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Abstract—The site selection of sports facilities is a pivotal
link in the construction of city livable environment and the
development of sports business in digital-twinning cities. Recent
years have witnessed data mining and visualization technologies
bringing the convenience as well as opportunities for intelli-
gent site selection. However, the lack of effective and reliable
systematic analysis leads to difficulties in developing sports
facilities planning schemes and constructing the site-selection
system. In this paper, we design SpoVis, an interactive visual
analysis system for planning sports facilities as well as site
selection. SpoVis provides users with the distribution status
and statistical analysis of various sports facilities. Based on
a comprehensive consideration of city population distribution,
construction cost, existing sports facilities, traffic situation and
development potential, SpoVis provides users with a reasonable
site-selection scheme of sports facilities from both macro and
micro perspectives and recommends results through topology and
map. Meanwhile, based on the distribution of existing sports
facilities and city influencing factors, a set of visual analysis
components are designed to facilitate users to evaluate the status
and information of existing sports facilities. We have carried out
extensive experiments on a real platform with real-world data.
The experimental results show that the proposed site-selection
models and algorithms have excellent accuracy and operation
efficiency.

Index Terms—Digital Twinning City, Data Analysis, Sport
facility Site Selection, Visual Analysis.

I. INTRODUCTION

D IGITAL twin technology can be widely used in fostering
industry development and city informatics by construct-

ing the one-to-one correspondence between the physical city
world and the virtual space [1]. Digital twinning cities1 as
a mapping from physical cities to virtual cities can also
be regarded as a comprehensive technical solution in the
construction of smart cities, considering city planning, city
design, service provision, safety, and operational efficiency.
Despite the advances of digital twinning technologies in either
financial data analysis in digital commerce, city transportation
systems or other fields [2]–[5], few efforts have been spent on
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intelligent site selection of sports facilities. However, it is still
one of the vital city planning problems in establishing digital
twinning cities with people’s lifestyle becoming increasingly
diversified.

Most of the previous studies about site selection of sports
facilities focus on either data collection, such as obtaining
location distribution data of sports facilities, or data analysis
with data mining and non-linear optimization tools [6]. How-
ever, almost none of them make full use of the technological
advantages of digital twinning cities due to the following
challenges:

• Assessment and modeling: As a bridge between the
physical world and virtual world, digital modeling is the
basis of implementing digital twin in practice. A critical
question is how to build a viable digital twin model for
real scenarios [7]. Regarding the site selection, previous
studies in various scenarios [6], [8]–[12] indicate that the
locations of the sports facilities are mainly affected by
population distribution, construction cost, existing sports
facilities, traffic situation, and development potential.
However, the prior models cannot be directly used in
site selection of sports facilities. It is non-trivial to
construct suitable mathematical models for assessment
and modeling of site selection.

• Complex data processing and fusion: It is another chal-
lenge to process and fuse massive heterogeneous data
collected from various channels such as sensors, physical
environment, virtual space, historical database in smart
cities [2], [3], [5], [7]. Moreover, the site selection scheme
of sports facilities in a city needs to be adaptive to support
different application scenarios in digital twinning cities.
Thus, the system has critical requirements on both data
processing and data fusion.

• Visualization of results: An efficient visualization system
can help decision-makers propose a better selection.
Thus, it is a necessity to investigate how to design a
suitable visualization structure. However, visualization
has confronted a series of controversial open issues due to
the diversity of different fields [13]. Meanwhile, Sedlmair
et al. [14] also indicated that a visualization project also
needs to analyze a specific real-world problem. Therefore,
researchers should conduct specific visualization designs
for specific visualization requirements [15]–[21] though
it is a challenging task.

To address the challenges above, we propose and develop
a Sport facility Visual analysis system (SpoVis) with the
provision of the site selection model of sports facilities of the
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city. The major contributions of this paper are summarized as
follows:

1) After quantifying the main factors in the site selection
of sports facilities, we construct credible mathematical
models.

2) We propose optimization algorithms for the proposed
macro planning and micro-site selection models to solve
the multi-parameter non-linear optimization problem.

3) We devise a set of visual components to facilitate the
site selection of sports facilities. The unique interactive
analysis of SpoVis makes the results of the site selection
more scientific and credible.

4) We design a universal digital-twinning framework for
smart city applications. This framework includes a data
layer, macro planning engine, micro selecting engine,
topological structure engine, and digital twinning layer.
The framework is also portable to be applied to different
application scenarios. Empirical experiments also demon-
strate the effectiveness of the proposed framework.

We organize this paper as follows. Section II presents
related work. Section III describes the problems and presents
the system framework. Section IV gives the implementation
details. Section V evaluate the performance of our proposed
models and algorithms based on real data. Finally, the paper
concludes in Section VI.

II. RELATED WORK

This section introduces related studies being roughly cate-
gorized into three aspects: facility-selection algorithms, visual
analysis systems, and visualization of site selection.

