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Abstract

After the invention of Bitcoin as well as other blockchain-based peer-to-peer payment systems, the cryptocur-
rency market has rapidly gained popularity. Consequently, the volatility of the various cryptocurrency prices
attracts substantial attention from both investors and researchers. It is a challenging task to forecast the
prices of cryptocurrencies due to the non-stationary prices and the stochastic effects in the market. Current
cryptocurrency price forecasting models mainly focus on analyzing exogenous factors, such as macro-financial
indicators, blockchain information, and social media data – with the aim of improving the prediction ac-
curacy. However, the intrinsic systemic noise, caused by market and political conditions, is complex to
interpret. Inspired by the strong correlations among cryptocurrencies and the powerful modelling capability
displayed by deep learning techniques, we propose a Weighted & Attentive Memory Channels model to pre-
dict the daily close price and the fluctuation of cryptocurrencies. In particular, our proposed model consists
of three modules: an Attentive Memory module combines a Gated Recurrent Unit with a self-attention com-
ponent to establish attentive memory for each input sequence; a Channel-wise Weighting module receives the
price of several heavyweight cryptocurrencies and learns their interdependencies by recalibrating the weights
for each sequence; and a Convolution & Pooling module extracts local temporal features, thereby improv-
ing the generalization ability of the overall model. In order to validate the proposed model, we conduct a
battery of experiments. The results show that our proposed scheme achieves state-of-the-art performance
and outperforms the baseline models in prediction error, accuracy, and profitability.

Keywords: Cryptocurrency, Time-series forecasting, Convolutional neural networks, Gated recurrent
units, Channel weighting, Attention mechanism.

1. Introduction

The world has recently witnessed a rapid growth of the cryptocurrency market. The market capitalization
of cryptocurrencies has hit record highs repeatedly. This phenomenon reveals the significant value of cryp-
tocurrencies as an electronic payment system and financial asset (Balcilar et al., 2017). After the invention
of Bitcoin (Nakamoto, 2019), one of the most popular cryptocurrencies, the peer to peer payment system
has been attracting substantial interest from investors and researchers. Compared with traditional cash
systems, cryptocurrencies have unmatched advantages such as decentralization, strong security, and lower
transaction charges (Mukhopadhyay et al., 2016). By September 2019, the cryptocurrency market reached
a capitalization of 300 billion dollars, with Bitcoin alone accounting for nearly $200 billion. Moreover, more
than 2,000 kinds of cryptocurrencies have been launched and are available for public trading.
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Figure 1: Weekly volatility of ETH compared to that of various classical market indexes.

To make profits and reduce losses, there is a growing demand for developing accurate price-forecasting
models for cryptocurrencies. Because the estimation of the price trend in advance may also help in preventing
misinformation spread by speculators. However, the prediction task on conventional financial time-series
data is notoriously challenging, due to the random characteristics of the market (Kristjanpoller & Minutolo,
2018; Xu & Cohen, 2018). As a type of digital and virtual assets, cryptocurrencies have low correlations
with conventional assets, making the analysis of their fluctuations more difficult (Chuen et al., 2017). As
an example, we compare the weekly percentage volatility of Ethereum (ETH) with the gold price and other
popular financial indexes, including NASDAQ, S&P 500 and DJI. Given weekly data wi from July 2017 to
July 2020, the percentage volatility pi is computed as pi = (wi − wi−1)/wi−1×100%. It is shown (Figure 1)
that the historical volatility of ETH is much higher than those of the classical assets.

Similarly to other assets such as stocks and precious metals, the price of cryptocurrencies is influenced by
various factors, e.g., fake news, market manipulation, and government policies. The analysis in (Sovbetov,
2018) recognizes that market beta, trading volume, and volatility are also significant determinants. To
tackle the enormous volatility, researchers have developed numerous models which can be categorized into:
traditional time-series model such as Autoregressive Integrated Moving Average (ARIMA) and Generalized
Autoregressive Conditional Heteroskedasticity (GARCH), and machine learning models – such as Support
Vector Machines (SVM) and deep learning nets (Bakar & Rosbi, 2017; Dyhrberg, 2016; McNally et al., 2018;
Jang & Lee, 2017). In particular, some approaches use sentiment analysis based on Twitter data, to assist
in modelling latent driven factors implicitly (Abraham et al., 2018; Li et al., 2019). Based on analysis on the
massive historical data, the Artificial Neural Network (ANN) has powerful feature-representing ability and
potentials in forecasting tasks (Esen et al., 2008b,c, 2009). Some approaches also combine the ANN with
fuzzy logic to construct adaptive neuro-fuzzy inference systems and show the appropriateness of ANFIS for
the quantitative modeling (Esen et al., 2017, 2008a).

However, three main deficiencies of these approaches limit the prediction accuracy: 1) using only a single
historical price time-series ignores important latent driven factors and market information; 2) it is complex
and impeded to extract kernel determinants from news sources, such as Twitter and Google trending data
due to misinformation and noise; and 3) the impact of various exogenous factors is difficult to determine
and verify although the results in (Jang & Lee, 2017) suggest that macro-financial markets slightly impact
the cryptocurrency prices. In this context, a natural problem arises: what kernel features are worth taking
into account, and how to extract those features when forecasting the cryptocurrencies price volatility?
Unfortunately, there are few to none systematic analyses of this problem although studies of the correlations
among the various cryptocurrencies have been conducted, in which the correlations are examined to be
positive (Aslanidis et al., 2019). In particular, some authors investigated the price leadership dynamics of
Ethereum and Bitcoin (BTC). The result indicates that it has a lead-lag relationship between them (Sifat
et al., 2019). Besides, other researchers confirmed the interdependency between BTC and altcoin markets
in short and long periods (Ciaian et al., 2018). Although the interdependencies between cryptocurrencies
have been investigated in some articles, few solutions are available towards modelling these.
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In this paper, to tackle the above challenges, we propose a Weighted & Attentive Memory Channels
(WAMC) model. The WAMC captures the kernel temporal features of cryptocurrency price volatility,
and improves the prediction accuracy – by exploiting the correlations among the various cryptocurrency
prices. Inspired by the efficacy of GRUs in stock trend prediction (Minh et al., 2018; Vaswani et al., 2017;
Radojičić & Kredatus, 2020), we incorporate a GRU component, connected to a self-attention head for each
input time-series (the input channels). The self-attention elements yield attentive memory to the model.
Moreover, motivated by the Squeeze-and-Excitation Networks in (Hu et al., 2018), which display strong
ability for modelling dynamic channel interdependencies, the weights of each channel are recalibrated by
way of a Channel-wise Weighting module. Further, a Convolution & Pooling module with regularization is
employed, to extract local temporal features and down-sample the data. Different activation functions, such
as ReLU (Nair & Hinton, 2010), sigmoid and tanh, have been exploited to achieve non-linear mappings.
The main contributions of this paper are summarized as follows:

• The WAMC model is proposed to predict the daily close price and its uptrend and downtrend of
cryptocurrencies. The WAMC is efficient in modelling the non-linear correlations between cryptocur-
rencies. This approach is novel and has not been used in other studies. The WAMC is also capable of
extracting local temporal features and establishing attentive memories in short and long periods.

• We investigate the impact of three significant parameters on the WAMC: the window length, the
number of convolutional neural network (CNN) layers, and the number of hidden layers in the Channel-
wise weighting module. These parameters are shown to influence the training loss and the validation
loss in different ways.

• We compare the prediction performance of our proposed model with a battery of econometric, machine
learning and deep learning approaches to show its superiority. The WAMC model outperforms all
baseline models in commonly used evaluation metrics. In addition, we conduct a number of ablation
experiments to examine the significance of each module in the WAMC model.

• We also investigate the effectiveness of the WAMC in capturing and predicting the uptrend and
downtrend of the cryptocurrencies price. Compared to other classification models, the WAMC model
shows higher accuracy of predicting whether the prices of cryptocurrencies maintain their momentum.
Moreover, we exploit the WAMC to take the price fluctuation momentum into consideration and
simulate a new investment strategy. We show that the WAMC-based strategy can potentially earn
more profits than the strategies only considering the predicted price.

The remainder of the paper is organized as follows. Section 2 presents previous studies on the subject
of cryptocurrency price prediction. Section 3 presents the Weighted & Attentive Memory Channels model.
Experimental results are given in Section 4. Finally, conclusions are drawn and future work is suggested in
Section 5.

2. Related work

In this section, we review recent advances in cryptocurrency price prediction. We roughly categorize
existing studies into two types: traditional time-series modelling methods in Section 2.1 and machine learning
and deep learning approaches in Section 2.2.

2.1. Traditional time-series modelling

In the financial market, the forecasting of non-stationary time-series financial data such as stock prices
has attracted investors and researchers. To address the high stochasticity of both stock and cryptocurrency
market, conventional econometric and statistical models have been exploited. Traditional time-series mod-
elling in cryptocurrency price prediction mainly includes the Holt-Winters Exponential Smoothing (Kalekar
et al., 2004; Ahmar et al., 2018), ARIMA (Bakar & Rosbi, 2017), GARCH (Katsiampa, 2017) and their
variants.
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In particular, the ARIMA model used for forecasting bitcoin prices has shown a high prediction accuracy
in short time windows (e.g., 2 days) and when the fluctuations are minor. However, when the model is trained
in longer periods (e.g., 9 days), the prediction errors were high for longer term prediction. Meanwhile, the
study in (Tiwari et al., 2019) compared GARCH with stochastic volatility (SV) models, finding that the
SV models are more robust to radical price changes. Moreover, the results showed that the best models
for Bitcoin and Litecoin are different for each (i.e., SV-t performs the best for Bitcoin while GARCH-t is
the best for Litecoin). In (Chu et al., 2017), the authors trained 12 different GARCH-based models on the
log-returns of the exchange rates of seven popular cryptocurrencies, finding that IGARCH and GJRGARCH
models fit the volatility best.

Unfortunately, most of these approaches are less accurate in the prediction of highly-fluctuating prices
in a long period and also lack a probabilistic interpretation (Amjad & Shah, 2017). In addition, these
traditional models are less elastic and flexible when predicting different types of cryptocurrencies.

2.2. Machine learning and deep learning approaches

In contrast to traditional time-series models, machine learning (ML) and deep learning (DL) models
have strengths in analyzing non-linear multivariate data with robustness to noise values. Moreover, the
prediction of time-series data is essentially related to the regression task in ML and DL methods. Many
classical ML models have achieved a higher prediction accuracy compared with traditional econometric
and statistical models when sufficient data is available. For example, SVMs, Bayesian Networks (BN),
and Multilayer Perceptrons (MLP) have shown promising results of the prediction of cryptocurrency and
stock markets (Peng et al., 2018b; Rezaei et al., 2020). In addition, some studies used ML techniques
and conducted sentiment analysis on data from social and web search media to investigate the bitcoin
volatility (Matta et al., 2015). However, one limitation of these methods is the small sample-size and the
influence of misinformation.

As a new developing ML technology, the DL method has made great breakthroughs in the fields of
speech recognition, computer vision, and natural language processing. DL is regarded as an effective way to
realize time-series prediction. However, studies on predicting the cryptocurrency prices using DL methods
are scarce. In recent research, DL is found to be highly efficient in detecting the inherent chaotic dynamics
of cryptocurrency markets. In (Lahmiri & Bekiros, 2019), it was found that the predictability of long-
short term memory neural network (LSTM) is significantly higher than the generalized regression neural
networks (GRNN). Moreover, the work (Dutta et al., 2020) showed that recurrent neural networks (RNN)
using gated recurring units (GRU) and LSTM outperform traditional ML models. The GRU model with
recurrent dropout significantly improves the performance with respect to the baselines in the prediction of
bitcoin prices. In addition, the work (Luo et al., 2019) exploited CNNs to predict the short-term crude
oil prices achieving reasonable performance, showing the potential of CNN in predicting cryptocurrencies
price. However, these approaches mostly exploit a simple variant of RNN or CNN. Meanwhile, there are
few studies on composite DL models in cryptocurrency price prediction. In particular, most of these studies
only focus on the price on Bitcoin while ignoring other valuable cryptocurrencies and failing to consider the
correlations between cryptocurrencies.

