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   Abstract—It  is  crucial  to  predict  the  outputs  of  a  thickening
system,  including  the  underflow  concentration  (UC)  and  mud
pressure,  for  optimal  control  of  the  process.  The proliferation of
industrial  sensors  and  the  availability  of  thickening-system  data
make this possible. However, the unique properties of thickening
systems,  such  as  the  non-linearities,  long-time  delays,  partially
observed data,  and continuous time evolution pose challenges on
building  data-driven  predictive  models.  To  address  the  above
challenges,  we  establish  an  integrated,  deep-learning,  continuous
time  network  structure  that  consists  of  a  sequential  encoder,  a
state decoder, and a derivative module to learn the deterministic
state space model from thickening systems. Using a case study, we
examine  our  methods  with  a  tailing  thickener  manufactured  by
the FLSmidth installed with massive sensors and obtain extensive
experimental  results.  The  results  demonstrate  that  the  proposed
continuous-time  model  with  the  sequential  encoder  achieves
better  prediction  performances  than  the  existing  discrete-time
models and reduces the negative effects from long time delays by
extracting  features  from  historical  system  trajectories.  The
proposed  method  also  demonstrates  outstanding  performances
for  both  short  and  long  term  prediction  tasks  with  the  two
proposed derivative types.

    Index Terms—Industrial  24  paste  thickener,  ordinary  differential
equation (ODE)-net, recurrent neural network, time series prediction.
  

I.  Introduction

A S  a  core  procedure  in  modern  mineral  separation,  a
thickening  process  produces  a  paste  with  high

concentration  for  subsequent  tailing  storage  or  backfilling
[1]–[3].  During  this  thickening  process,  an  industrial  paste
thickener  achieves  solid–liquid  separation  based  on  gravity
sedimentation. The purpose of the industrial paste thickener is
to  efficiently  control  the  final  underflow concentration  (UC).
Most  closed-loop  control  systems  manipulate  the  underflow
slurry pump speed and flocculant pump speed as the inputs to
stabilize  the  underflow  concentration  within  its  specified
range during operation.  Previous  studies  [4],  [5]  showed that
model  prediction  control  (MPC)  can  facilitate  the  control
process  of  thickening systems owing to  the  advantages  of  its
high  robustness  and  applicability.  Hence,  the  accurate
prediction  of  thickening  systems  has  received  extensive
attention for the analysis and control of thickeners [5]–[7].

A complex industrial system such as the thickening system
typically has the following key features:

1) Non-Linear  System  Dynamics: Most  industrial  systems
have extremely complex high-order  dynamical  equations that
are not affine or linear systems.

2) PartiaLly  Observed  Data: The  information  extracted
from  sensors  or  other  available  methods  is  incomplete.  In
particular,  a  number  of  unknown  hidden  variables  exist  in
such systems.

3) Influence  of  Long  Delays: The  system  states  are
influenced by external inputs or internal states that occur over
a long previous time.

4) Continuous-Time (CT) Evolution: Because real industrial
systems follow various physical laws, their time evolution can
be expressed via CT differential equations.

The above features of a thickening system create challenges
for  predictive  control.  There  are  a  number  of  studies
addressing  these  challenges.  Data-driven  methods  are
emerging  as  one  of  the  most  successful  techniques  for
modeling  complex  processes  [8].  Traditional  data-based  CT
system  prediction  methods  focus  on  fitting  high-order
differential  equations  based  on  sampled  noisy  data  from real
systems. However, they lack the ability to cope with partially
observed  and  extremely  complex  system  dynamics.  Recent
advances  of  deep  neural  networks  (DNNs)  have  shown  their
strengths  in  addressing  these  issues  owing  to  their  strong
feature  representation  abilities  and  scalable  parameter
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structures,  leading  to  the  wide  usage  of  DNNs  in  computer
vision  [9]–[11],  natural  language  processing  [12],  [13],  time
series  prediction  [5],  [14]–[17],  and  fault  diagnosis  [18].
However,  most  DNN-based  system-modeling  methods  are
based  on  discrete  time,  disregarding  the  CT  properties  of  a
system.  The  lost  prior  information  from  physical  insights
undoubtedly leads to the deterioration of the model accuracy.

Studies  of  prediction  control  can  be  categorized  into  two
types.  The  first  type  provides  short-term  predictions  for
model-based control algorithms [5], such as model predictive
control  (MPC).  The  learned  system  provides  deterministic
prior  knowledge  of  the  dynamical  systems,  thereby
approximating the infinite-horizon optimal control as a short-
term optimization  problem.  The  second type  is  mainly  based
on  simulations,  which  imitate  the  outputs  of  an  unknown
system under a long-term feed of inputs [19]. Compared with
short-term  predictions,  simulations  require  higher  robustness
and stability to provide long-term predictions. However, there
are  few studies  on  designing  predictive  models  for  short  and
long term predictions to support subsequent applications, such
as MPC and simulations.

To  address  the  above  challenges,  we  propose  a  deep  CT
network  composed  of  a  sequential  encoder,  a  state  decoder,
and a derivative module to learn the auto-regressive processes
and  influences  from  the  system  inputs  based  on  real
thickening  data  in  an  end-to-end  manner.  Specifically,  the
long-time  system  delay  motivated  us  to  utilize  a  sequential
encoder to extract features from historical system trajectories.
We  designed  the  derivative  module  for  the  CT  state  space
model  based  on  a  DNN.  This  module  fits  the  non-linear  CT
evolution  of  the  system  and  infers  the  non-observable
information  by  introducing  hidden  states.  Moreover,  the
problems  of  short  and  long  term  predictions  are  solved  by
feeding  historical  system  trajectories  and  system  inputs  with
arbitrary lengths to the model after incorporating the designed
non-stationary  and stationary  systems into  the  trained model.
The  future  system  outputs  are  then  predicted.  The
contributions of this paper are threefold:

1)  We  propose  a  novel  deep-learning-based  CT  predictive
model  for  a  paste  thickener.  The  deep  learning  network
consists  of  three  components:  a  sequential  encoder,  a  state
decoder, and a derivative module.

2)  We  design  two  kinds  of  derivative  modules,  named
stationary  and  non-stationary  systems,  to  handle  the  short-
term and long-term prediction tasks, respectively.

