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Abstract—In this brief, we conduct a complex-network analysis
of the Bitcoin transaction network. In particular, we design a
new sampling method, namely random walk with flying-back
(RWFB), to conduct effective data sampling. We then conduct
a comprehensive analysis of the Bitcoin network in terms of
the degree distribution, clustering coefficient, the shortest-path
length, connected component, centrality, assortativity, and the
rich-club coefficient. We obtain several important observations
including the small-world phenomenon, multi-center status, pref-
erential attachment, and non-rich-club effect of the current
network. This work brings up an in-depth understanding of the
current Bitcoin blockchain network and offers implications for
future directions in malicious activity and fraud detection in
cryptocurrency blockchain networks.

Index Terms—Blockchain, Bitcoin, complex network, network
analysis

I. INTRODUCTION

IN recent years, Bitcoin has been widely accepted as one of
the most representative cryptocurrencies since its genesis

in 2009 by Satoshi Nakamoto [1]. Owing to its innovative
characteristics such as anonymity, low transaction fee, decen-
tralization, and nonstop service accessibility, Bitcoin received
extensive attention in the past several years [2]–[5]. However,
there are few studies on the analysis of the Bitcoin network. It
is crucial to analyze the Bitcoin blockchain from the complex
network perspective since it can unravel incumbent blockchain
systems’ enigmas. There are several attempts in this field.
Refs. [6] and [7] initially explore the Bitcoin transaction
network with a preliminary graph analysis while [8] provides
the longitudinal network-based analysis of the Bitcoin systems.
The study [9] analyzes the structure of the transaction network
by measuring network characteristics, including the degree
distribution, degree correlations, and clustering.

Nevertheless, the research on the Bitcoin transaction net-
work is still quite limited. Existing Bitcoin network research
primarily focuses on large-scale and long-term data analysis
of the entire network [7] [8], or transaction pattern detec-
tion [10], but lacks both in-depth exploration on network
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characteristics and computationally-efficient algorithms of net-
works analysis. For example, the Bitcoin transaction network’s
characteristics such as assortativity, connection tendency, and
centrality need to be further investigated by a computationally-
efficient network analysis method. To this end, we conduct a
multi-dimensional analysis of the Bitcoin transaction network
from different perspectives, including the degree distribution,
small-world determination, connected component, centrality,
assortativity analysis, and rich-club coefficient. The main
contributions of this brief are summarized as follows.

• We design a new sampling method called random walk
with flying-back (RWFB) for the Bitcoin transaction data
analysis. Our RWFB better preserves the characteristics
of the original Bitcoin network while having less com-
putational complexity than conventional methods (§ III).

• We conduct a multi-dimensional analysis of the Bitcoin
transaction network, from perspectives of the degree
distribution, clustering coefficient, shortest-path length,
connected component, centrality, assortativity, and rich-
club coefficient (§ IV).

• We obtain several novel observations of the current
Bitcoin network, such as the small-world effect, one-
way transactions, multi-center phenomenon, robustness,
disassortativity, and non-rich-club ordering (§ IV).

II. NETWORK CONSTRUCTION

When users transfer Bitcoin (BTC) from one address to
another, transactions are made. In Bitcoin, one transaction may
have multiple input addresses and multiple output addresses.
We extract a transaction having inputs from x addresses
and outputs to y addresses, thereby being represented by
x × y edges [9]. Thereafter, each node represents a Bitcoin
address, every directed edge represents the flow of funds of the
transaction, and the weight of the edge is proportional to the
transaction value. Consider an example, in which a transaction
has two inputs A and B paying 2 and 8 BTC, respectively,
and three outputs C, D, and E receiving 2, 3, and 4 BTC,
respectively (note that the sum of outputs is not equal to that
of inputs due to 1 BTC for the transaction fee). Thus, the
weight of the edge from A to D is 2/(2 + 8)× 3 = 0.6.