It is a complex problem to plan and select facilities sites
because it is affected by multiple parameters. Hammad et
al. [8] proposed a general Mixed Integer Programming (MIP)
model for Site Layout Planning Problem (SLPP) of facilities
site-selection with the presence of obstacles, formed a spatial
discretization scheme, and developed a comprehensive anal-
ysis method to inspire evaluation criteria of facilities site-
selection results. Jouzdani et al. [9] considered the traffic
congestion and the uncertainty of actual demand in the sce-
nario of dynamic facility planning and supply chain design
of dairy products and put forward the practical application
scheme while this paper emphasizes how to model and ap-
ply under the impact of multiple factors. Zhang et al. [10]
proposed the Super-Efficiency DEA (SE-DEA) model and
the hierarchical node dynamic optimization model based on
MIP to solve the common addressing problem of different
hierarchical logistics nodes in modern logistics. Ahmad et
al. [11] designed a novel data distribution technology after
combining with the k shortest path algorithm to re-plan the
route. They realized the real-time description of route planning
and data distribution in the Internet-of-Things (IoT) scenario.
The locations of facilities usually need to be combined with a
geographic information system. Esmaelian et al. [12] proposed
combining multi-standard decision-making methods with the
Geographic Information System (GIS) to connect the location
selection criteria of facilities with decision-makers’ prefer-
ences. Although GIS provides an intuitive and visual window

for analysts, the interactivity of the system and visualization
of data information are deficient.

Recently, visual analysis systems have been widely com-
bined with many professional fields to provide reasonable
and efficient solutions. For example, Karamshuk et al. [15]
analyzed user mobility and geographical characteristics, eval-
uated, and built a layout optimization model based on social
network environment data. The SmartAdP visualization system
proposed by Liu et al. [16] utilizes large-scale taxi trajectory
data to solve the problem of accurate promotion or adver-
tisement delivery conversion rate in the advertising industry.
Wu et al. [17] visualized telecom data, proposed TelCoVis to
study the co-occurrence of city population flow, and analyzed
the co-occurrence model of population flow. The application
cases in these professional fields show that the visualization
system is efficient and intuitive for data mining. Rathore et
al. [18] collected and processed much social network data to
monitor diseases, time, public opinion, etc., to support future
real-time decision-making and promote plans. Moreover, Din
et al. [19] designed a healthcare architecture to collect and
analyze health data, which provides valuable information for
the healthcare decision-making and management.

The recent technical advances due to rich data sets and
interaction forms bring opportunities to design intuitive and
flexible interfaces of user interactions using data mining and
visual analysis. The facility-location problem strongly corre-
lates with spatio-temporal and multi-dimensional data. Thus,
a reasonable and reliable solution can be found with the help
of visual analysis. Weng et al. [20] proposed a visualization
system of ReACH to help users find, evaluate, and select ideal
residences. The system allows users to input multiple criteria,
especially the accessibility criteria of residential address and
daily activity range that have not been considered in previous
solutions to related problems. To provide site-section reference
for constructing some facilities, Nivan et al. [21] investigated
the taxi activities in different districts based on the trajectory
data of taxis and then analyzed people’ travel habits. Unlike
most traditional visualization systems that use a single data
set, Vaud proposed by Chen et al. [22] allows users to conduct
joint analysis across multiple data sets to realize the powerful
interactive decision exploration.

III. PROBLEM FORMULATION AND SYSTEM FRAMEWORK

A. Data Description and Factor Analysis

Sports facilities have diverse types and various venues,
from small fitness equipment in the community to large
sports fields. Meanwhile, different sports facilities also
have different bearing service rates, service radius, geo-
graphic locations, and characteristics. Therefore, the het-
erogeneity of various sports facilities pose challenges in
establishing a site selection model. This paper consid-
ers four typical sports facilities defined as Categories =
{Equipment,Fitness Centers,Outdoor Courts,Stadiums}.

We choose Xinwu district in Wuxi City as an example.
The data used in this paper come from the city government’s
public data, web-crawled data, and map supplier. The data
can be divided into three types: i) statistical information of
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Fig. 1. Framework of SpoVis system

sports venues (such as the number of existing facilities in
the city, the investment, and opening time), ii) the geographic
locations of various sports facilities (such as the latitude and
longitude of the facilities, the community attributions), and iii)
the functional district division and Point of Interest (POI) data
(such as city commercial areas, residential areas, industrial
areas, subway stations, and bus stops). We choose 70% of
the city’s sports facilities data as the training dataset and
the rest 30% of them as the verification set to verify the
calculation results. Simultaneously, we collect time-series data
of the number of sports facilities in different city districts.
We exploit the time-series analysis to predict future trends to
determine the total number of different types’ sports facilities.

B. Problem Formulation

1) Analysis and statistics of facility data: The analysis and
statistics of sports facilities data are conducive to improving
system recommendation results and facilitating user’s interac-
tive exploration in the visual analysis system via the integra-
tion with the data visualization method and the surrounding
facilities information.