Although (Zhang et al., 2020) developed a Weighted Memory Channels Regression (WMCR) model that
learning channel-wise features to improve the forecasting accuracy of cryptocurrency prices, the WAMC
model proposed in this paper differs from the previous WMCR model in the following aspects:

• We combine the GRU component with self-attention mechanism to establish the attentive memory in
this paper while the previous work (Zhang et al., 2020) only uses LSTM layers to memorize important
information and ignore the dependencies of different time slots.

• We also analyze the impact of the depth of hidden layers in the channel-wise weighting module on
both training loss and validation loss. Moreover, in this module, we tackle the information loss due to
the global average pooling in (Zhang et al., 2020) by replacing it with GRU.
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Figure 2: The logarithmic price of different prices.

• We extend our analysis by conducting various ablation studies to examine the significance of each
module and how the impact of each module on forecasting errors at different training ratios while
these experiments have not been conducted in (Zhang et al., 2020).

• We analyze the generality of WAMC on other cryptocurrencies such as BCH and show the superior
performance compared with common baselines. Specifically, we also discuss the parameter settings
of baselines in this paper to ensure the sufficient use of them and present a fair comparison with the
WAMC.

• We also investigate the investment strategy based on WAMC and conduct extra experiments to eval-
uate the effectiveness of the WAMC-based strategy with comparison with other classic methods.

3. Our approach

Our approach mainly consists of the following steps: 1) data preprocessing in Section 3.1, 2) Weighted
& Attentive Memory Channel model in Section 3.2, 3) training process of the entire model in Section 3.3.

3.1. Data Preprocessing

3.1.1. Correlation analysis of cryptocurrencies

Table 1: The PCC values (in cryptocurrencies pairs)

Cryptocurrencies BTC ETH BCH LTC XRP EOS

BTC 1.00 0.52 0.59 0.69 0.48 0.42

ETH 0.52 1.00 0.88 0.86 0.81 0.75

BCH 0.59 0.88 1.00 0.86 0.80 0.68

LTC 0.69 0.86 0.86 1.00 0.78 0.71

XRP 0.48 0.81 0.80 0.78 1.00 0.68

EOS 0.42 0.75 0.68 0.71 0.68 1.00

We obtain the multi-cryptocurrency price dataset from CoinMarketCap at (CoinMarketCap, 2020). To
examine the most relevant cryptocurrencies in terms of volatility, we compare the daily closing prices of six
popular and valuable cryptocurrencies: BTC, Bitcoin Cash (BCH), Litecoin (LTC), ETH, EOS, and XRP.
Figure 2 depicts the fluctuation of logarithmic prices of the six cryptocurrencies. Because the cryptocur-
rencies were launched at different days, we choose the daily closing prices from July 23, 2017 to July 15,
2020. We observe from Figure 2 that different curves show the similar fluctuation, especially for those in
the red boxes. To analyze the correlation degree between different cryptocurrencies, we compute the Person
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Figure 3: Data preprocessing method.

Correlation Coefficient (PCC) of prices (in pairs). According to the correlation matrix as shown in Tabel 1,
PCC values of XRP and EOS corresponding to BTC, ETH, BCH, and LTC are much lower than those of
BTC, ETH, BCH, and LTC, implying that XRP and EOS are less relevant to BTC, ETH, BCH, and LTC
(i.e., lower PCC means less relevant). In contrast, BTC, ETH, BCH, and LTC have higher PCC values to
each other. Therefore, we select BTC, BCH, ETH and LTC to construct the dataset.

3.1.2. Data preprocessing method

In previous studies (Fischer & Krauss, 2018; Bao et al., 2017), price forecasting models were configured
by a sliding-window framework. However, each of these models only receives a dataset containing single-
price time series data. In this paper, we employ a moving window on multi-channels to generate multi-
dimensional inputs. Figure 3 shows the process of data preprocessing and model training. First, we select
four cryptocurrencies, each of which has daily closing prices fluctuating in a similar trend. We then use the
StandardScaler method from scikit-learn (Pedregosa et al., 2011) to standardize the prices. The price of
the i-th predicted cryptocurrency (i ∈ 1, 2, 3, 4) in the t-th day is denoted by ci,t. We then calculate the
standardized price xi,t according to the following equation,

xi,t =
ci,t − ci
σ(ci)

, (1)

where ci and σ(ci) are the mean value and the standard deviation of the cryptocurrency price ci of the i-th
cryptocurrency, respectively.

We next employ a moving window with length α on the whole dataset to obtain samples. In each iteration
of the sliding process, we obtain a sample consisting of an input data and a target data xi,t+α. For example,
in iteration 1, the input data contains the standardized closing prices of four cryptocurrencies from day t to
day (t + α − 1) and the target data is the standardized price at day (t + α) of the cryptocurrency that we
aim to forecast.

After obtaining all samples and selecting a target cryptocurrency to forecast, we feed a batch of samples
into our proposed model and compute the loss between the predicted value Ŷt+α and the real value Yt+α at
day (t+ α). In the training process, we compute the mean squared error as the loss denoted by L0.

3.2. Weighted & Attentive Memory Channels Model

As illustrated in Figure 4, our WAMC model mainly consists of three modules: the Attentive Memory
module, the Channel-wise Weighting module, and the Convolution & Pooling module. We then elaborate
these modules as follows.
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Figure 4: Weighted & Attentive Memory Channels Regression Model.

3.2.1. Attentive Memory Module

As shown in Figure 4, the Attentive Memory module compromises two components: a GRU component
and a self-attention component. The GRU component uses a reset gate Rt and an update gate Ut, to
capture short-term and long-term dependencies in time-series data, respectively. The inputs of both gates
are the current time step input Xt and the hidden state of the previous time step St−1. These two gates
are computed as follows:

Rt = σ(WrxXt +WrsSt−1 + br), (2)

Ut = σ(WuxXt +WusSt−1 + bu), (3)

where Wrx, Wrs, Wux and Wus are the trainable parameters while br and bu denote the trainable biases.
The activation function logistic sigmoid is represented as σ. Next, the GRU computes the candidate hidden
state S̃t to support the later computation of hidden state St. The hidden state St and the candidate hidden
state S̃t are calculated by the following equations, respectively,

St = Ut � St−1 + (1− Ut)� S̃t, (4)

S̃t = tanh(WsxXt + (Rt � St−1)Wss + bs), (5)

where � represents the Hadamard product.
It is worth mentioning that the closer to 1 an update gate is, the more it suppresses the input of

information in previous time steps. On the contrary, when elements in Ut are close to 0, the new hidden
state approaches the candidate hidden state. In this manner, GRU tackles the gradient vanishing in RNNs
and performs better in capturing dependencies in a long sequence.