We then convert a Bitcoin transaction network into a
weighted directed graph denoted by G = (V,E,W ), where V
is a set of nodes, E is a set of edges, and W is a set of weights.
Each edge is represented as eij = (i, j, wij), where i denotes
the input node, j denotes the output node, and wij denotes
the weight value. The set E with N nodes can be represented
by an N×N matrix, which is essentially an adjacency matrix
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(a) Visualization of the Bitcoin network.

(b) Comparison of different sampling
methods on graph kernel.
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Fig. 1. Graph sampling results

denoted by A. For any element aij in A, we have aij = wij
if there exists a link with weight wij between i and j; aij = 0
otherwise [11]. In particular, we have

aij =

{
wij if eij is defined;
0 if eij is not defined. (1)

We obtain the transaction and address data by the Bitcoin
Project database [12] from January 2017 to January 2018 via
synchronizing real-time Bitcoin blockchain. The data we con-
sidered includes 148,803,071 nodes and 871,517,687 edges.
Fig. 1(a) presents a graph view of the Bitcoin blockchain
transaction network with 10,000 selected nodes.

III. BITCOIN NETWORK SAMPLING

A. Random-walk based graph sampling

Since the Bitcoin transaction network is a large massive
graph with millions of nodes, it is necessary to obtain a
representative sample network for simplifying the analysis.
Some pioneering studies [13] and [14] show that random
walk-based sampling methods can well preserve structural
properties of the scale-free blockchain network with a power-
law degree distribution. Therefore, we also design a graph
sampling method based on random walk to represent the
Bitcoin blockchain network.

In traditional random-walk methods like [15], the next-hop
node j is randomly chosen from the neighbors of the current
node i. However, these methods cannot accurately sample the
Bitcoin network since they only choose one neighbor in every
step, consequently leading to inaccurate graph properties, e.g.,
a lower average degree [16]. To address this problem, we
propose an improved sampling method, namely RWFB. In
particular, RWFB considers a flying-back probability when
sampling the network. At every step of the directed random
walk, RWFB flies back to the current node i with the flying-
back probability p; it chooses a random neighbor among its ki
neighbors to move to with a probability of 1−p, thereby each
having a probability of (1−p)

ki
. Therefore, we have the RWFB

probability denoted by PRWFB
i defined as follows

PRWFB
i =

{
(1−p)
ki

move to neighbor j of node i,
p fly back to node i.

(2)

Thereafter, we redefine the sampled graph with flying-back
function as GRWFB = (Vi, Ei,j , wi,j). It is a directed weighted
graph, whereas the nodes are the vertices that walk through and
the edges are the steps. It is worth mentioning that the walk
always starts from a random node. Moreover, if it goes into an

TABLE I. Comparison of sampling methods by K-S D-statistic
Degree Clustering Betweenness Closeness AVG

RWFB 0.120 0.045 0.091 0.429 0.171
RWS 0.293 0.046 0.536 0.618 0.373
RN 0.895 0.053 0.151 0.433 0.383
RE 0.275 1 0.067 0.549 0.473
FF 0.187 1 0.075 0.669 0.483
SB 0.409 0.025 0.583 0.645 0.415

impasse (or a deadlock) during the walk, another random node
will be chosen to continue until the sampling size satisfying
the given value.

B. Evaluation of sampling methods

We evaluate the Bitcoin transaction graph by comparing
the proposed RWFB method with other five classic sampling
methods: Random Walk Selection (RWS), Random Node
(RN), Random Edge (RE), Forest Fire (FF) [17], and Snow
Ball (SB) [18]. Note that the RN method randomly selects
nodes while RE uniformly selects edges at random.

We evaluate its distribution of degree, clustering coefficient,
betweenness, and closeness [11] for each method. The com-
plete results are compared with the original graph by the
Kolmogorov-Smirnov (K-S) D-statistic [18], which measures
the agreement between two distributions. The complete results
and an average D-statistic value (AVG) of all sampling meth-
ods are presented in Table I. In addition, a value close to zero
means that the gap between the two distributions is small,
implying the satisfactory sampling effect. The well-performed
score in each column is highlighted in bold font. We observe
that the proposed RWFB outperforms others in most of the
given metrics, implying that the sampled graph obtained by
our RWFB has the best approximation to the original graph.