2) Recommendation of facility site selection: Suppose the
city needs M sports facilities to invest. We divide the city
into Districts = {d1, d2, ..., dN}, where N is the total number
of city districts. The macro planning problem is mainly
limited by population distribution, construction cost, compe-
tition coefficient, traffic convenience, and city development
parameter of each district. The goal is to get the best vector
OptNumi = {ki,1, ki,2, ..., ki,N}, where i ∈ Categories and
k is the type i facilities’ number in every district. Because
each influencing factor’s quantitative indicators affect each
other, the calculation process of the model is a non-linear
optimization problem with multi-parameter constraints.

The derivation of specific locations for facilities is another
crucial issue after the number of facilities in each district is
obtained. Based on the population distribution division, re-
quirement centers of various sports facilities can be calculated
through a clustering algorithm. The cost time between the
recommended location k of a sport facility and one of the
requirement centers l of type i facilities in district j is tk,li,j . The
distance between the recommended location of a facility and

(a) Intensive population places: office
buildings (blue), schools (green), commu-
nities (yellow), and dormitories (red)

(b) Heat map of population density (darker
color means higher population)

Fig. 2. Population density estimation

an existing facility m of type i in district j is dk,mi,j . We then
build a model to find the optimal locations where the values
of these two variables are as small as possible. Because the
time needed to get to the requirement centers and the distance
to the existing facilities changes with the varied recommended
locations, the calculation of specific recommended locations is
a non-linear optimization problem.

C. SpoVis Framework

Fig. 1 depicts the SpoVis framework including five compo-
nents: a) Data Layer (Input Data and Factors); b) Macro Plan-
ning Engine; c) Micro Site Selecting Engine; d) Topological
Structure Engine; e) Digital Twinning Layer (Visual Analysis
System). We next present the detailed design of SpoVis.

IV. SYSTEM ARCHITECTURE

A. Macro Planning

We divide the city into multiple districts according to
communities and main transportation arteries. We then use
population-intensive POI data to obtain the city’s population
distribution. The fusion of them is conducive to establish a
normalized variable model.

1) Population Distribution Extraction: Some recent studies
use telecommunication data to analyze the flow and distribu-
tion of city population. In contrast, the difficulty of obtaining
telecommunication data is not conducive to expanding and
promoting the system. Since map suppliers own rich data
resources, we can effectively get the locations of intensive
population places like office buildings, schools, communities,
and dormitories through POI search. We use the obtained
locations data to estimate the population’s spatial distribution.
Fig. 2 shows final results.

2) Districts Division: If considering main transportation
arteries of a city only, the sole division of the city area
will ignore the attributes of the functional areas in the city.
As shown in Fig. 3, we use the city’s arterial transportation
roads as districts’ boundaries and initially divide the city into
multiple communities. We next calculate the similarities of
every two communities. The features of communities include
five influence factors of macro planning, as mentioned in
Section III. We denote the similarities between community
A and B by Similarity(A,B). Specifically, the features of
community A are represented by a 5-dimensional variable
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A(x1, x2, ..., x5), and the features of community B are rep-
resented by B(y1, y2, ..., y5) similarly. Then Similarity(A,B)
can be calculated by the following equation:

Similarity(A,B) = (
5∑
i=1

wi|xi − yi|2)
1
2 , (1)

where the weight of feature i is denoted by wi. We then have∑5
i=1 wi = 1.
3) Multi-parameter Normalization: In site-selection model

of the sports facilities, many factors need to be quantified and
normalized to avoid the deviation of the model conclusion
caused the data difference of certain factors. The factors to be
quantified and normalized include the following:
(a) Population density: We use POI-searching API provided

by the map supplier to get the locations of some
population-intensive places like office buildings, dormi-
tories, schools, and communities. We then use these
locations to estimate the population density of districts.
The population density of district j (where j ∈ Districts),
is xdensity

j =
∑4
i=1 hi · nij , where hi is the average

number of floors of type i building, representing the
height of the building; nij denotes the number of type
i building in district j; and the value of i is from 1
to 4, separately representing one of the four intensive
population places. Similarly, the city’s total population

density is xdensity
D =

∑N
j=1 x

density
j

N , where N is the number
of Districts. Then the normalized population density in

district j is F density
j =

xdensity
j

xdensity
D

.
(b) Construction cost: The normalized construction cost of a

specific sports facility i (i ∈ Categories in district j) can

be obtained by F cost
i,j = F coverage

i,j · Cost(n
business
j ,nliving

j ,nschool
j )

Cost(nbusiness
D ,nliving

D ,nschool
D )

,

where F coverage
i,j denotes the coverage area of type i

facilities in district j; Cost(·) is a counting operation
of parameters; terms nbusiness

j , nliving
j , and nschool

j indicate
the number of business centers, residential centers, and
schools in district j, respectively, while the nbusiness

D ,
nliving
D , and nschool

D indicate the numbers of these buildings
in the whole city, respectively. They significantly affect
nearby housing prices.