Another important component in the Attentive Memory module is the self-attention component. In the
GRU component, we encode the input sequence as the hidden state so as to capture the long-term and
short-term dependencies. However, the GRU component typically struggles to detect the significance of the
instances at different lagged positions. , It is shown in (Liang et al., 2018) that the use of attention mech-
anisms explicitly enhances the capability of selecting important information at various delayed positions.
Therefore, we compute the attention score of each time instance in St and use the score to map St to an
attentive state At (i.e., the attentive memory at time t). Given a query q, the attention score at of each
key-value pair (q, k) is computed by the attention function f(q, k). In particular, the key, value, and query
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in the self-attention mechanism are equivalent to each other (i.e., the input sequence). In this paper, we
employ an MLP with a single hidden layer as the attention function. The i-attentive state at time t denoted
by At(i) is computed as follows,

At(i) = softmax
(
at(i)

)
· St(i)

=
exp
(
at(i)

)∑
t exp

(
at(i)

) · St(i), (6)

where at = f(q, k) = MLP(St).
Next, we compute the output Ot of the self-attention component as follows

Ot(i) =
[
O

(1)
t (i), O

(2)
t (i), ..., O

(α)
t (i)

]T
= tanh

([
A

(1)
t (i), A

(2)
t (i), ..., A

(α)
t (i)

]T)
,

(7)

where we exploit the activation tanh(·) to map the data to the interval [−1, 1], thereby avoiding the scaling
factor St(i) by attention weights. Each channel then learns time dependencies to determine which time
instances are the more important in the cryptocurrency price series.

3.2.2. Channel-wise Weighting Module

Although the prices of different cryptocurrencies fluctuate in a similar trend, it is still important to
determine the importance of distinct sequences. Inspired by the SENet in (Hu et al., 2018), which explicitly
models the interdependencies between channels, we propose a Channel-wise Weighting module to recali-
brate the significance of different channels (i.e., cryptocurrencies). As shown in Figure 4, the Channel-wise
Weighting module exploits a GRU component and multiple dense layers to learn weight vector denoted by
ω. Next, the original channel in Ot is multiplied by ω in an element-by-element manner.

Specifically, given θ channels, the Channel-wise weighting module starts with a GRU component (with
a single unit) for each channel to generate θ neurons. In the SENet, it uses the global average pooling to
generate channel-wise statistics and obtain θ neurons. This aggregation approach is simple and prevalent in
image processing. However, SENet ignores time dependencies and correlations between different time slots
while the inputs are time-series. Therefore, we adopt a GRU component to tackle this problem. Moreover,
because θ neurons are not enough to achieve the flexible connectivity, we then increase the dimensionality
in fully-connected layers with β neurons in each layer and followed by the ReLU activation function. The
output s(i) of the i-th hidden layer is calculated as follows,

s(i) :=
[
s
(i)
1 s

(i)
2 · · · s

(i)
β

]
:= ReLU(s(i−1)W),

(8)

where the weight parameter denoted by W can be expressed as follows,

W :=

W1,1 · · · W1,β

...
. . .

...
Wβ,1 · · · Wβ,β

 . (9)

We also use a dense layer with θ neurons to reduce the dimensionality so as to match the number of
channels. The final step in this module is to multiply each channel by the elements in ω to generate weighted
channels. The output Ot is computed as follows,

Ot =
[
Ot(1), Ot(2), ..., Ot(θ)

]T
, (10)

where the elements in Ot are computed as in Eq. (7). We denote the output of the Channel-wise Weighting
module by O∗

t , which can be calculated as follows,

O∗
t = Ot �

ω1 ... ω1

...
. . .

...
ωθ ... ωθ


θ×α

. (11)
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Algorithm 1 The learning process of WAMC

Input: Training samples Xt, target samples Yt+α, window length α
Output: Price prediction Ŷt+α of the target cryptocurrency

1: for each epoch do
2: for each step in an epoch do
3: randomly select a batch of samples Xb

t

4: 1. Attentive memory module
5: GRU: establish a preliminary memory
6: Self-attention: compute the attentive memory Obt
7: 2. Channel-wise weighting module
8: Generate a global hidden state for each channel
9: Compute the weights vector ω

10: Obtain weighted & attentive memory channels
11: 3. Convolution & Pooling module
12: Extract local features by convolution layers
13: Down-sampling by pooling layers
14: Connect all feature maps and output the Ŷt+α
15: end for
16: Calculate the loss between Yt+α and Ŷt+α in Eq. (14)
17: Optimize the parameters by Adam optimizer
18: end for

3.2.3. Convolution & Pooling Module

Although Artificial Neural Networks (ANN) and Recurrent Neural Networks (RNN) can learn complex
nonlinear mappings and capture time dependencies, the full connectivity of neurons limits the flexibility and
scalability of the network. Compared with conventional ANN and RNN, CNN connects each neuron with
the adjacent neurons by locally sharing weights, and identifying significant local features more efficiently.
The group of neighbouring neurons can also be regarded as a local receptive field. In CNN, the convolutional
layers extract local features and the pooling layers to reduce the parameter number and minimize the over-
fitting effect. We therefore employ the 2-D convolutional layer with the max-pooling layer in this module.