Moreover, we also consider the graph kernel method [19],
which is an effective measurement of similarity of graphs. In
particular, we adapt the shortest-path graph kernel as Ksp, to
indicate the kernel of two graphs Gi and Gj [20]:

Ksp(Gi, Gj) =
∑

(u,v)∈V (Gi)
2

u 6=v

∑
(w,z)∈V (Gj)

2

w 6=z

K
(
(u, v), (w, z)

)
, (3)

where K
(
(u, v), (w, z)

)
= KD

(
k(u), k(w)

)
·KD

(
k(v), k(z)

)
·

KL(d(u, v), d(w, z)). The term KD is a kernel for comparing
vertex degree and KL is another kernel to compare the
shortest-path length. Meanwhile, d(u, v) denotes the shortest-
path distance between the vertices u and v.

Fig. 1(b) presents the results of the aforementioned sam-
pling methods w.r.t. the normalized shortest-path graph kernel.
Note that for a graph that is completely similar to itself, its
normalized graph kernel value should be 1 while the kernel
of a completely dissimilar graph should be 0. We select the
best performing parameters and results for each method. It is
worth mentioning that we investigate the effect of parameter
p on the graph kernel measurement, as shown in Fig. 1(c),
where the best value (0.882) is obtained when p = 0.3. As
shown in Fig. 1(b), we observe that our RWFB reaches the
highest value (0.882) closest to 1 among all methods. This
result demonstrates that the graph sampled by RWFB is the
most approximate to the original one, implying its superior
performance in restoring the network structure than other
methods. Therefore, we employ the RWFB method to sample
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Fig. 2. Node degree distribution of the Bitcoin network.

the Bitcoin transaction network for exploring more insights in
the following sections.

IV. COMPLEX NETWORK ANALYSIS

A. Degree distribution

It is crucial to investigate the node degree distribution of
the Bitcoin network. The number of adjacent edges of a node
is defined as degree denoted by k in the complex network. In
the Bitcoin transaction network, the degree k is calculated
for every Bitcoin address by summation of the number of
transactions. Meanwhile, the number of incoming transactions
(receiving BTC) is the in-degree and the number of outgoing
transactions (paying BTC) is the out-degree. Moreover, we
also introduce the degree distribution denoted by P (k) on
degree k. The degree distribution P (k) is the probability that
a randomly-selected node has the degree equal to k [11].
Further, if the degree k obeys the power law, we then have
P (k) ∝ k−α, where α is the scaling parameter of the power-
law distribution.

Fig. 2 shows the degree distributions of the Bitcoin
blockchain network in log-log plots (i.e., logarithmic scale in
both horizontal and vertical axes). In particular, the scaling
parameter of the total degree distribution is α = 1.411
as shown in Fig. 2(a). Furthermore, we also consider the
in-degree in Fig. 2(b) (i.e., αin = 1.421) and out-degree
distributions Fig. 2(c) (i.e., αout = 1.418), respectively. We
observe from the results that all degree distributions follow
the power-law distribution with the heavy-tail. It implies that
the Bitcoin network is a scale-free network, in which only
a few nodes have a large number of connections [21] while
the majority of nodes are of low degrees and have fewer
connections. This is consistent with the findings obtained by
the research [7], [8] using complete real network data.

B. Clustering coefficient and the shortest-path length

The clustering coefficient and the shortest-path length can
measure the network from a geometric point of view. We
denote the average clustering coefficient of the network by
C, which is given as follows

C =
1

N

∑
i∈V (G)

|∆i|
ki(ki − 1)/2

, (4)

where N denotes the number of nodes, |∆i| is the number of
complete triangles and ki denotes the degree of node i.

On the other hand, we denote the average shortest path
length by L, which is expressed by

L =
∑

i,j∈V (G)

l(i, j)

N(N − 1)
, (5)

where V (G) is the set of nodes in graph G and l(i, j) denotes
the shortest path length from i to j. For the Bitcoin transaction

TABLE II. Small-world metrics of the graph
LBitcoin Lrand CBitcoin Clatt ω
3.833 9.00 0.0071 0.0033 0.23

graph, we have CBitcoin = 0.0071 and LBitcoin = 3.833,
implying that there are many indirect transactions [11].