3) We conduct extensive experiments on real industrial data
collected  from  a  real  industrial  copper  mining  process.  The
results  demonstrate  the  outstanding  performance  of  the
proposed  model  in  providing  predictions  for  the  thickener
system with non-linear and time-delay properties. In addition,
we  conduct  ablation  studies  to  evaluate  the  effectiveness  of
each module in the proposed model.

The  rest  of  the  paper  is  organized  as  follows.  We  briefly
introduce the related work in Section II.  We then present  the
problem  formulation  in  Section  III.  We  next  present  the  CT
deep sequential model in Section IV. Experimental results are
shown  in  Section  V.  We  then  summarize  the  paper  and
discuss future research directions in Section VI.  

II.  Preliminaries and Related Work

As a core device in a thickening system, a paste thickener is
generally composed of a high sedimentation tank and a raking
system. Fig. 1 depicts the general structure of a thickener and
its key components. After being fed with flocculant and tailing
slurry  with  a  low  concentration,  underflow  with  a  high
concentration  is  discharged  from the  bottom of  the  thickener
and  is  then  used  to  produce  paste  in  the  subsequent
procedures. The prediction of a thickening system refers to the
estimation of the future system outputs, such as the underflow
concentration and mud pressure based on the historical system
trajectories and system inputs. The prediction of a thickening
system is  essentially  similar  to  system identification  [8].  For
system  identification,  interpretable  model  structures  are
designed  based  on  prior  knowledge,  and  the  parameters  are
determined  by  fitting  real  data.  As  one  of  the  subsequent
applications of  identified models,  the prediction forecasts  the
system outputs according to the inputs.
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Fig. 1.     Crude slurry flow with a low concentration is fed into the mix tank
accompanied  by  flocculant.  Under  the  effect  of  the  flocculant,  particles
agglomerate  to  larger  clumps  and  concentrate  at  the  bottom.  The  paste
thickener continuously produces underflow with a high concentration and
clear water in an overflow pipe located at the top of the thickener.
   

A.  Prediction of Thickening Systems
The  prediction  methods  for  thickening  systems  can  be

categorized  into  two  types:  1)  gray-box  thickening  system
simulations and 2) black-box thickener system predictions. In
the gray-box simulations, the sedimentation process is mainly
considered from a physical perspective [4], [20], [21]. Theory-
based  gray-box  methods  can  be  exactly  explained  and
implemented effectively for  specific  systems.  However,  most
of them are mainly built on many ideal hypotheses and suffer
from the complexity  of  slurry particle  dynamics and external
unknown environment disturbances.
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In  contrast,  the  black-box  methods  do  not  require  prior
assumptions  or  constraints  to  be  given.  A  complete  parame-
terized  model  with  a  high  degree  of  freedom  is  defined  to
predict  the  system  outputs  and  learn  the  optimal  parameters
from  real  data.  Since  the  offline  system  trajectories  from  an
industrial  system  are  always  available  and  adequate,  black-
box-based  methods,  including  latent  factor  model  [22]–[24],
imitation  learning  [25],  and  deep  neural  network  [26]  have
been widely used in the current industrial systems [27]–[32].

Moreover,  Oulhiq et  al.  [33]  used  a  black-box  linear
dynamic model with a deterministic time delay to identify an
industrial  thickener  system  using  historical  data.  Such
parameterized  linear  model  lacks  adequate  expressivity  to
represent  the  non-linear  properties  in  a  thickening  system.
Most recently, random forest model is presented for modeling
a  paste  thickening  system  based  on  a  purely  data-driven
approach  for  modeling  and  evolutionary  strategies  [34].
Because random forest model only fits the thickening system
dynamic  in  single  step,  it  ignores  the  time  delay  and  the
correlations  between  adjacent  positions  in  sequential  inputs
and  outputs.  A  bidirectional  gated  recurrent  unit  (BiGRU)
with  an  encoder–decoder  deep  recurrent  neural  network  is
introduced  to  model  thickening  systems  [5].  Yuan et  al.  [6]
proposed  a  dual-attention  recurrent  neural  network  to  model
the  spatial  and  temporal  features  of  a  thickening  system,
thereby  improving  the  prediction  accuracy  of  the  underflow
concentration. However, the above studies [5], [6] only focus
on  discrete-time  system  predictions  rather  than  a  CT
thickening system.  

B.  Prediction of Continuous-Time Systems

O(1)

The  prediction  of  physical  systems  based  on  CT  models
directly  from sampled data  has  the following advantages [8]:
1)  transparent  physical  insights  into the system properties,  2)
inherent  data  filtering,  and  3)  the  capability  of  dealing  with
non-uniformly  sampled  data.  For  any  numerical  schemes  for
solving CT differential  equations,  sophisticated discretization
methods  have  high  accuracy  but  suffer  from  enormous  time
and  memory  costs.  A  recently  developed  advanced  ordinary
differential equation (ODE) solver [35] introduces the reverse-
mode  automatic  differentiation  of  ODE  solutions,  thereby
only  requiring  memory  cost.  Meanwhile,  this  method
also  allows  the  end-to-end  training  of  ODEs  within  a  large
DNN.  Moreover,  Demeester  [19]  proposed  a  stationary  CT
state space model for predicting an input–output system when
the  observations  from  a  system  are  unevenly  sampled.
Although  it  has  successfully  improved  the  accuracy  and
stability  of  long-term  predictions  by  introducing  a  stationary
system, it did not take advantage of a non-stationary system in
the short-term prediction task.

Compared  with  the  existing  CT  models,  our  model
considers  both  short-term  and  long-term  predictions,  thereby
achieving outstanding performance.  

III.  Formulation and Notation of Paste Thickening
System Prediction

y(k) ∈ R2 y1(k)
In  a  thickening  industrial  process,  the  key  system  outputs

 include the  underflow concentration  and mud

y2(k) k y1(k)
y2(k)

u1(k)
u2(k) u3(k) u4(k)

u5(k)

x(k) ∈ R5

pressure , where  is the sampling time index. Both 
and  are  influenced  by  the  control  inputs  and  other
parameters,  including  the  feeding  flow  rate ,  feeding
concentration ,  raking speed ,  underflow rate ,
and flocculant flow rate . As the focus of this paper is on
the  prediction  rather  than  the  control  problem,  we  do  not
distinguish  the  control  inputs  and  uncontrollable  measurable
parameters.  All  of  the  controllable  inputs  or  measurable
parameters are regarded as system inputs .