More specifically, the first convolutional layer in this module receives the O∗
t as the input and performs

a 2-D convolution for each channel. Each convolutional layer having 64 filters is activated by ReLUs. We
define the convolution as Conv2D(·). The output Yconv of the first convolutional layer is then expressed as
follows,

Yconv = ReLU
(
Conv2D(w∗, O∗

t ) + b∗
)
, (12)

where w∗ and b∗ denote the weights and the biases, respectively.
Moreover, we use an `2-regularization and an `1-regularization to enforce overfitting penalties on w∗ and

b∗, respectively. As the most widely used regularization methods, `1 and `2 can improve the generalization
ability and prevent over-fitting. The original loss function L0 is given by,

L0 =
1

N

N∑
i=1

(Ŷi − Yi)2, (13)

where N denotes the number of predicted values, Ŷi and Yi represent the predicted value and the real value,
respectively. The loss function with regularization is defined as L, which is given as follows,

L = L0 + λ
( n∑
i=1

m∑
j=1

|w∗
ij |2 +

N∑
i=1

|b∗i |
)
, (14)

where the weight parameter in the convolution kernel w∗ is denoted by w∗
ij , b

∗
i denotes the bias term in b∗,

and | · | takes the absolute value. In the WAMC model, we first vary λ at different magnitude orders (e.g.,
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λ ∈ {0.001, 0.01, 0.1}. According to the validation loss of the WAMC, the WAMC performs the best when
λ is on the order of 0.01. However, the improvement due to the varied λ around 0.01 (e.g., 0.02) on the
performance is not significant, we therefore fix λ to be 0.01 in the WAMC. Next, a max-pooling layer is
employed to perform down-sampling. In the max-pooling layer, it only retains the maximum value in the
area scanned by the pooling filter. Finally, we connect all feature maps generated by the last pooling layer
together and output the predicted value Ŷt+α.

3.3. Training Process

The main training procedure of WAMC is summarized in Algorithm 1. We adopt four types of cryptocur-
rency as the four input channels in each training sample – and select one of them as the target to predict.
In the training process, large batch sizes b lead to poor generalization and convergence to local optimum.
Meanwhile, small b causes a slower convergence and costs more training time in an epoch (Hoffer et al.,
2017). To tackle this trade-off, we test various values of b, and select b = 100 as an effective compromise.
In particular, the three modules in Algorithm 1 are responsible for improving the prediction accuracy and
the generalization ability of the model. The attentive memory module establishes attentive memory for
each channel (line 4-6). The channel-wise weighting module discriminates the significance of each channel
by learning a weights vector (line 7-10). The convolution & pooling module extracts the local features and
applies a regularization on all the channels (line 11-14). Finally, we calculate the loss as in Eq. (14) and
optimize the parameters by Adam optimizer in the process of backpropagation (line 16-17).

4. Experiments

4.1. Experimental settings

We conduct experiments to evaluate the proposed WAMC. We obtain cryptocurrency datasets from
CoinMarketCap at (CoinMarketCap, 2020) and preprocess datasets as described in Section 3.1.1. Finally,
we obtain a dataset containing 1,089 samples.

4.1.1. Training settings

We perform the experiments with Keras (Tensorflow as backend) and use Adam with the learning rate
of 0.001 to optimize all the models. Regarding parameter study in Section 4.2, we divide the dataset into
the training subset (60% samples), the validation subset (20% samples), and the test subset (20% samples).
Regarding performance comparison in Section 4.3, we redivide the dataset into the training subset (80%
samples) and the validation subset (20% samples). Meanwhile, each sample is essentially a 3-dimensional
tensor with the dimensions arranged as α × 1 × θ (α = 7, θ = 4). Moreover, according to the results of
parameter study, both training loss and validation loss mostly converge after 50 training epochs and stabilize
after 100 epochs. In view of efficiency and feasibility, we train models 100 epochs with 10 steps per epoch.
Before every training process, a random seed is fixed to ensure that the results are reproducible.

4.1.2. Evaluation metrics

We adopt four standard metrics to evaluate the prediction performance: the root mean square error
(RMSE), the mean absolute error (MAE), and the mean absolute percentage error (MAPE) to evaluate the
prediction error while R-squared (R2) to evaluate accuracy. A brief introduction to these four metrics is
given as follows.

RMSE takes the square root of the average of summed squared errors between predicted value Ŷi and

real value Yi. The equivalent formula for RMSE is RMSE =
√

1
N

∑N
i=1(Ŷi − Yi)2, where N denotes the

number of predicted values. MAE represents the mean absolute error between Yi and Ŷi, being expressed
as MAE = 1

N

∑N
i=1 |Ŷi − Yi|. MAPE computes the accuracy as a ratio (i.e., the average of the ratio of the

residual to the actual value), being defined as MAPE = 100%
N

∑N
i=1

∣∣ Ŷi−Yi

Yi

∣∣. The metric R2 evaluating the

fitness of the regression model is calculated as R2 = 1−
∑N
i=1(Yi − Ŷi)2/

∑N
i=1(Yi − Ȳi)2. An R2 closer to 1

indicates a better regression fitting.
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Figure 5: The impact of the significant parameters on training loss
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Figure 6: Impact of the significant parameters on the validation loss.

4.2. Parameter study

We investigate the effect of various parameters on the performance of WAMC. To eliminate the influence
caused by prediction of different cryptocurrencies, we consider a single cryptocurrency (i.e., the ETH). We
compute the Mean Squared Error (i.e., the square of RMSE) to evaluate the prediction loss on both training
set and validation set. Table 2 summarizes the training loss and validation loss after 200 epochs of training.

Table 2: Influence of different parameters

Evaluation metrics Window length α No. of hidden layers β No. of CNN Layers γ

7 11 15 2 3 4 1 2 3

Training loss 0.0179 0.0140 0.0145 0.0180 0.0143 0.0137 0.0179 0.0136 0.0133

Validation loss 0.0013 0.0057 0.0105 0.0076 0.0028 0.0137 0.0074 0.0011 0.0050

4.2.1. Impact of window length α

We first analyze the effect of window length α. It is a parameter that controls the length of each channel
in a sample. A bigger α indicates that each sample feeds more historical prices into the model. We vary α
from 7, 11 to 15. Meanwhile, the parameters β and γ are fixed to 3 and 2, respectively.