Small-world effect of the Bitcoin network. We observe
that the Bitcoin network conforms to the small-world network
model according to CBitcoin and LBitcoin. To find the evidence
of this observation, it is necessary to compare the Bitcoin
network with the equivalent random graph and the lattice
graph [22]. Thus, we denote the average shortest-path length
of the random network by Lrand, and the average clustering
coefficient of the lattice network by Clatt. The small-world
measurement denoted by ω [23] is then defined as follows

ω =
Lrand
LBitcoin

−
CBitcoin
Clatt

, (6)

where we consider several different random networks and
lattice networks in each result. In this brief, we count five
generated random networks and lattice networks to compute
the mean value of Lrand and Clatt, respectively. The value of
ω is restricted to the range [−1, 1]. The network is considered
as a small-world network whereas ω is close to zero. Table II
shows that ω = 0.23, indicating that the Bitcoin network is
indeed a small-world network according to the characteristics
as in [23]. This effect implies that Bitcoin tokens can be
transferred among the majority by a few steps.

C. Connected component
Since we have found that the Bitcoin blockchain network is

a small-world network, analyzing its connectivity is of great
significance. In a complex network, if any pair of nodes in
a sub-graph has at least one connected path, we call this
sub-graph a connected component. Meanwhile, in the case
of a directed network, we measure its strongly-connected
components (SCCs), in which any random node pair (i, j)
has a directed path from i to j and a directed path from j
to i simultaneously. Similarly, weakly-connected components
(WCCs) refer to undirected connected components.

Table III presents the calculation results of connected com-
ponents, including the number of SCCs, the size of the largest
SCC, the number of WCCs, and the size of the largest WCC.
We observe that both the largest SCC and the largest WCC are
relatively sizable compared to the entire graph’s size (covering
about 45% and 93% of the nodes, respectively), implying
a relatively-connected graph. We also speculate that existing
hub nodes bridge many isolated nodes. In reality, such a hub
node may be an exchange, a trading institution, or a financial
organization. Meanwhile, it can be witnessed that the number
of WCCs is far smaller than that of SCCs, indicating that many
transactions are only one-way in this graph. In other words,
most nodes do not make bidirectional deals (input and output)
frequently, i.e., they only pay or only accept BTC.

TABLE III. Connected component metrics of the graph
#Nodes #SCC Largest SCC #WCC Largest WCC
1,000,000 548,739 450,442 13,638 930,621

D. Centrality
The analysis of the connected components leads to our

conjecture about the existence of hub nodes in the Bitcoin
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(a) Closeness and betweenness versus node de-
gree.
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(b) Average in-degree of the closest
neighbors versus node out-degree.

Fig. 3. Centrality and Disassortativity of the Bitcoin network.

network. To verify that, we then further analyze its centrality,
which measures the relative structure importance of the nodes
in the graph. Firstly, in the Bitcoin network, the closeness
centrality is a metric to measure how long it will take when
a node transforms the fund to all the others sequentially. The
closeness centrality denoted by O(i) of node i is defined as

O(i) =
n− 1∑n−1

j=1 d(i, j)
, (7)

where n is the number of node i’s reachable nodes and d(j, i)
is the shortest-path distance between node j and node i.
Moreover, since we already confirm that this graph has more
than one connected component, we introduce the improved
closeness-centrality measurement proposed by Wasserman and
Faust [24] denoted by OWF(i) as follows,

OWF(i) =
(n− 1)2

(N − 1)
∑n−1

j=1 d(j, i)
, (8)

where N denotes the total number of nodes in the graph.
Furthermore, we introduce the betweenness centrality de-

noted by B(i) of node i as follows,

B(i) =
∑

u,v∈V

σ(u, v | i)
σ(u, v)

, (9)

where σ(u, v) is the amount of all existing shortest paths from
node u to node v, and σ(u, v | i) is the number of those paths
that meanwhile pass through node i.

