary models, so Algorithm 1 maintains
the time complexity similar to that of traditional federated
learning in communication.

V. EXPERIMENTAL EVALUATION
A. Dataset and Preparation

1) Dataset and models: We evaluate the training of two
different models on the MNIST dataset. The models include
multilayer perceptron (MLP) and convolutional neural net-
works (CNN).

e MNIST: MNIST [35] is a handwritten digits dataset,
in which the training set contains 60,000 samples, and
the test set contains 10,000 samples. Each image in the
MNIST dataset is composed of 28 x 28 pixels, and each
pixel is represented by a gray value.

e MLP: MLP is a forward-structured artificial neural net-
work that maps a set of input vectors to a set of output
vectors. In our experimental setup, the MLP consists of an
input layer, a hidden layer, and an output layer (softmax
layer). The number of neurons in the hidden layer is 300,
and ReLU is used as the activation function.

e CNN: The structure of the CNN [36] [37] model is as
follows: input layer, convolutional layer, pooling layer
(max pooling), convolutional layer, pooling layer (max
pooling), fully connected layer, output layer (softmax
layer), where the size of the convolution kernel is 5*5
and the active function is ReLU.

2) Preparation: In our experiments, the model architectures
are built upon TensorFlow. We train two models: MNIST CNN
and MNIST MLP. For the MNIST MLP model, We divide the
MNIST training samples evenly among 20 end devices, and
each end device gets about 2750 samples. Besides, we set the
number of local epochs each end device makes over its local
dataset on each iteration as 87 and the local minibatch size
used for the local updates as 32. Similarly, the number of end
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Fig. 4. Distribution of similarity.

devices and local epochs is set as 10 and 15 for the MNIST
CNN model, respectively.

We simulate the dirty data by modifying the labels in the
dataset, and it is shown to have a significant impact on the
training of FL. Research showed that only when the proportion
of dirty labels is greater than 0.7 can the model accuracy be
affected. Through experiments, the author proved that when
the noise ratio of the dataset is less than 0.7, the accuracy of
the CNN model can reach as high as 85%. In contrast, when
the noise ratio is greater than 0.7, the accuracy of the model
is reduced by 30%. Therefore, to reflect the eFL algorithm’s
effectiveness in filtering out dirty models, we modify more
than 70% sample labels in the MNIST dataset to simulate
noise in the FL environment.

B. Threshold Settings

In order to do a thorough analysis of eFL despite the
influence of the threshold, we measure the similarity between
global model parameters and local model parameters in each
iteration and depict their CDF distributions in Fig. 4. Since
we add 70% noise in the experiment, we convince that local
models with low similarity to the global model should account
for 70% and local models with high similarity to the global
model should account for 30%. As shown in the results in
Fig. 4, the slope of the solid line in the figure changes
suddenly around CDF=0.7. In the MLP experiment, the local
model whose similarity to the global model is less than 0.97
accounts for 70%. In contrast, in the CNN experiment, the
local model whose similarity to the global model is less than
0.9998 accounts for 70%. The reason for this result is related
to the noise ratio we added of 0.7, so we test a set of 8
relevance threshold values around 0.97 for the eFL. on MLP

model: {0.95, 0.955, 0.96, 0.965, 0.97, 0.975, 0.98, 0.985},
and another set of 5 relevance threshold values around 0.9999
on CNN model: {0.9995, 0.9996, 0.9997, 0.9998, 0.9999}.
The result shows that the best performance is obtained when
setting the relevance threshold value as 0.9999 for the MNIST
CNN model and 0.98 for the MNIST MLP model.

C. Results and Analysis

We set up three sets of experiments: traditional FL, eFL,
and FL without dirty labels.

1) Evaluation of the MNIST MLP: We evenly distribute the
dirty labels among 16 end devices, and we randomly match
a set of LAN addresses to all devices. The Adam optimizer
is used with the learning rate A = 0.001. We measure the
validation accuracy and training loss over iteration and depict
their relationship in Fig. 5(a) and Fig. 5(b).

Since the regression model converges quickly and the num-
ber of local epochs of the end device is as high as 87, the
accuracy of the global model has reached 0.8 or more after
the first aggregation on the server. After the second iteration,
the accuracy of the model trained under eFL. we mentioned
rose steadily and remained above 0.9, while the accuracy of
the model trained under traditional FL is extremely unstable,
even falling below 0.5 in the 6" iteration.

In comparison, the model trained under eFL and the model
trained under FL. without dirty labels are close in accuracy,
and both are significantly higher than traditional FL. Similarly,
the model trained under eFL and the model trained under FL
without dirty labels have similar training loss, and both are
significantly lower than traditional FL.

We randomly add delays to the network according to the
distance between different devices and the server and the status
of the server equipment, thus measuring the communication
time of FL and showing it in Fig. 5(c). From iteration O to
iteration 50, the communication time of federated learning
under eFL is significantly lower than that under traditional
FL. The results show that the communication time of eFL is
reduced by 10.3% under the same number of iterations.