Figure 5(a) and Figure 6(a) show the training loss and validation loss in 200 epochs, respectively. As
shown in Figure 5(a), the model with a smaller α shows a faster convergence. The faster convergence rate
may owe to a shorter time step (i.e., α) in the GRU component is easier to train. Though the training losses
all stabilize at a similar level after 100 epochs, the validation loss is evidently impacted by α as shown in
Figure 6(a). There is an increment of the validation loss with the rising of α from 7, 11 to 15. Since the
cryptocurrency prices that sharply fluctuate are little affected by historical prices more than a week ago, a
higher α may impair the memory establishing process.
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4.2.2. Impact of hidden layers β in channel-weighting module

In the channel-weighting module, the number of hidden layers denoted by β influences the depth of the
network and the ability to learn an appropriate weight vector. We vary β from 2 to 4 with the step value of
1 while fixing α = 7 and γ = 2. As shown in Figure 5(b) and Table 2, the training loss of the WAMC with
β = 2 converges slower than others, indicating a poorer learning ability. Moreover, when β increases from
2 to 3, the validation loss stabilizes at a lower value. However, when β increases to 4, the validation loss
rises after approximately 100 epochs of training. This result suggests that β = 3 is a better choice while a
smaller β lacks fitting ability and a higher value of β causes over-fitting.

4.2.3. Impact of CNN layers γ

We also consider the effect of the number of CNN layers denoted by γ. We vary γ from 1, 2 to 3. At
the same time, we fix α to be 7 and fix β to be 3. We employ a Max-pooling layer after each CNN layer
to conduct down-sampling. Figure 5(c) shows the training loss of the model with different values of γ. It
can be seen that the model with a single CNN layer demands more epochs to achieve the lowest loss. We
suspect that a single CNN layer lacks the ability to extract spatial features among adjacent data. Moreover,
as shown in Figure 6(c), when γ increases from 1 to 2, the validation loss reduces significantly. However, the
validation loss rebounds slightly when γ increases to 3. This result implies that γ = 2 is an optimal value
for WAMC and fewer CNN layers are struggling to extract features. Moreover, more CNN layers that have
more parameters do not help to reduce prediction errors. Since we use the prices in a short window as the
input (i.e., α = 7), this result indicates that a deeper CNN with more than 2 layers is not necessary and
may hurt the generalization.

4.3. Performance comparison

We then conduct the experiments on ETH dataset and BCH dataset and compare the performance of
the WAMC model with the following conventional baselines.

• Support Vector Regression (SVR) is a significant application of SVM in regression tasks. Due
to its advantages of recognizing patterns of small, non-linear, and high-dimensional samples, previous
studies mainly exploit SVR to forecast financial data.

• ARIMA is one of the most popular statistical models used for time-series prediction.

• Random Forest Regressor (RF-Regressor) is an ensemble learning model for regression tasks.

• XGBoost Regressor (XGB-Regressor) is an improved implementation of Gradient Boosted De-
cision Trees (GBDT) with better performance than GBDT.

• MLP overcomes the weakness that the perceptron cannot recognize the linear indivisible data. Com-
bined with non-linear activation functions, it can solve complex problems in many fields including
speech and image recognition.

• LSTM was adopted to tackle the problem of gradient vanishing explosion in long-sequence training
in (Hochreiter & Schmidhuber, 1997). By exploiting three gates: input gate, output gate and forget
gate, the LSTM neural networks filter information selectively.

• GRU replaces the input gate and forget gate in LSTM with a single update gate. It performs similarly
to LSTM, but has a simpler architecture and fewer parameters.

• CNN mainly consists of convolution layers, pooling layers and fully-connected layers. This architecture
brings CNN the ability of representation learning and effectively alleviates the over-fitting.

• LSTM+CNN is a hybrid structure of LSTM and CNN. It is capable of capturing long-term depen-
dency and extracting short-term features.
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Table 3: Kernel parameters of baseline models

Models Parameter settings

ARIMA (p, d, q): (0, 1, 0) for ETH, (2, 1, 4) for BCH

RF-Regressor number of trees: 100

XGB-Regressor number of trees: 100

SVR regularization parameter: 0.1

kernel: radial basis function (RBF)

MLP number of layers: 4

number of neurons in each layer: 32

LSTM number of layers: 2

number of hidden units: 7

GRU number of layers: 2

others: same as GRU component of WAMC

CNN same as Convolution & Pooling module of WAMC

• GRU+CNN is also a hybrid structure that uses GRU as the RNN component. Compared with
LSTM+CNN, this baseline captures both spatial and temporal features while having low computing
cost.

Table 3 summarizes the key parameters of each baseline. It is worth mentioning that in the DL-based
baselines, there are various common parameters such as the number of neurons, number of layers and
activation functions. To make the comparison relatively fair, we make these common parameters retain
consistency with the parameters of the WAMC model. For example, in CNN, the parameters such as the
number of filters, the number of layers and the kernel size are the same as those in the Convolution &
Pooling module of WAMC. For the sake of simplicity, the parameters of the remaining baselines are not
shown.

Table 4: Performance comparison

Models Ethereum Bitcoin cash

RMSE MAE MAPE R-squared RMSE MAE MAPE R-squared

ARIMA 6.36e+01 5.24e+01 2.46e+01 −1.05e+00 9.05e+01 6.18e+01 1.95e+01 −6.55e-01

SVR 1.56e+01 1.16e+01 6.37e+00 8.76e-01 2.64e+01 2.07e+01 7.69e+00 8.60e-01

RF-Regressor 1.38e+01 9.88e+00 5.34e+00 9.03e-01 2.13e+01 1.55e+01 5.99e+00 9.09e-01

XGB-Regressor 1.72e+01 1.42e+01 8.35e+00 8.49e-01 2.21e+01 1.64e+01 6.68e+00 9.01e-01