XNx
p = [x(−Nx),x(−Nx +1), . . . ,

x(−1)] YNy
p = [y(−Ny),y(−Ny+1), . . . ,y(−1)]

XM
f = [x(0),x(1), . . . ,x(M−1)]

XM
f

Because  some  crucial  parameters  of  thickeners  are
unavailable  due  to  the  limitations  on  the  monitoring  sites,
thickening  systems  are  partially  observed  and  have  non-
deterministic  dynamics.  Meanwhile,  the  influences  of  the
system  inputs  are  essentially  non-linear  and  time  delayed.
These  key  characteristics  of  thickening  systems  cause  us  to
employ a black-box data-driven method and utilize sequential
data to infer the latent system state in the designed model. As
a result, the prediction problem of a thickener is a problem of
estimating  the  future  system  outputs  under  known  system
inputs and historical system trajectories. We first assume that
the  historical  system  input 

,  output ,  and
future input  are available. Note
that  is available because system inputs are known signals
in  MPC  or  simulations.  With  a  symbolic  expression,  the
problem  is  then  formulated  as  the  sequential  prediction
structure given as follows:
 

h(0) = F (XNx
p ,Y

Ny
p )

HM = D(h(0),XM
f )

y(k) = g(h(k))

(1)

F (·) h(0)
XNx

p and YNx
p

HM

D(·, ·) h(k) HM

k
y(k) h(k)
g(·)

where the module  produces the initial hidden state ,
which  carries  the  historical  information  from .
The  entire  system  state  is  estimated  according  to  the
initial  hidden  state  and  future  system  inputs  based  on  the
rational module . Each hidden state  in sequence 
carries the system information for index . In addition, the real
system output  is available by decoding  via the non-
linear function .

XNx
p YNy

p XM
f

ŶM
f = [ŷ(1),

ŷ(2), . . . , ŷ(M)]

h(k)
{h(i), i ≤ k−1} Xk

f = {x(i), i ≤ k−1}
p(h(k)|h(0),Xk

f )
p(h(k)|h(0),XM

f )

Formulation  (1)  maps  the  sequences , ,  and  to
the  predicted  future  system  output  sequence 

,  similar  to  the  Seq2Seq  model  that  is  widely
used  in  natural  language  processing  (NLP)  [36].  However,
there  is  a  slight  distinction  between  an  NLP  task  and
input–output system prediction. Under the restriction of online
system  prediction,  the  calculation  of  depends  on

 and  only, and is equivalent
to  a  prediction  problem  instead  of  a  smoo-
thing problem . This restriction motivates the
use of an auto-regressive system in the model framework.

To  construct  a  rational  module D in  the  predictive  model,
the  auto-regressive  discrete-time  state  space  model  [37]  is  a
simple  and  effective  solution.  Similarly,  we  have  the
following formulation: 
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h(k) = d
(
h(k−1),x(k−1)

)
(2)

 

y(k) = g(h(k)) (3)
h(k)

h(k) x(k−1)
y(k)

where  hidden  state  encodes  the  historical  trajectories  of
the  system  in  a  dense  and  fixed-length  vector  space.  The
influences from external inputs can be viewed as step-by-step
non-linear transformations on the hidden state. The model can
predict  the  internal  state  immediately  when  and

 are  provided  simultaneously.  However,  some  previous
studies  [38],  [39]  point  out  that  a  thickening  system  can  be
modeled  as  CT  differential  equations  based  on  physical
insights.  Thus,  we  follow  the  prior  knowledge  from  these
previous  studies  and  define  a  parameterized  CT  differential
equation  model  to  fit  the  first-order  derivative  of  the  hidden
state as follows:
 

ḣ(t) = d(h(t),x(t)). (4)

F (·)
d(·, ·) g(·)

We replace index k by t to represent that the new time index
t is continuous in a specific range instead of a discrete integer.
The formulation of the prediction of the thickening system can
be  summarized  by  (1)  and  (4).  The  goal  is  to  learn  the
parameterized modules, including the sequential encoder ,
CT derivative  module ,  and  state  decoder ,  based  on
the  collected  system  trajectories  from  the  real  thickening
system.  

IV.  Continuous-Time Deep Sequential Model for
Thickening System Predictions

XNx
p YNy

p XM
f

ŶM
f

YM
f

We propose an integrated deep neural network to implement
Formulations (1) and (4). Fig. 2 illustrates all components and
their  connections  in  the  network.  With  specific  historical
trajectories  and  in  the  conditional  range  and  in
the predicted range, the model outputs  as an estimation of
real outputs .

XNx
p YNy

p

h(t0) h(t0)

h(t)
x(t)

ḣ(t)
x(t)

XM
f

h(t0)

h(t)
[0 ≤ t ≤ T ]

ŶM
f h(t)

The  proposed  model  works  in  the  following  steps.  First,  a
RNN encoder, a recurrent neural network (RNN) network, is
introduced to encode historical trajectories  and  to the
hidden  state ,  where  is  the  initial  state  of  solved
ordinary  differential  equation.  The  one-order  derivative  of
ordinary differential equation is defined based on a Derivative
module,  which  utilizes  the  hidden  state  and  external
inputs  at  arbitrary  time t as  inputs  to  estimate  the
instantaneous  derivative  of  hidden  state, .  The  external
inputs  at  arbitrary  time t is  computed  from  a Parallel
spline  interpolation,  which  interpolates  the  discrete  external
inputs  to  the  continuous-time  form.  The  ordinary
differential  equation  defined  based  on  the  initial  state 
and  derivative  module  is  solved  by  ODE  solvers  and  the
complete  continuous-time  hidden  state  in  the  time  range

 is  produced.  Finally, State  decoder,  a  multi-layer
perceptron (MLP) network,  is  employed to  predict  the  future
system outputs  from the evolved hidden states .

We  next  present  technical  details  of  each  module  of  the
proposed model.  