2) Evaluation of the MNIST CNN: A similar experiment
is performed on the CNN model, where the dirty labels are
evenly distributed to 8 end devices. The Adam optimizer is
used with the learning rate A = 0.001 and the ratio for dropout
keep_prob = 0.5.

As shown in Fig. 5(d) and Fig. 5(e), under the uniform
condition of a data noise ratio of (0.7, the model accuracy
trained under eFL is much higher than that trained under
traditional FL. Besides, the convergence rate of the model
trained under eFL is very fast, with the training loss of the
model reduced by 80% after only about 5 global iterations.

From the vertical perspective of the figure, due to the
influence of unnecessary models, the accuracy of the model
trained under traditional FL is only 0.7 with the same iteration
times, and the loss value only decreases by 33%. From the
horizontal perspective of the figure, the learning trained under
traditional FL needs 13 iterations when the accuracy of the
global model reaches 0.6, while the eFL needs only 2 iterations
to achieve the same accuracy.
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Fig. 5. The performance of eFL compared to traditional FL and FL without dirty labels on MNIST MLP and MNIST CNN.

Compared with the model trained under FL without dirty
labels, the model trained under eFL is close to it in accuracy,
and the convergence of the model is slightly lower. However,
the model trained under traditional FL is far less accurate than
the two methods, and the convergence is not satisfactory.

Similarly, we add delays in the model update process to
simulate the network conditions in the real scene. Similar
to the evaluation of MLP, the communication time of CNN
trained under eFL is much lower than that of traditional
FL. The experimental results in Fig. 5(f) show that under
the same number of iterations, the communication time of
learning trained under eFL is reduced by 30.8% compared
with traditional FL.

3) Communication Efficiency Assessment: Table Il shows
the communication time for 50 training rounds of traditional
FL and eFL. Overall, the communication time required by
the proposed eFL is far less than that of traditional FL. when
iterating the same number of rounds. That is, after device
clustering and edge aggregation, the time needed for model
uploading and downloading is significantly reduced.

To observe the performance of our proposed eFL in
optimizing FL. communication more intuitively, we define
communication-saving as, for a given learning accuracy, as
the total number of local updates that need to be uploaded
under traditional FL normalized by that under eFL, i.e.,

. . . Ot — Qe
communication saving = “a
where o; represents the total number of local updates that need
to be uploaded by traditional FL, and o, represents that num-
ber under eFL. Intuitively, the greater communication saving
is the better performance of eFL in reducing communication.

We measure the communication saving of eFL in MNIST

(1)

TABLE II
COMMUNICATION TIME CONSUMED BY DIFFERENT LEARNING METHODS.

Traditional FL. eFL
MNIST MLP (seconds) 344.0 296.1
MNIST CNN (seconds) 616 411.6

TABLE III
SUMMARY OF communication saving FOR DIFFERENT LEARNING
ACCURACIES IN MNIST MLP AND MNIST CNN.

ot Qe communication saving
MNIST CNN 60% accuracy 110 20 0.73
MNIST CNN 80% accuracy 340 30 0.91
MNIST MLP 85% accuracy 20 8 0.6
MNIST MLP 87% accuracy 240 10 0.95

MLP and MNIST CNN under different accuracies. Table III
gives a statistical summary of the communication saving
when reaching the target accuracy.

For MLP, when the model’s accuracy rises to 0.85, the num-
ber of models that need to be uploaded under traditional FL
is 20 (including some unnecessary models), and eFL reduces
this number to 8, saving 60% of the communication. More
surprisingly, when the accuracy rises to 0.87, the number of
models that need to be uploaded under traditional FL is as high
as 240, and eFL reduces this number to 10. Furthermore, for
CNN, when the accuracy raises to 0.6, eFL reduced the number
of model updates by 73%, and when the accuracy increases to
0.8, eFL reduced the number of model updates by 91%. Such
experimental results undoubtedly prove the significant effect
of eFL in improving communication efficiency.
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VI. CONCLUSION

In this paper, we propose an edge-based federated learning
framework (eFL), which aims to improve the communication
efficiency of FL and strengthen the robustness of models. eFL
introduces the idea of clustering based on devices’ network
location. It deploys mobile edge nodes in each cluster as the
hub between cloud and edge communication. At the same
time, to avoid extra communication caused by uploading
unnecessary models, eFL calculates the similarity between
the local model parameters and the global model parameters,
only the local update whose value of similarity is greater than
the set threshold will be collected by mobile edge nodes and
then participate in edge aggregation. Experiments in MLP and
CNN two learning models verify the effectiveness of eFL
in filtering out unnecessary models and improving learning
efficiency. Compared with traditional federated learning, eFL
reduces network footprint by 95%, and the convergence speed
of the CNN model accelerates by 30.8%.
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