(c) Competition coefficient: The competition coefficient is
calculated by mapping the number of existing facilities
denoted by N exist

i,j (i ∈ Categories and j ∈ Districts) to
the population density of each district and that of the
whole city denoted by F density

j and F density
D , respectively.

The normalized competition coefficient is F competitive
i,j =

N exist
i,j

F density
j

/
N exist

i,D

F density
D

, where F density
D = 1 represents the relative

population density of the whole city.
(d) Traffic convenience: The number of bus stops and the

number of subway stations in district j are denoted by

nbus
j , nsubway

j , respectively. Similarly, the number of bus
stops and the number of subway stations in the whole
city are denoted by nbus

D , and nsubway
D , respectively. The

normalized traffic factor is F traffic
j =

Nj(n
bus
j ,nsubway

j )

ND(nbus
D ,nsubway

D )
, where

Nj and ND are counting operations.
(e) Development parameter: As a long-term public infras-

tructure serving the masses, locations of sports facili-
ties need to satisfy the spatial distribution of current
demand and the development potential of each district.
The district that has the potential to attract residents in
the future will show tremendous competitive advantages.
The district development parameter defined according
to the following principles: i) the closer to the subway
station, the greater competitiveness is; ii) the larger
number of industrial and commercial areas is, the greater
competitiveness is; iii) governments, hospitals, schools
and other social infrastructures are developed regionally,
the greater competitiveness is. Therefore, we define the
development parameter of district j as Ddev

j = nschool
j +

nsubway
j + nhospital

j + ngovernment
j + nmarket

j + nfactory
j and the

development parameter of the whole city as Ddev
D =

nschool
D +nsubway

D +nhospital
D +ngovernment

D +nmarket
D +nfactory

D .
Finally, we can get the relative development parameter of
each district by normalization F dev

j =
Ddev

j

Ddev
D

.

4) Macro Planning Model: We denote the best-
recommended number of type i sports facilities in district j by
ki,j . We define the total number of type i facilities to invest
as TotalNumi =

∑Districts
j=1 ki,j as a constraint condition, where

ki,j ∈ OptNumi. We then combine the above-mentioned
factors and the number of facilities as parameters to construct
the following objective function:

(a) Population density: Due to the apparent linear corre-
lation between population density and the number of
facilities needed, the parameter of population density
denoted by Pdensity can be calculated by Pdensity =∑Districts
j=1 (F density

j ki,j), where F density
j is the normalized

city population density of district j.
(b) Construction cost: The construction cost of sports fa-

cilities is affected by the facilities’ construction area,
price per unit area and other factors, thereby having
a non-linear relationship with the number of facilities
in a district. So, the parameter of city construction
cost denoted by Pcost can be expressed as Pcost =∑Districts
j=1 (F cost

i,j e
−ki,j ), where F cost

i,j is the construction cost
of type i sports facilities in district j.

(c) Competition coefficient: The existing sports facilities
have a great influence on the macro planning results
and the interference process is mostly nonlinear. There-
fore, the competition coefficient parameter of the same
type of sports facilities is expressed as Pcompetitive =∑Districts
j=1 (F competitive

i,j e−ki,j ), where F competitive
i,j is the com-

petition coefficient of type i facilities in district j.
(d) Traffic convenience: The traffic influence on medium

and large sports facilities plays a key role in location
decision while it varies within a specific range. We thus
evaluate the traffic convenience, which is expressed as
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Ptraffic =
∑Districts
j=1 (F traffic

j
1

1+e−ki,j
), where F traffic

j is the
traffic convenience of district j.

(e) Development parameter: The development parameters
reflect the development trend of population distribution
in the future, thereby essentially serving as the response
of population density in the future. Therefore, it has a
linear relationship with the number of facilities in each
district. We define it as Pdev =

∑Districts
j=1 (F dev

j ki,j), where
F dev
j is the development parameter of the district j.

The objective function of type i facilities of the optimization
model is defined as follows:

RMacroi = max(ki,j) = w1Pdensity − w2Pcost−
w3Pcompetitive + w4Ptraffic + w5Pdev,

(2)

where the weight of each parameter wi is adjustable to fit
different application scenarios and comply with the constraint
condition

∑5
i=1 wi = 1; and ki,j must meet

∑Districts
j=1 ki,j =

TotalNumi.
5) Algorithm Optimization: The above non-linear program-

ming problem involves the optimization of multi-parameter
functions. Genetic Algorithms (GAs) [23], [24] have achieved
excellent performance in the global search scenario due to the
usage of selection, crossover, and traversal operators to search
for the optimal solution. However, the performance of them
may not be scalable when the number of parameters increases,
especially in some specific application scenarios.

Traditional GAs have two critical parameters: crossover
rate Pc and mutation rate Pm while the choice of these
two parameters also has a certain ambiguity. To address this
problem, we devise an Improved adaptive GA (IGA) to adjust
Pc and Pm during the entire optimization process as follows:

Pc =

{
k1(fmax − f ′)/(fmax − fave), f ′ ≥ fave

k2, f ′ < fave
, (3)

Pm =

{
k3(fmax − f)/(fmax − fave), f ≥ fave

k4, f < fave
, (4)

where fmax is the maximum fitness of the population, fave
is the average population fitness, f is the fitness value of the
mutant individual, f ′ is the adjusted fitness value between two
individuals (the better one), k is the adjustable coefficient.