A.  RNN for Encoding Historical Sequences

XNx
p YNy

p

h(0)
YNy

P XNx
p

Because a thickening process suffers from long time delays,
we  introduce  historical  system  trajectories  and  as
parts of the model inputs. We employ a basic RNN model to
infer the initial value  in ordinary differential equations by
encoding  two  historical  sequences  denoted  by  and 
into a fixed-length hidden state. We thus have
 

h(t0) = h(0) = fRNN(YNy
P ,X

Nx
p , θ f ) (5)

fRNN(·) Ny Nxwhere  is a forward RNN network, and  and  are
two  important  parameters  to  be  configured.  Based  on

 

Stationary system

X(t)

tM

T

−1tM 

T

tM

T
+1

tM

T
+2

t

T

Non-stationary system

h(t) = MLP[h(t), x(t)] 
.

h (t) = μt
—————————
GRU[h (t), x(t)]−h(t).

Derivative module

Output: t, h(t+dt)

ODE solver

State decoder

… …

RNN encoder

..

.

Xf
M

Interpolating for discrete external input

Input: t, h(t)

h(t0)

Xp

Nx Yp

Ny
yN+1 yN+j yN+MYf

M
=

 
h(t0)Fig. 2.     Proposed model is composed of several components. The recurrent neural network (RNN) encoder outputs the initial hidden state  according to

historical sequences from the system. The derivative module is embedded into the ordinary differential equation (ODE) solver to calculate the hidden state at an
arbitrary time. A parallel interpolation mechanism is embedded into the derivative module, which interpolates discrete input sequences to a CT series. Finally,
the state decoder module transforms the hidden state to the predicted system output.
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Td
Ts Ny Nx
Ny = Nx = N = Td/Ts

h(t0)

industrial  experience,  we  use  the  system  delay  as  prior
knowledge denoted  by .  If  we assume a  uniform sampling
of  the  sensors  for  a  sampling  interval ,  and  can  be
estimated  according  to  the  equation .
The  influence  of  parameter N on  the  model  accuracy  is
examined  in  Section  V.  In  the  thickening  system,  the
correlations  between  the  current  system  state  and  historical
trajectories  are  mostly  compressed  in  the  short  term.  This
property  encourages  us  to  use  a  simple  and  unidirectional
RNN  to  encode  the  historical  trajectories  of  a  thickening
system.  The  solved  hidden  state  from encoder  involves
all  necessary  information  of  historical  trajectories  and  is
represented as an initial state of solved ODE.  

B.  ODE Solver for Modeling State Space
We  employ  the  parameterized  CT  state  space  model  to

represent  the  relations  between  the  system  inputs,  hidden
states, and outputs:
 

ḣ(t) = d(h(t),x(t), θd) (6)
 

y(t) = g(h(t)). (7)

h(t)
h(t)

[0,1, . . . ,M]
[t0 ≤ tk ≤ tM] h(tk)

h(0)
t = tk

The state  space  model  encodes  the  features  from historical
sequences  to  the  fixed-length  state .  The  utilization  of
hidden  state  is  crucial  to  handle  long  time  delays  and
incomplete  observations.  For  a  predicted  sequence  with  a
length  equal  to M,  we  construct  a  bijective  function  between
the  discrete  indices  of  integers  and  time  range

.  Each  associated  with  a  specific  integer
index k is  the  ODE  solution  with  an  initial  state  at  the
time .

L(·)
h(tk)

ODESolve tk

To  construct  a  learnable  differential  system,  we  employ  a
differentiable  ODE-net  [35]  to  learn  the  above  state  space
model.  For  a  scalar-valued  loss  function ,  which  is
determined based on any prediction metrics, the input  is
the  estimated  hidden  state  from the  ODE solver  (denoted  by

) at time . Thus, we have
 

L (h (tk)) = L
(
h (t0)+

w tk

t0
d(h(t),x(t), θd)dt

)
= L (ODESolve(h (t0) ,d, t0, tk, θd)) . (8)

θd L(·)
∂L/∂θd

a(t) = ∂L/∂h(t)

To  train  parameters  and  minimize ,  we  require
gradients  from  (8).  The  gradient  of  the  loss,  which
depends  on  the  hidden  state,  is  called  the  adjoint

.  Its  dynamics  are  described  by  another  ODE,
which can be derived according to the chain rule, as follows:
 

da(t)
dt
= −aT (t)

∂d(h(t),x(t), θd)
∂h(t)

. (9)

L(·) θdThe  gradients  from loss  with  respect  to  parameters 
can be obtained by performing a third integration,
 

∂L
∂θd
= −

w tM

0
aT (t)

∂d(h(t),x(t), θd)
∂θd

dt. (10)

θd
h(t) α(t) ∂L/∂θ

Detailed  proofs  can  be  found  elsewhere  [35].  Under  the
deterministic  network  structure d and  parameter ,  all
integrals  for  solving , ,  and  can  be  evaluated.
Any  numerical  methods  for  solving  ODEs  can  be  used  here
for  an  approximate  solution,  including  the  Euler,  Mid-Point,

and Runge-Kutta methods.
Generally,  an  ODE  solver  with  a  lower  error  tolerance

increases  the  frequency  for  calling  differential  function d.  It
leads  to  more  time  consumption  but  results  in  a  higher
accuracy.  This  guideline  is  also  tenable  when we construct  a
neural  ODE  network  to  fit  sequential  datasets.  The  detailed
comparisons  of  the  time  cost  and  accuracy  are  shown  in
Section V.

It is worth investigating the definition of a suitable structure
of d.  The  most  intuitive  solution  is  to  employ  a  basic  neural
network  to  estimate  the  derivative  that  is  named  non-
stationary model.

Non-Stationary:
 

d (h(t),x(t), θd) =MLP (h(t),x(t), θd) (11)
MLP(·)where  denotes  a  multi-layer  perceptron.  The

combination  of  a  non-stationary  system  with  an  ODE  solver
has  a  strong  similarity  to  residual  connections,  which  have
been widely used in other advanced deep networks [35].