MLP 2.06e+01 1.40e+01 7.79e+00 7.84e-01 2.20e+01 1.69e+01 8.93e+00 7.56e-01

LSTM 2.04e+01 1.63e+01 9.35e+00 7.89e-01 2.81e+01 1.95e+01 7.25e+00 8.40e-01

GRU 1.76e+01 1.35e+01 7.73e+00 8.43e-01 2.60e+01 1.92e+01 7.59e+00 8.64e-01

CNN 1.44e+01 1.02e+01 5.45e+00 8.94e-01 2.12e+01 1.53e+01 6.16e+00 9.09e-01

LSTM+CNN 1.37e+01 9.30e+00 5.17e+00 9.06e-01 2.06e+01 1.35e+01 5.06e+00 9.15e-01

GRU+CNN 1.21e+01 8.47e+00 4.74e+00 9.26e-01 1.93e+01 1.33e+01 5.06e+00 9.25e-01

WAMC 9.70e+00 5.97e+00 3.28e+00 9.52e-01 1.73e+01 1.15e+01 4.38e+00 9.40e-01

As shown in Table 4, our WAMC model achieves the lowest prediction errors (i.e., RMSE, MAE, and
MAPE) and the highest prediction accuracy (i.e., the R-squared) on both datasets. For example, the WAMC
achieves the lowest RMSE of 9.70 and achieves the maximum R-squared of 0.952 on the test set of the ETH
dataset. Meanwhile, the traditional parametric model: ARIMA shows the worst performance. Among
the solo-structured ML and DL baselines, CNN and RF-Regressor outperform others. In particular, the
performance is improved in the composite DL models: LSTM+CNN and GRU+CNN. This improvement
may owe to the integration of the memory establishing ability of RNN components and spatial features
extracting ability of CNN. Moreover, GRU+CNN performs the best among all baselines. The superiority of
GRU+CNN also implies the advantages of using GRU as the RNN component and exploiting a Convolutional
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Figure 7: Prediction of the WAMC on ETH and BCH.

& Pooling module to extract features in our WAMC scheme.
Figure 7 shows the in-sample and out-sample prediction of WAMC on the price of two cryptocurren-

cies: ETH and BCH. It is shown that our proposed model can accurately forecast the prices of different
cryptocurrencies.

Table 5: Ablation analysis of WAMC at different training ratios

Models MSE MAE

50% 60% 70% 80% 50% 60% 70% 80%

w/o AM 1.16e-02 6.49e-03 6.04e-04 5.16e-04 2.51e+00 1.78e+00 4.65e-01 3.88e-01

w/o CW 3.01e-02 5.63e-03 1.11e-03 1.27e-03 4.16e+00 1.95e+00 4.82e-01 4.88e-01

w/o CP 6.61e-03 7.37e-03 5.82e-04 7.81e-04 1.57e+00 2.45e+00 5.30e-01 6.92e-01

Full WAMC 2.51e-03 3.71e-03 4.57e-04 3.46e-04 1.16e+00 1.38e+00 3.57e-01 3.09e-01

4.4. Ablation experiments

We make an elaborative analysis of three principal modules within our WAMC scheme. These modules
are the Attentive Memory module, the Channel-wise Weighting module, and the Convolution & Pooling
module. To investigate the significance of each module, we construct the following variations of WAMC:

• WAMC (w/o AM) is a variant of the full WAMC without Attentive Memory module. In particular,
we replace the GRU component in the module by a fully-connected layer to maintain the depth of the
network.

• WAMC (w/o CW) is a variant of the full WAMC without Channel-wise Weighting module. In this
model, the outputs of the Attentive Memory module are directly fed into the Convolution & Pooling
module.

• WAMC (w/o CP) is a variant of the full WAMC without Convolution & Pooling module. In particular,
we replace the two CNN layers in the module by two dense layers to maintain the depth of the network.
To ensure fairness, we keep the same parameters such as the number of neurons and the activation
function as the variants of WAMC (i.e., before and after the replacement).

We conduct the ablation study on the ETH dataset and evaluate the prediction errors (MSE and MAE)
on the test set. The experiment results are shown in Figure 8 and Table 5. With four different training
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Figure 8: Sensitivity analysis of the parameters, showcasing their impact on training loss.

ratios being 50%, 60%, 70% and 80%, the impacts of eliminating different modules on prediction errors are
varied. At the same time, compared to the full WAMC, it can be noticed that removing any primary module
would deteriorate the performance (i.e., increasing MSE or MAE). Specifically, removing the Channel-wise
Weighting module at a low training ratio (i.e., 50%) significantly increases both MSE and MAE. This
increment indicates the advantages of rescaling different channels of cryptocurrencies while predicting one
of them. Furthermore, the Convolution & Pooling module plays an important role in generalizing features
due to its ability to capture features in adjacent data points. Meanwhile, compared with other modules,
the Attentive memory module contributes to a relatively slight but also remarkable improvement on the
performance of the full WAMC. This relatively low contribution to the performance may attribute to the
high volatility of prices, thereby making the historical prices less related to the present prices and leading to
a hard memory establishing. According to the ablation results in Table 5, each proposed module contributes
to the prediction accuracy at different degrees. The completed WAMC scheme with integrated modules has
the strongest capabilities of feature learning and generalization.

4.5. The price momentum prediction and investment strategies

Besides forecasting the cryptocurrencies price, it is also worth investigating the fluctuation of price
momentum so that we can design investment strategies for executing more profitable trades. A simple
trading strategy is: buy new cryptocurrencies if the price is predicted to rise and sell them if the price is
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Table 6: Experimental results on Ethereum market

Models Accuracy % Precision % Recall % F1 % AUC Profit Return %

{p̂t} - - - - - 183.10 7.47

Bagging 68.35 66.95 72.48 69.60 0.7375 196.46 8.29

RF 66.51 66.07 67.89 66.97 0.7359 184.20 8.01

SVM 70.64 69.91 72.48 71.17 0.7860 189.42 8.03

XGB 69.27 69.44 68.81 69.12 0.7508 181.56 8.40

GRU 72.94 72.32 74.31 73.30 0.8215 196.88 7.59

LSTM 72.48 71.30 75.23 73.21 0.8198 206.38 7.98

WAMC 77.52 76.58 78.70 77.63 0.8234 216.93 8.86

predicted to decline. However, the profits made by this investment strategy may be significantly reduced
because of the regression errors. Meanwhile, it is unrewarding to execute frequent short-term tradings,
especially for slight fluctuations that are usually imprecise and difficult to be distinguished from prediction
errors.