In order to make the crossover rate and mutation rate non-
linearly be adapted to the optimization process according to
the degree of population fitness dispersion, we propose a non-
linear method to adjust Pc and Pm, to ensure the evolution of
high-quality population individuals, accelerate the convergence
speed, and search for the optimal global solution. Accordingly,
Pc and Pm can be calculated as follows:

Pc =

{
k1

arcsin (fave/fmax)
π/2 , arcsin (fave/fmin) <

π
6

k1(1− arcsin (fave/fmax)
π/2 ), arcsin (fave/fmin) ≥ π

6

,

(5)

Pm =

{
k2(1− arcsin (fave/fmax)

π/2 ), arcsin (fave/fmin) <
π
6

k2
arcsin (fave/fmax)

π/2 , arcsin (fave/fmin) ≥ π
6

.

(6)
It is worth mentioning that we introduce the degree of disper-
sion arcsin (fave/fmax) of the population fitness, and adjust
the order of crossover and mutation according to the degree
of dispersion, thereby fastening the operation speed.

(a) Stadiums centroids (Total No. = 30) (b) Outdoor courts centroids (Total No. =
40)

(c) Fitness centers centroids (Total No.
= 100)

(d) Equipment centroids (Total No. = 200)

Fig. 4. Macro planning results for each type facilities

After putting the objective function and constraints of the
macro planning model into our algorithm, we finally get the
macro planning results, as shown in Fig. 4.

B. Micro Site Selection

To maximize the usage of recommended sports facilities
in every district, we establish a micro-site selection model.
The construction of the micro-site selection model includes the
following steps: 1) obtaining the cluster centers of intensive
population POI data through the hierarchical spatial cluster-
ing method; 2) normalizing the parameters of the micro-site
selection model; 3) using an improved Simulated Annealing
Algorithm (SAA) [24] to calculate the specific recommended
locations in the district; 4) introducing the network topology
figures to represent the distribution relationship between the
recommended results of sports facilities as well as cluster
centers and existing facilities separately; 5) visualizing the
final results on the map. These processes help the comparison
and adjustment of model parameters.

1) Requirement centers extraction: As shown above, we
obtain the locations of intensive population places in the whole
city. Because sports facilities ultimately provide people with
services, it is necessary to calculate the population requirement
centers based on the gotten POI locations data. We use the
hierarchical spatial clustering method to calculate the cluster
centers, i.e., Centersliving

i =
{
Cki,1 , Cki,2 , ..., Cki,N

}
, where

Cki,j represents the centers of type i sports facilities in district
j and the number of centers of the type i facilities in the city
is TotalNumi. Theoretically, these centers could be used as
the initial locations of the algorithm while this method has
its own shortcoming. These centers will serve to construct the
optimization model. The clustering results are shown in Fig. 5.

2) Parameter normalization and modeling: The factors
that affect the precise locations of sports facilities can be
summarized as follows: the weighted average cost time related
to bicycles, public transportation, and private transportation,
the distance from the specified recommended locations to
the cluster centers defined above, and the distance from
the specified recommended locations to the existing facilities
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Fig. 5. Clustering distribution results as the demand centers of sports facilities

nearby. Therefore, when constructing our micro site selection
model, the main parameters can be normalized as follows:
(a) We denote the recommended location k by Lki,j =

Loc(xrec
k , y

rec
k ). In district j, the weighted average time

cost of type i facilities from location k to all the cluster
centers is denoted by tki,j =

∑n
l=1 t

k,l
i,j , where n is the

total number of cluster centers in district j and tk,li,j rep-
resents the weighted average time cost of recommended
location k of type i in district j to cluster center l,
which is from the path planning function provided by the
map supplier. We fully consider travel modes, including
the buses, self-driving, bicycles, and subways. We weigh
average the four types of travel time, and finally get the
commuting expenses between the recommended location
k and the cluster center l.

(b) The distance from the recommended location k to the
existing facility m of type i in district j is denoted by
dk,mi,j . The distribution of existing facilities within the
service range of the recommended facility influences the
micro site selection results, and the distance between the
location Lmi,j = Loc(xexist

m , yexist
m ) of existing sports facili-

ties and the recommended location in district j of type i is
expressed as dk,mi,j =

√
(xrec
k − xexist

m )2 + (yrec
k − yexist

m )2.
So, the sum of the distances between a recommended
location k and all other existing facilities in its district is
given as dki,j =

∑n
m=1 d

k,m
i,j , where n is the number of

existing type i facilities in district j.
After calculating each normalized parameter, the number

of type i sports facilities planned to be built in district j
is fixed under the constraint ki,j . We then obtain the micro
site selection results denoted by RMicroi when the number of
the objective function denoted by min(Lki,j) is minimum. In
particular, we have

RMicroi = min(Lki,j) =

Districts∑
j=1

w1t
k
i,j − w2d

k
i,j , (7)

where w1 + w2 = 1.