In  the  field  of  stochastic  process  analysis,  non-stationary
systems are  a  stochastic  process  with  a  mean and covariance
that  vary  with  respect  to  time  [40].  Differencing  [41]  is  an
effective way to make non-stationary time series stationary by
eliminating  trend  and  seasonality.  Generally,  a  thickening
system has strong trends in the underflow concentration, mud
pressure, and other core variables. The thickening system is an
approximation  of  non-stationary  systems,  indicating  that  the
differencing  operation  can  improve  the  fitting  accuracy.  In
(11),  the  derivative  module  intrinsically  learns  the  first-order
difference of the hidden states in the latent space. In contrast
to the operation of differencing the system outputs directly, a
model  that  differences  the  hidden  states  has  an  equivalent  or
stronger ability to represent a non-stationary system that is of
first or even higher order. However, the non-stationary system
(11) also suffers from a severe problem when handling long-
term  prediction  tasks.  To  solve  an  ODE  over  long  intervals,
repetitive accumulation in a CT range can lead to a significant
magnitude  increase  of  the  hidden  states.  Consequently,  the
estimation  error  will  grow  accordingly,  resulting  in  the
difficulties  in  achieving  accurate  system  output  from  the
decoder.

Therefore,  we  devise  another  derivative  module,  namely,
the  stationary  system,  to  handle  the  long-term  prediction
problem. In particular, we have

Stationary:
 

d (h(t),x(t), θd) =
1
µt

(GRU (h(t),x(t), θd)−h(t)) (12)

where GRU denotes a gated recurrent unit.
GRU (h(t),x(t), θd)

x(t)
h(t) µt

(−1,1)

h(t)

In  a  stationary  system,  determines  a
target based on the current external input  and hidden state

.  The  factor  regularizes  the  speed  toward  the  target.
Specifically,  the outputs  from the GRU are limited to 
according  to  the  network  standard.  Regardless  of  how  much
time  has  passed,  the  state  that  is  sent  to  the  decoder
module  is  stable  in  the  range  of  the  GRU’s  output.  This
property  significantly  contributes  to  the  stability  of  a
stationary model in a long-term prediction task.
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ḣ(t) h(t) x(t)

In  a  stationary  system,  we  use  a  GRU  to  construct  the
derivative module because it has a strong ability to carry long-
time  information.  In  a  non-stationary  system,  consecutive
accumulations  diffuse  the  hidden  state  in  an  unconstrained
range.  Thus,  we  employ  the  MLP  to  learn  the  first-order
difference  directly under  and .  

C.  Parallel Spline Interpolation
ḣ(t)

x(t)
XM

f
x(t)

Note that the calculation of  in (11) and (12) depends on
the  external  input ,  which  may  not  exist  in  our  dataset.
External input sequences  in the training data are discrete,
while  the computation of  the ODE needs  in  a  CT range.
Before  each  forward  pass  of  the  network,  it  is  necessary  to
interpolate  the  external  inputs  to  the  continuous  form.  Deep
networks  are  typically  trained  in  mini-batches  to  take
advantage  of  efficient  data-parallel  graphics  processing  unit
(GPU)  operations.  Therefore,  we  implement  a  parallel  spline
interpolation mechanism on top of PyTorch, which is a well-
known deep learning framework.

In  our  dataset,  the  external  input  data  are  evenly  sampled,
thereby  simplifying  the  implementation  of  parallel
interpolation. To simplify the explanation, we assume that the
dimension of the external input is equal to 1.

X = [x1,x2, . . . ,xm]
xi = [xi

1, x
i
2, . . . , x

i
M]

[0,T ]
0 ≤ t ≤ T

k = [tM/T ] n

We begin with specific  input  sequences organized in batch
,  where m is  the  batch  size  and
 is  an  independent  input  sequence

consisting  of M sampled  data  in  discrete  steps.  We  define  a
time interval  to represent the M steps and for any given
time index t in the interval with constraint . In the M
steps,  the  nearest  integer  index  in  the  left-hand  side  of t is

.  The th-order  spline  interpolation  can  be
implemented by finding matrix A according to  the  following
equation:
 

A ·


k0 · · · kn

(k+1)0 · · · (k+1)n

...
. . .

...
(k+n)0 · · · (k+n)n

 =


x1
k · · · xm

k
x1

k+1 · · · xm
k+1

...
. . .

...
x1

k+n · · · xm
k+n

 .
(13)

The interpolated inputs  in  a  batch at  time t are  obtained as
follows:
 [

x1(t), x2(t), . . . , xm(t)
]
=

([
1,

tM
T
, · · · ,

( tM
T

)n]
A
)
. (14)

The parallel  multiplication  of  the  matrix  can be  effectively
implemented in the deep learning framework.  

D.  State Decoder
The  state  decoder  mechanism  is  essentially  a  fully

connected network. We therefore have the following equation
to represent the output,
 

ŷ(t) = VT tanh(Wht +bw)+bv. (15)

h(t)

Compared with other state space models that only employ a
single  matrix  for  decoding,  the  nonlinear  decoder  is  chosen
because the accumulative form in (11) causes the range of the
input  to  be  non-deterministic.  The  activation  function

tanh(·) constrains the output of the decoder to a rational range.  

E.  Model Training
Since all of the operations of the ODE solver in our model

are  smooth  and  differentiable,  we  can  train  the  complete
model  by  the  standard  back-propagation  algorithm  with  the
loss function defined as follows:
 

O
(
ŶM ,YM

)
=

1
M

M∑
i=1

|yi− ŷi|2 . (16)

(XN
p ,YN

p ,XM
f ,Y

M
f )

N +M

i (XN
p = X[i : i+N]

YN
p = Y[i : i+N] XM

f = X[i+N : i+N +M] YM
f = Y[i+N :

i+N +M])
D = 1

N +L

To prepare the tuples  for training models
from  the  training  dataset,  a  sliding  window  of  size 
moves  along  the  real  sequential  data.  When  the  window
reaches  position ,  four  sequences ,

, , 
 are collected as a piece of data for training. We set

the  moving  size  of  sliding  windows  as  for  generating
training, validation, and test datasets. In the validation and test
datasets,  the  size  of  sliding  window  changes  to ,  in
which L represents  the  length  of  the  predicted  sequence
(which  may  not  be  equal  to M).  The  model  is  trained  by
feeding  the  only  training  dataset  and  successively  validated
and  evaluated  on  different  validation  and  test  datasets  with
specific L. The detailed procedure for constructing datasets is
illustrated in Fig. 3.  

V.  Experimental Results

This  section  presents  experimental  results  for  the  proposed
method on the dataset of real thickening systems. We mainly
investigate  three  issues:  RQ1:  What  are  the  advantages  of
employing a CT deep sequential network with a high-accuracy
ODE  solver  for  modeling  a  thickening  system?  RQ2:  What
are  the  pros  and  cons  of  using  stationary  and  non-stationary
systems  in  prediction  tasks?  RQ3:  How  do  the  different
interpolation  methods  and  sequential  encoder  affect  the
accuracy  of  the  proposed  CT  model?  We  first  describe  the
dataset,  the  hyper-parameters  of  the  model,  and  the  training
and  test  configurations.  We  then  present  the  detailed
experimental results.  