Fig. 3(a) plots the closeness centrality and the betweenness
centrality versus node degree. We observe from Fig. 3(a)
that the closeness increases with the increment of the degree.
Meanwhile, there are a huge number of nodes with closeness
values around 0.04, showing that they are relatively close
to each other in the graph. These results further confirm
that the Bitcoin network is a small-world network. On the
other hand, only a few high-degree nodes have higher OWF(i)
closeness values, indicating that they are tightly-connected
with other nodes, i.e., conducting frequent transactions. From
this observation, we speculate that those nodes may be some
exchanges or related institutions, as mentioned in §IV-C.
Fig. 3(a) also shows that the betweenness increases with the
increase of degree. Generally, if there are a large number of
nodes with a high betweenness value, it will cause too many
bridging nodes to appear in the graph. It makes the graph
fragile, meaning that the network cannot maintain connectivity
if some nodes are broken or leaving. These results imply
that there are no such a lot of bridging nodes in the Bitcoin
network. In other words, it is robust against node-removal.

We also observe that most nodes in the Bitcoin graph have
relatively small values of both closeness and betweenness,
implying that there are not too many central nodes. Only a few
nodes have a relatively high closeness and betweenness. Thus,

we observe a multi-central graph: some central nodes directly
connect with a massive number of nodes without hops. The
reason for the multi-center and excellent robustness can also be
derived according to the disassortative distribution of nodes. In
the bitcoin network, the aforementioned disassortativity leads
to a robust system, which will be discussed as follows.

E. Disassortativity

The vast gap between the number of high-degree nodes
and that of low-degree nodes indicates the high heterogeneity
of the Bitcoin network. In order to further investigate the
connection tendency of the Bitcoin network, we introduce
the assortativity analysis. Particularly, we adopt the Pearson
correlation coefficient denoted by ρ to characterize the network
assortativity [11]. The total number of edges in the graph is
denoted by M . We then have Pearson correlation coefficient
ρ as follows,

ρ =
M−1 ∑

eij∈E(G) kikj − [M−1 ∑
eij∈E(G) 1/2(ki + kj)]

2

M−1
∑

eij∈E(G) 1/2(k
2
i + k2j ) − [M−1

∑
eij∈E(G) 1/2(ki + kj)]2

,

(10)

where ki is the out-degree of node i at the beginning of link
eij ∈ E(G) and kj is the in-degree of the node at the end of
link eij ∈ E(G).

In this case, the Pearson correlation coefficient is ρ =
−0.023, indicating that the graph is disassortative. This is
consistent with the results of [8], which uses complete network
data. However, the negative value of ρ cannot fully indicate
the disassortativity. We then adopt the following measure
kcn-in (kout) to describe the average in-degree of the closest-
neighbor nodes of node i that has out-degree kout

i ,

kcn-in
(
kout

)
=

N∑
i=1,kout

i =kout

(
kcn-out
i

N

)
P (kout), (11)

where kcn-out
i =

∑N
j=1 aijk

in
j /k

out
i , aij is the (i, j)-th entry

of the adjacency matrix in Eq. (1), and P (kout) is the out-
degree distribution function. If the value of kcn-in (kout) shows
a downward trend w.r.t. the variable kout, then the graph is
disassortative, as shown in the results in Fig. 3(b). It means
that high-degree nodes prefer connecting to low-degree nodes
while low-degree nodes also prefer connecting to high-degree
nodes. This effect can also be explained by the preferential
attachment, i.e., newly-joined nodes prefer connecting to high-
degree nodes [9].

F. Rich-club coefficient

The disassortativity implying that low-degree nodes tend
to connect with high-degree nodes. Meanwhile, it is also
necessary to explore the connectivity between high-degree
nodes. In a complex network, the rich club refers to the
phenomenon of a tight connection between high-degree nodes.
In other words, the higher-degree nodes are regarded as the
rich nodes, which nevertheless are more likely to gather into
clubs (i.e., sub-graphs) comparing with those nodes with fewer
edges. We denote the rich-club coefficient by φ(k), which is
defined as follows [25],

φ(k) =
2E>k

N>k (N>k − 1)
, (12)
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Fig. 4. Non-rich-club effect of the network.

where N>k (N>k − 1) /2 is the maximum possible edges of
all N>k nodes whose degree is higher than k; similarly, E>k
denotes the number of edges among N>k nodes.