(a) Stadiums centroids (Total No. = 30) (b) Outdoor courts centroids (Total No. =
40)

(c) Fitness centers centroids (Total No.
= 100)

(d) Equipment centroids (Total No. = 200)

Fig. 6. Micro site selection results for each type of facilities

3) Algorithm optimization: According to the site selection
model above, the system uses the spatial distribution distance
and travel time as factors for function optimization. Taking the
population distribution centers, which were mentioned in the
Requirement center extraction section as the initial population,
the optimization process can easily fall into the local optimum,
although the result can be calculated quickly. As a heuristic
algorithm, the SAA calculates the new solution’s objective
function deviation and judges whether it can replace the
current feasible solution according to the Metropolis criterion.

Therefore, we adopt a hybrid method to select a random
population and adjacent points as the initial population and use
the improved GA to conduct global optimization calculations.
The local search with SAA costs less time to obtain better and
more accurate recommendation results. Our proposed Hybrid
Genetic Simulated Annealing (HGSA) method integrates both
the time efficiency and accuracy of the above two algorithms
to achieve better results in the scene of sports facilities site
selection. We finally get the results, as shown in Fig. 6.

4) Topological structure: The topological structure is used
to abstract network structure to obtain more intuitive compar-
ison results. Therefore, we construct the topological structure
by mapping the recommended results, the locations of existing
sports facilities, and city residential points to the topology
structure nodes. Then, we connect the nodes according to the
service radius of each type of sports facilities.

As shown in Fig. 7, the black squares indicate the existing
facilities in the area, and the red dots indicate the residential
spots or resident intensive POI distribution, and the blue
triangles indicate the recommended facilities. These nodes
indicate their spatial distribution. Once the nodes’ conflicts
occur in the distribution radius, the two conflicted nodes
will be connected by an edge. In Fig. 7(a), when there are
existing sports facilities (i.e., nodes) within the recommended
facilities’ service radius, the two nodes are connected with
red lines. The more complex the topology is, the less ideal
the recommended results are. In Fig. 7(b), when there are
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Fig. 7. Topological structures of facilities site-selection results

intensive population POI nodes within the service radius of
the recommended facilities, they are connected with green
lines. The more complex the topology is, the more ideal the
recommended results are.

C. Interactive Visual Analysis System

The results of macro planning and micro-site selection of
sports facilities need to be presented in combination with
geographic information [25]. Due to the high dimension of
data, it is quite complex to display the information. The in-
teractive visual analysis system can show users rich statistical
information and internal correlation of data [26], [27]. Thus,
we propose an interactive visual analysis system as shown in
Fig. 8, which mainly includes the following components:

1) Interactive control bar, in component A of Fig. 8:
this component is used to select the city and import relevant
statistical data. The user can adjust the macro planning and
micro-site selection model weights through the interactive
control bar to get the most suitable recommendation model.

2) Spatial information visualization, in component B of
Fig. 8: the city population distribution is one of the critical
elements of sports facilities recommendation scheme. We have
obtained the population distribution and its corresponding heat
map, both of which can be used for the decision-makers to
adjust the city planning parameters.

Recommendation model results: Our site-recommendation
scheme mainly consider macro planning and micro-site selec-
tion, both of which can be visually displayed in our system.
In the macro planning, different colors represent the varied
number of facilities of districts and the dark color implies
more facilities. In the micro-site selection model, we show
the final recommended locations of the facilities on the map.

Regional population flow statistics: The flow of information
of people in different areas of the city profoundly impacts
sports facilities’ location decisions. We use the traffic data of
the city’s main areas to count the crowd flow. Meanwhile, we

A

B

C

E

D

Fig. 8. Interactive visual analysis system

adopt the polar charts to show the distribution characteristics of
the data. As shown in Fig. 9, we count the population within 12
hours and show the statistical values in each interval through
the cascade histogram. With the chart, analysts can quickly
capture the variation of crowd flow in the region.

Fig. 9. Statistical charts of city population flow
3) Visualization of statistical information, in component C

of Fig. 8: the statistics of sports facilities data is a vital
component of the site recommendation strategy. With the
increased types of sports facilities, sports facilities data has
various dimensions, such as construction number, construction
time, and score. We exploit the multi-view collaboration to
display the statistical data of city sports facilities through
multiple layers and panes. To enable users to explore the
data of specific facilities more efficiently and intuitively,
we construct associations between charts. Users can realize
the linkage between charts by swiping and highlighting to
achieve the exploration effect. The basis of the multi-view
collaboration is the statistic, sorting, and combination of raw
data. Fig. 10 shows the schematic diagram of the method of
data statistic and reorganization. This method can efficiently
organize data and complete data filtering and calculation under
different conditions. Interactive control bar in component A of
Fig. 8 can set data combination and rendering of charts. When
multiple measures are displayed in the chart, the measurement
unit is non-uniform. It needs to use the measure name (i.e.,
Mname) and measure value (i.e., Mvalue) as dimensions and
measures to generate the chart. The process can be expressed
as follows:

data,measure→
i<measures.length∑

i=0

data
⋃

Measureexpond, (8)