A.  Thickening System Dataset
For  our  experiments,  the  dataset  was  collected  from  the

paste thickener manufactured by the FLSmidth from the NFC
Africa  Mining  PLC,  Zambian  Copperbelt  Province. Fig. 4
illustrates  two  identical  thickeners  in  our  experiments.  They
are used to concentrate copper tailings to produce paste in the
backfilling  station.  Both  devices  operate  in  the  closed-loop
mode with PID controllers.

Some key technical parameters of the studied thickener are
listed in Table I.

y(k)
x(k)

The  measured  data  are  sampled  evenly  with  two-minute
intervals  from May 2018 to  February  2019.  A short  piece  of
original dataset is shown in Table II. The collected data come
from  seven  monitoring  sensors  just  as  the  defined  and

 in Section III. After deleting the records corresponding to
the time when the system was out of service, there are 24 673
pieces of data remaining.
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L = 60, 200, 500

We  employ  the  first  70% of  the  entire  dataset  to  train  the
model. In the remaining 30% portion, the first 15% is used for
validation to determine the best training epochs, and the other
15% is the test dataset for evaluating the model accuracy. By
splitting  and  building  the  inputs-outputs  sequential  tuples
according to Fig. 3, there are 17 131 tuples left for training and
3561, 3421, 3121 tuples  left  for  testing  and  validation  for

, respectively. All the datasets are normalized
to  standard  normal  distributions  with  a  unified  mean  and
variance before the training and test phases.  

B.  Experimental Setup
We  use  the  mini-batch  stochastic  gradient  descent  (SGD)

with the Adam optimizer  [42]  to  train the models.  The batch

h(t)

h(t)

size is 512, and the learning rate is 0.001 with an exponential
decay.  The decay rate is  0.95,  and the period for decay is  10
epochs.  The  size  of  the  hidden  state  in  ODE  is  32.  The
RNN encoder module has a single hidden layer and the size is
equal to 32 that is consistent with the size of hidden state .
The size of the hidden layer in state decoder is 64. In both the
adaptive  ODE  solvers,  the  time  for  solving  the  ordinary
differential  equations  increases  if  we  reduce  the  tolerance  of
approximate error.  For  balancing the time cost  and accuracy,
we set the relative tolerance to 1E–4 and absolute tolerance to
1E–5 in all of experiments.

0 ≤ t ≤ Mδt
[0,1, . . . ,M]

δt
µt

During  the  training  procedure,  the  length  of  the  historical
sequences  denoted  by N is  80,  and  the  length  of  predicted
outputs denoted by M is 60. The best-performing model in the
validation dataset is chosen for further evaluation with the test
dataset.  The  training  and  test  phases  were  performed  on  a
single  Nvidia  V100  GPU.  The  implementation  uses  the
PyTorch  framework.  We  define  the  CT  range  as 
for  given  discrete  integral  indices .  The  time
interval  of  the  adjacent  data  points  is  set  to  0.1.
Accordingly, the normalized factor  in (12) is also set to 0.1.
When  we  use  the  Euler  approximation  to  solve  an  ODE
equation  in  a  stationary  system,  the  predicted  hidden state  in
the  next  time  step  is  equal  to  the  output  of  the  GRU  cell
corresponding to the discrete-time system:
 

h(t+δt) = h(t)+δt ·
GRU

(
h(t), x(t), θd

)−h(t)
µt

= GRU
(
h(t), x(t), θd

)
. (17)

We use the averaged root relative squared error (RRSE) and
mean squared error  (MSE) of  the underflow concentration to
evaluate  the  performance of  the  different  models.  The RRSE
is defined by the Equation (18) with the prediction length L:
 

RRSE =

√√√√ L∑
j=1

e2
j(

ŷ j− ȳ
)2 , e j = ŷ j− y j. (18)

The RRSE can  be  interpreted  as  the  normalized  root  mean
squared (RMS) error.  

C.  Results and Discussion
1) Main Results
We  investigate  the  influence  of  the  types  of  ODE  solvers

 

Training dataset

Training tuple i

X[i : i+N] X[i+N : i+N+M]

Y[i+N : i+N+M]Y[i : i+N]

X[i : i+N] X[i+N : i+N+L]

Y[i+N : i+N+L]Y[i : i+N]

Training tuple i+1 Training tuple i Training tuple i+1

D = 1D = 1

Input X

Output Y

… … … …

Validation set and Test set

Conditioning range Prediction range Conditioning range Prediction range

 

X[i : i+N] Y[i : i+N] X[i+N : i+N +M] X[i+N : i+N +L]
Y[i+N : i+N +M] Y[i+N : i+N +L]

Fig. 3.     Illustration of the process of building both the training, validation, and test datasets. An independent data tuple for training or testing is composed of
four vector sequences.  and  represent the historical trajectories in conditional range.  and  represent
the inputs sequences, which have equivalent length with predicted sequences.  and  represent the real system outputs. The
former is utilized to generate optimized loss in training and the latter is only used in testing and validation phase for evaluating the accuracy of prediction.
 

 

(a) Top view of the paste thickener (b) Upward view of feeding pipes
 
Fig. 4.     The  figures  illustrate  two  identical  paste  thickeners  in  our
experimental  mining  station,  including  one  primary  and  one  alternate
thickener.  Both  devices  operate  in  closed-loop  mode  with  proportional-
integral-derivative (PID) controllers.
 