Fig. 4 plots the results. We observe from Fig. 4(a) that the
rich-club coefficient does not monotonically increase with the
increment of k, implying no obvious rich-club phenomenon.
For a more accurate evaluation, we adopt the normalized rich-
club coefficient denoted by φnorm (k) as follows,

φnorm (k) =
φ(k)

φrand (k)
, (13)

where φ(k) is the rich-club coefficient of the Bitcoin network
and φrand (k) is the rich-club coefficient of a random network
with the same degree distribution. Fig. 4(b) plots the results,
whereas the actual rich-club ordering depends on whether
φnorm (k) > 1. The results show an absence of rich-club
ordering on most k values.

In general, the Bitcoin network exhibits the non-rich-club
phenomenon, implying that the high-degree central nodes in
this network tend to disconnect with each other and are
distributed in different connective sub-graphs. This effect can
be explained by the fact that the central nodes are more likely
to be some exchanges or large institutions with their own
relatively-fixed customer groups. Therefore, the rich nodes are
not closely connected to each other in the Bitcoin network.

V. CONCLUSION

In this brief, we have conducted a complex network analysis
on the Bitcoin transaction network. In particular, we design a
novel sampling method, namely random walk with flying-back
properties, and obtain several important observations through
analyzing sampled graphs. Firstly, the degree distribution of
the Bitcoin transaction network conforms to a power-law
distribution with the heavy-tail, approximated to a scale-free
network. Secondly, we ascertain that the Bitcoin transaction
network is a small-world network by analyzing the average
clustering coefficient, the shortest-path length, and the small-
world measurement. Thirdly, through the analysis of connected
components, we find that most transactions are one-way deals.
Moreover, we observe that the Bitcoin network is a multi-
center robust network against the removal of nodes. Afterward,
regarding the disassortativity of the Bitcoin network, low-
degree nodes prefer connecting to nodes with higher degrees.
We also find the preferential attachment of newly-added nodes.
Finally, the current Bitcoin transaction network does not
demonstrate the rich-club phenomenon. Such findings can help
us better understand the structural behaviors of blockchain
networks. Additionally, our analysis methods and sampling
algorithms also provide insights in understanding networks
with similar characteristics, such as scale-free networks, small-
world networks and disassortative networks.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” tech.
rep., Manubot, 2019.

[2] C. Tang, L. Wu, G. Wen, and Z. Zheng, “Incentivizing honest mining
in blockchain networks: A reputation approach,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 67, no. 1, pp. 117–121,
2020.

[3] X. T. Lee, A. Khan, S. Sen Gupta, Y. H. Ong, and X. Liu, “Mea-
surements, analyses, and insights on the entire ethereum blockchain
network,” in Proceedings of The Web Conference 2020, WWW ’20,
p. 155–166, ACM, 2020.

[4] X. Chen, T. Zhang, W. Ye, Z. Wang, and H. H.-C. Iu, “Blockchain-based
electric vehicle incentive system for renewable energy consumption,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68,
no. 1, pp. 396–400, 2021.

[5] Z. Li, J. Hao, J. Liu, H. Wang, and M. Xian, “An IoT-Applicable Access
Control Model Under Double-Layer Blockchain,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 68, no. 6, pp. 2102–2106,
2021.

[6] A. Baumann, B. Fabian, and M. Lischke, “Exploring the bitcoin net-
work.,” in WEBIST (1), pp. 369–374, 2014.

[7] M. Lischke and B. Fabian, “Analyzing the bitcoin network: The first
four years,” Future Internet, vol. 8, no. 1, p. 7, 2016.

[8] P. Nerurkar, D. Patel, Y. Busnel, R. Ludinard, S. Kumari, and M. K.
Khan, “Dissecting bitcoin blockchain: Empirical analysis of bitcoin
network (2009–2020),” Journal of Network and Computer Applications,
p. 102940, 2020.
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