Measureexpond = {(mj , vj)|mj ∈Mname, vj ∈Mvalue}. (9)

4) Comparison of model parameters in component D of
Fig. 8: the recommendation model of sports facilities includes
multiple parameters and weights. The varied parameters also
affect site recommendation. Due to the significant differences
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Fig. 10. Schematic diagram of the data statistic and reorganization

between cities, the adjustable parameter enhances the versa-
tility of the site recommendation system. Users can conduct
multiple tests according to different parameter combinations to
obtain a good practice scheme. As shown in component D of
Fig. 8, we normalize the factors for the site recommendation
model. For a single type of value, we use the column form to
compare different sports facilities. For the factors composed
of multiple data points, such as construction cost, we use a
box line chart to show the data distribution characteristics.

5) Topology validation, in component E of Fig. 8: the
micro-location results of facilities need to be combined with
GIS and can be observed and verified through the topology.
We use network nodes to represent the distribution of recom-
mendation results, existing facilities, and population cluster
centers. Meanwhile, we use connection lines to represent their
coverage relationship. It is helpful for users to intuitively and
efficiently compare the results.

V. EXPERIMENTS

A. Experimental Settings

1) Baseline algorithms: Both macro planning and micro-
site selection are nonlinear multi-parameter optimizations.
Since they have different parameter settings and accuracy
requirements, we select different baselines for each problem.
• Macro planning: Adam algorithm, Ant Colony Algorithm

(ACA), and GA.
• Micro-site selection: Nadam algorithm, GA and SAA.
2) Evaluation metrics: We adopt different evaluation met-

rics to evaluate algorithms in each of the above problems. In
particular, we have the following evaluation metrics.
• Accuracy of macro planning: The macro planning is

a multi-parameter nonlinear optimization problem. We
adopt the accuracy to evaluate the performance of algo-
rithms for macro the planning as follows,

Accuracyi,j = 1−
∑j=1
D |yi,j − ŷi,j |

Ni
, (10)

where there are D districts in a city, the recommended
number of sports facilities i for the district j is denoted by
yi,j , the actual number of constructions invested is ŷi,j ,
and the total number of constructions invested is Ni.

• Evaluation of micro-site selection: For kth
(
k ∈

{1, 2, ...,Ki,j}
)

recommended facility in district j, the
spatial location is Lrec

k = Loc(xrec
k , y

rec
k ), and its real

location is L̂k = Loc(x̂k, ŷk). The deviation distance is
evaluated by ErrorDistance given as follows,

ErrorDistancei,j =

Ki,j∑
k=1

(
√

(xrec
k − x̂k)2 + (yrec

k − ŷk)2). (11)

(a) Rasterizing the city, where each small
rectangle represents an area

(b) The darker each area implies the eas-
ier to obtain facilities and services

Fig. 11. Spatial accessibility

The larger value of ErrorDistance implies the more
deviation between the recommended results and the real
data (i.e., the poorer performance of an algorithm).

3) Facilities spatial accessibility and equity : We choose
a widely-used spatial accessibility measurement named the
potential model [28], which consists of three metrics: the
availability of facilities to provide services of area i denoted
by Ai, the impact of the population of all the m areas on
facility j denoted by Vj , the capacity of facility j on area i
denoted by Sij . We then give the expressions of Ai, Vj , Sij
as follows,

Ai =

n∑
j=1

SijMj

Dβ
ijVj

, Vj =

m∑
k=1

SkjPk

Dβ
kj

, Sij = 1− (
Dij

Dj
)β , (12)

where n represents the total number of facilities in the city,
Dij is the distance between facility j and area i, Pk represents
the population of area k, and β represents the travel friction
coefficient that varies with demographic characteristics, types
of facilities, services, and other factors.

A larger value of Ai implies that the people living in area i
have higher chance to obtain the services provided by facilities.
In order to calculate Ai, we also need to calculate the carrying
rate Mj of facility j, representing the population that facility
j can support at the same time. Meanwhile, the capacity Sij
depends on Dij and the service radius Dj of facility j.

B. Experimental Results

We evaluate the proposed algorithm and baselines via ex-
tensive experiments on a real-world dataset. We compare the
performance of algorithms in terms of both macro planning
and micro selection. Moreover, we also investigate the impacts
of various parameters on the proposed model and analyze
parameter configurations in different scenarios. Further, we
conduct the experiments to evaluate Spatial Accessibility.