 

TABLE I 

Some Key Technical Parameters of the Thickener

Parameter Value

Diameter 18 m

Height 22.27 m

Height of straight cylinder 10.06 m

Height of zone 7.1 m

Maximum capacity 2983 m3

Overflow level (from ground) 15.3 m

Maximum underflow speed 260 m3/h

Maximum feeding speed 1500 m3/h
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and  system  types.  We  select  four  ODE  solvers:  Euler,  Mid-
Point,  fourth-order  Runge-Kutta  (RK4),  Dormand-Prince
(Dopri5)  [35],  and  3-order  Bogacki-Shampine  (Bosh)  [43].
We investigate the performances of those ODE solvers in both
non-stationary  and  stationary  systems.  To  make  a  trade-off
between the model accuracy and time consumption, we set the
relative tolerance to 1E–4 and the absolute tolerance to 1E–5.
Moreover,  we also consider the discrete-time deep sequential
model  for  the  state  space  (DT-State-Space),  the  attention-
based  Seq2Seq  model  (Attention-Seq2Seq)  [5],  and
Transformer  [44]  for  comparison.  The  DT-State-Space  [45]
model  employs  a  parameterized  per-time-series  linear  state
space  model  based  on  a  recurrent  neural  network  (RNN)  to
forecast  the probabilistic time series.  The sizes of state space
and RNN hidden layer are set to 16 and 32, respectively. The
hyperparameters  setting  of  Transformer  and  Attention-
Seq2Seq are kept with the original literature.

L = 60

We conduct  three  groups  of  experiments  to  investigate  the
RRSEs,  MSEs,  and  time  consumption  of  models  with
prediction lengths of , 200, and 500.

a) Comparison of proposed and other baseline models:
We first examine the performance of the Attention-Seq2Seq

model,  the  DT-State-Space  model,  and  Transformer,  which
are  defined  in  discrete-time  settings  in Table III.  Although
they  perform  competitively,  better  than  the  proposed  models
with  the  Euler  ODE  solver,  they  perform  worse  than  the
models with high-order ODE solvers, especially for long-term
predictions.  The  results  also  indicate  that  employing  a  CT
model  is  consistent  with  the  features  of  the  CT  evolution  in
thickening  systems,  thereby  improving  the  prediction
accuracy.

b) Comparison of different ODE solvers:

L = 60

We  analyze  the  comparisons  of  different  ODE  solvers
respectively  from  stationary  system  and  non-stationary
system.  When  the  derivative  module  is  defined  as  a  non-
stationary system and we only focus on short-term prediction
with , we find that the Euler method achieves relatively
higher  RRSE  and  MSE  values  (i.e.,  poorer  prediction
performances) than the other four ODE solvers, though it has
a much lower time consumption than the other solvers. As the
simplest  method  for  solving  ODEs,  the  Euler  method
evaluates  the  derivative  network  only  once  between  two
adjacent  time  points.  Meanwhile,  the  Mid-Point  and  RK4
methods  have  higher  prediction  accuracies  than  the  Euler
method,  since  they  evaluate  the  derivative  network  two  and
four  times,  respectively,  between  two  adjacent  time  points.

Moreover,  the  Dopri5  and  Bosh  methods  achieve  better
accuracies,  though  they  have  higher  time  consumptions.
Dopri5  performs  slightly  better  than  Bosh.  As  adaptive
methods  in  the  Runge-Kutta  family,  the  Dopri5  and  Bosh
methods ensure that  the output  is  within a  given tolerance of
the true solution. Their time consumptions for solving an ODE
equation increase as the accuracy tolerance is decreased.

Strangely, with the increase in the prediction length, we find
that  the  accuracies  of  non-stationary  models  crash  gradually
and the degradation of Euler is slightly lower than the others.
The  reason  of  this  inconsistent  phenomenon  is  that  non-
stationary  system  brings  accumulative  errors  in  long-term
predictions.  High-order  ODE  solvers  evaluate  the  derivative
module  more  times  recursively,  which  brings  more
accumulative  errors.  Not  only  do  the  high-order  solvers  not
improved the accuracies of non-stationary system in long-term
predictions, they made the accuracies worse.

When  the  derivative  module  is  switched  to  a  stationary
system. It  is  worth mentioning that  the time consumption for
the two adaptive methods, Bosh and Dopri5, to solve an ODE
equation significantly increases. We do not list the accuracies
of the Dopri5 and Bosh for the stationary systems in Table III
because  the  extremely  slow  speed  makes  the  method
ineffective  for  practical  applications.  According  to  the
comparison  of  the  ODE  solvers,  the  high-order  ODE  solver,
such as RK4, results in lower fitting errors than the low-order
methods  while  requiring  more  time  to  evaluate  the  ODE
equations intensively.

c)  Comparison  of  stationary  models  and  non-stationary
models:

L = 60

For  comparing  the  distinctions  between  stationary  models
and  non-stationary  models  more  intuitively,  we  further
visualize the prediction performance of the non-stationary and
stationary  systems with  different  ODE solvers. Fig. 5 depicts
the  predicted  sequences  of  the  non-stationary  and  stationary
systems  with  different  ODE  solvers  for  the  short-term
prediction  task  with .  The  results  show  that  the  non-
stationary  models  outperform  the  stationary  models  in  short-
term prediction tasks. The estimated sequences from the non-
stationary models are slightly closer to the real system output
than those from the stationary models. The learning process of
a  non-stationary  system  is  essentially  equivalent  to
differencing the hidden state and employing the MLP network
to  learn  the  relatively  stationary  first-order  difference.
Furthermore, the non-stationary models can predict the system
outputs  smoothly  because  the  non-stationary  structure  limits

 

TABLE II 

A Tabular Example of Paste Thickening System Dataset

Collected timestamp Feed flow rate Feed concentration Mud pressure Rake speed Flocculant flow rate Underflow rate Underflow concentration

2018/5/9 10:20 164.47 16.47 18.41 500.58 4.30 58.96 59.72

2018/5/9 10:22 169.21 15.51 17.99 500.16 4.06 61.56 58.88

2018/5/9 10:24 141.78 15.30 16.41 500.56 4.06 59.97 59.26

2018/5/9 10:26 305.67 25.31 16.11 500.99 4.07 59.46 58.77

2018/5/9 10:28 328.70 28.28 16.43 501.42 4.43 59.68 59.43

2018/5/9 10:30 323.96 25.90 17.11 501.56 4.40 61.40 60.09
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the  hidden  states  to  only  changing  in  a  continuous  and  slow
manner.  This  constraint  is  consistent  with  the  properties  of  a
slow thickening system that shrinks the searching space of the

model parameters to prevent overfitting.