Table 7: Experimental results on Bitcoin cash market

Models Accuracy % Precision % Recall % F1 % AUC Profit Return %

{p̂t} - - - - - 267.69 8.22

Bagging 70.64 68.70 73.83 71.17 0.7856 273.33 7.64

RF 71.56 71.43 70.09 70.75 0.7995 272.80 7.21

SVM 70.64 65.47 85.05 73.98 0.7740 261.09 6.90

XGB 72.94 72.64 71.96 72.30 0.7983 270.10 7.69

GRU 71.10 69.30 73.83 71.49 0.7941 276.75 7.33

LSTM 71.56 70.27 72.90 71.56 0.8156 270.62 7.15

WAMC 75.23 74.31 75.70 75.00 0.8060 299.11 9.06

To tackle this issue, we first investigate the volatility prediction of the price increment and decrement.
For instance, when the price is predicted to maintain its momentum with high confidence, increasing the
investment is a profitable choice. Let pt and p̂t represent the real price and predicted price of a cryptocurrency
at time t ∈ Z+, respectively. The price variance (increment or decrement) is defined as dt = pt−pt−1 (being
regarded as the price momentum). At any time t, an investment strategy can be described as: decide
whether to buy or sell cryptocurrencies according to the price prediction and the current investment. To
demonstrate the utility of accurate predictions and conduct comparisons, we consider a simple investment
strategy that ignores transaction costs and the effect of trading volume. We consider that the cryptocurrency
can simultaneously be possessed by one and ht represents the number of the cryptocurrencies being possessed
at time t. At time t, we label it as a positive when dt ≥ dt−1 and label it as a negative when dt < dt−1. In
the classification, the last activation of the WAMC is replaced by the sigmoid function. The input of the
model is the price fluctuation in every α days (i.e., [dt−α+1 : dt] while the output ot is the probability of
being a positive at time t + 1 (i.e., the probability that the price maintains its momentum). Given p̂t and
ot ∈ [0, 1], the action at is defined by:

at =


buy, if ht = 0 & ot > 0.5 & p̂t > pt−1;

sell, if ht = 1 & ot < 0.5 & p̂t < pt−1;

hold, otherwise.

Compared to the strategies that only consider whether the price will rise or fall, we also consider whether
the price will maintain its uptrend or downtrend. For instance, at time t, we decide to buy cryptocurrencies
while the price is predicted to rise ( ˆpt+1 > pt) and to maintain its uptrend (dt+1 ≥ dt).

To evaluate the effectiveness of WAMC in predicting whether the uptrend and downtrend will continue or
discontinue, we compare the WAMC-based strategy with classic methods such as Bagging, Random Forests
(RF) (Patel et al., 2015), Support Vector Machine with radial basis function kernel (SVM) (Peng et al.,
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Figure 9: Investment strategy of the WAMC on ETH and BCH.

2018a) and XGBoost (XGB) (Chen & Guestrin, 2016). Meanwhile, the GRU and LSTM for classification
have also been evaluated. In particular, we use the predicted price {p̂t} given by the WAMC (for regression)
in Section 4.3 considering its high prediction accuracy. When training the classification model to predict
whether dt will increase or decrease, we compute the binary cross-entropy as the loss function. Other
parameters such as the training ratio, learning rate and optimizer are the same as those in Section 4.3.

Besides computing the evaluation metrics for classification, we also compute the cumulative profits and
returns on investments when using the above mentioned investment strategies. The experimental results
are shown in Table 6 and Table 7. We observe that the WAMC shows high prediction accuracy of the
volatility of dt on both the ETH market and the BCH market. Therefore, our WAMC can make higher
profits and achieve higher returns. This superiority may attribute to the great feature-capturing capability
of the cryptocurrency-price volatility of the WAMC. In particular, when only considering the predicted
prices {p̂t} to make investments, the profits and returns (i.e., profit=183.10, return=7.75 on the ETH test
set; profit=267.69, return=8.22 on the BCH test set) are lower than the strategies that also consider the
accurate prediction of the volatility of dt. Fig. 9 further illustrates the investments of the WAMC on the
test sets of ETH and BCH markets (the green triangular markers represent buying and the red triangular
markers represent selling). It can be noticed that the WAMC shows the effectiveness in buying low and
selling high.

5. Conclusion

In this paper, we have proposed a Weighted & Attentive Memory Channels model to predict the daily
close price and the fluctuation of cryptocurrencies. Specifically, our Weighted & Attentive Memory Channels
model is composed of an Attentive Memory module, a Channel-wise Weighting module and a Convolution
& Pooling module. In our proposed model, the processes of attentive memory establishing, channel-wise
recalibrating, and convolution and pooling are independently consequently improving the ability of mod-
elling complex dynamics, such as those in the cryptocurrency market. We also have conducted extensive
experiments using historical price data from four heavyweight cryptocurrencies. For the price regression,
the experimental results show the higher efficacy of our proposed model with respect the lower prediction
errors and higher accuracy, as compared to other prevailing methods. Moreover, we also conduct experi-
ments to investigate parameter sensitivity. The results show that our proposed model only requires a short
time window and few layers (e.g., 2 CNN layers and 3 hidden layers) to achieve high prediction accuracy.
This may attribute to the feature learning of each module from different aspects such as time dependencies
capturing and cryptocurrency-channels recalibrating. Meanwhile, the ablation study validated that each
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module contributes to reducing the forecasting errors evidently with various training ratios. The WAMC
model also shows a promising accuracy for predicting whether the price will increase or reduce its momentum
(e.g., will the price increase more or increase less?). Compared to those only caring about the predicted
price, the consideration of the price momentum may help the model select more reasonable opportunities
of buying and selling. Future work will be directed towards examining the applicability of the Weighted &
Attentive Memory Channels model in other financial markets, such as stock price forecasting, and to further
investigate the adaptability and flexibility of the model with respect to different cryptocurrencies.
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Peng, Y., Albuquerque, P. H. M., de Sá, J. M. C., Padula, A. J. A., & Montenegro, M. R. (2018b). The best of two worlds:
Forecasting high frequency volatility for cryptocurrencies and traditional currencies with support vector regression. Expert
Systems with Applications, 97 , 177–192.
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