1) Spatial accessibility results: We divide the whole Xinwu
district into a number of rectangles, each of which represents
an area, as shown in Fig. 11(a). We use the number of
intensive population buildings in an area to represent the
population. Fig. 11 shows the experimental results. Compared
with previous population density estimation in Fig. 2(b), it is
not difficult to find that the densely populated areas can get
better services (dark red areas), as shown in Fig. 11(b); this
further proves the effectiveness of our scheme.

2) Accuracy comparison of different models: We evaluate
the accuracy of the proposed algorithms and baseline algo-
rithms on the macro planning and the micro-site selection.
Fig. 12 shows a performance comparison of the proposed
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Fig. 12. Accuracy comparison of different algorithms

algorithms and baseline algorithms in terms of Accuracy and
ErrorDistance. In particular, we have the following findings.

Macro planning. We observe from Fig. 12(a) that our
proposed IGA has achieved the highest accuracy (i.e., 0.6344)
among all the algorithms. The main improvement of IGA may
owe to the adjusted crossover rate and mutation rate so that
IGA can quickly obtain the optimal global solution.

Micro-site selection. Fig. 12(b) shows that HGSA has the
lowest ErrorDistance value (i.e., 3.23×10e-5) among all the
algorithms. The reason can be explained as follows: i) HGSA
is superior in selecting random population location and clus-
tering center as initial population location; ii) HGSA can then
adopt a heuristic algorithm to obtain optimal results since it
is more likely to get the optimal global solution; iii) the space
distance between the recommended result and the real location
in HGSA is the smallest.

3) Comparison of running time of different models: We also
evaluate running time of the proposed algorithms and other
algorithms. Similarly, our evaluations can also be categorized
into macro planning and micro-site selection. Fig. 13 shows
the comparison results. We have the following findings.

Macro planning. As shown in Fig. 13(a), Adam achieves the
lowest running time (i.e., 4.526s) among all the algorithms,
while our proposed IGA also achieves excellent performance
(i.e., 4.668s, only slightly higher than that of Adam). Whereas
our IGA has much higher accuracy in macro planning than
Adam (as shown in Fig. 12(a)).

Micro-site selection. As shown in Fig. 13(b), our proposed
HGSA achieves the lowest running time (i.e., 42.82s) among
all the algorithms. The main reason for the superior perfor-
mance of HGSA may owe to the hybrid method of HGSA,
which is used to set the initial population and to adjust the
number of iterative calculations. On the premise of avoiding
falling into the local optimum, HGSA can further improve
the calculation efficiency compared with the Nadam, GA, and
SAA algorithms.
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Fig. 13. Running time of different algorithms
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Fig. 14. Influence of parameters on site selection with the adjusted weight

may affect the accuracy of the site selection results. In order
to evaluate the influence of each parameter, we fix a weight
for one parameter while equally dividing the remaining weight
to other parameters. In particular, we consider the following
parameters: i) Density of Population, ii) Cost of Construction,
iii) Competitive Coefficient, iv) Traffic, and v) Development
Parameter. Fig. 14 shows the comparison results.

As shown in Fig. 14, we observe that the density of the
population is an essential factor. When its weight increases
(i.e., it plays a more important role), the accuracy shows an
overall upward trend (before its weight reaches 0.6). However,
the accuracy decreases when its weight goes beyond 0.6. It
implies that the weight of the population density should be
well configured within a reasonable range (e.g., [0, 0.6]). The
similar observations can be found for other parameters. In
addition, we find that the accuracy tends to decrease with the
increase of other parameters.

5) Practical verification in other cities: Throughout this
work, we use Xinwu district as a typical example to demon-
strate our experimental process and results. To show the
portability of our scheme, we supplement an experiment based
on Shuangliu district of Chengdu city. The experimental results
are shown in Fig. 15. It is not difficult to find that our
scheme still has a good performance and spatial accessibility
for densely populated areas.

Fig. 15. Experimental results of Shuangliu district

VI. CONCLUSION

As a city urban service system, the digital twinning system
typically includes the following components: a) providing digi-
tal modeling as a bridge between the physical world and virtual
world; b) obtaining the dynamic information from the physical
world, being superimposed on the digital model to achieve a
more realistic and intuitive visualization; c) using algorithms
and big data systems to process and analyze the acquired data,
thereby making corresponding decisions; d) making decisions
to the physical world to guide people’s behaviors and program
implementation after being guided by the digital-twinning
system. Based on the above considerations, in this paper, we
first quantify the primary factors and several integrated factors
in the site selection of sports facilities and construct related
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mathematical models. Secondly, we propose the optimization
algorithms for the proposed macro planning and micro-site
selection models to solve the multi-parameter nonlinear op-
timization problem. Finally, we design the SpoVis system,
which can visually display and analyze the real city data,
and propose several decision-making algorithms for facility
location to help decision-makers implement their scheme. In
this step, we also devise a set of visual components. As a
result, the unique interactive analysis of SpoVis makes the site
selection recommendation more reasonable and reliable. Our
empirical results show that both the proposed site-selection
models and algorithms have achieved superior performance
than other state-of-the-art baseline approaches in terms of high
accuracy and short running time.
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