L = 200 L = 500

tanh

Fig. 6 presents  the  experimental  results  of  a  long-term
prediction task with  (similar results with  can
be  found  in Table III).  The  tabular  results  in Table III
demonstrate that the RRSE and MSE of non-stationary models
are much higher than those of the stationary ones in long-term
prediction task, which is consistent with the graphical results.
Compared to the excellent results of non-stationary models in
Fig. 5, Fig. 6(a) shows  that  the  prediction  accuracy  for  the
non-stationary  system decays  significantly,  and  the  predicted
outputs  deviate  from  the  true  outputs  gradually  with  the
increase  in  the  prediction  length.  However,  the  predicted
results  of  stationary  models  are  stabilized  and  closed  to  the
true  system outputs,  which  confirms  the  excellent  accuracies
of stationary models in the long-term prediction problem. The
structure  of  non-stationary  ODE  leads  to  the  hidden  state  in
progressive  evolution  that  is  unconstrained  and  gradually
expanding.  Although  we  embed  a  function  for  the
decoder  network  to  restrict  the  final  prediction  of  the
underflow concentration and pressure to a rational range, it is
impossible  for  the  decoder  module  to  learn  an  effective
mapping function from an extremely large hidden state space
to the system output space. Similarly, Fig. 6 also demonstrates
that  high-order  ODE  solvers,  such  as  the  4th-order  Runge-
Kutta, still  perform slightly better than the low-order solvers,
such as Euler, in long-term prediction.

L < 100

We conduct five other groups of experiments with different
values  of  the  prediction  length  to  evaluate  the  prediction
performance  (i.e.,  the  MSE)  of  the  underflow  concentration
and  ground-truth  for  both  stationary  and  non-stationary
systems.  The  results  in Fig. 7 show  that  the  non-stationary
system performs better than the stationary system in the short-
term  prediction  task  (e.g., ),  although  the  stationary
system  outperforms  the  non-stationary  system  in  long-term
prediction tasks. For example, when L exceeds 120, the errors
from  the  non-stationary  system  increase  with  the  predicted

 

TABLE III 

Root Relative Squared Error (RRSE), Mean Squared Error (MSE), And Time
Consumption of Predicted Underflow Concentration

Models
L = 60  (120 min) L = 200  (400 min) L = 500  (1000 min)

RRSE MSE Time (s) RRSE MSE Time (s) RRSE MSE Time (s)

Non-stationary system

Euler 3.18 9.07 1.71 5.09 80.25 3.81 3.95 152.21 4.65

Mid-Point 3.10 8.95 3.23 5.24 80.29 7.36 4.16 172.43 9.15

RK4 3.10 8.97 6.95 5.24 83.90 14.82 4.16 172.64 18.76

Bosh 3.08 8.57 12.8 5.84 84.60 19.0 4.61 172.39 24.75

Dopri5 2.83 6.40 9.63 5.31 84.60 13.8 4.19 175.39 25.75

Stationary system

Euler 3.18 9.06 1.63 3.75 34.78 3.58 1.63 37.77 4.66

Mid-Point 3.18 9.08 3.22 3.73 34.64 7.17 1.62 38.36 9.3

RK4 3.18 8.96 6.80 3.58 32.90 15.17 1.61 34.88 18.66

Bosh N/A N/A >50 N/A N/A >200 N/A N/A >3000

Dopri5 N/A N/A >50 N/A N/A >200 N/A N/A >3000

Attention-Seq2Seq [5] 3.13 8.97 0.41 4.02 33.90 0.41 1.82 40.53 0.42

DT-State-Space [45] 3.22 9.36 0.06 4.69 41.11 0.07 3.35 45.64 0.08

Transformer [44] 3.16 8.36 0.02 3.99 40.23 0.02 2.55 44.23 0.03
 

 

(a) Stationary system with fourth-order Runge-Kutta (RK4) ODE solver

(b) Non-stationary system with RK4 ODE solver

(c) Non-stationary system with Dormand-Prince (Dopri5) ODE solver
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L = 60Fig. 5.     In  the  short-term  prediction  task  with ,  the  non-stationary

models output more stable and accurate sequences than the stationary models.
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length, while the stationary system significantly stabilizes the
accumulative errors in the long-term prediction.

2) Experiments for Evaluating Interpolation Order
We  next  investigate  the  effect  of  the  interpolation  method

on  the  prediction  accuracy.  We  test  four  spline  interpolation
methods  with  different  orders  and  compare  the  prediction
accuracies  on  test  datasets.  The  results  in Table IV
demonstrate  that  the  higher-order  interpolations  slightly

outperform the lower-order ones. This proves that the system
input  of  the  thickening  system  is  a  non-linear  complex
process,  and  that  the  information  from  external  inputs  is
essential  for  predicting  the  outputs  of  the  system.  Higher-
order  spline interpolations exploit  more correlational  features
from  adjacent  inputs  and  interpolate  the  empty  area  with  a
better accuracy than the lower-order interpolations.

3)  Ablation  Experiments  for  Studying  System  Time  Delays
and Improvements From Sequential Encoder

x(k−1)
h(t0)

h(t0)

L = 60
L = 60

L = 200

Finally,  we  investigate  the  significance  of  introducing  the
sequential  encoder  to  confront  the  system  time  delay.  We
investigate  the  influence  of N on  the  model  accuracy.
Specially,  when N is  set  to  1,  the  sequential  encoder  is
replaced  by  a  neural  network  with  one  hidden  layer  that
encodes the system output  in a single time step to the
initial  hidden  state .  When N is  set  to  0,  the  initial  state

 is a learnable or zero vector [19] that had no relationship
with  historical  system  trajectories.  We  examine  the  different
choices  of N in  experiments  with ,  200,  and  500,
respectively.  In  the  experiments  with ,  the  derivative
module is set to be a non-stationary system with an MLP cell.
We  change  it  to  a  stationary  system  with  a  GRU  cell  when

 and 500. The ODE solver is the fourth-order Runge-
Kutta solver for all of the models.

N = 1

N = 80

The  results  shown  in Table V demonstrate  that  the
introduction of the sequential encoder to extract features from
the historical sequence leads to better performance than those
in the cases with  or 0. The intuitive explanation is that
the  predicted  output  sequences  have  strong  statistical
correlations  with  historical  system  trajectories.  The  optimal
length  of  the  encoded  sequence  is  approximately ,
which  is  consistent  with  our  prior  experience  of  2–3-h  time
delays  in  thickening  systems.  When  the  length  of  input
sequence  exceeds  the  optimal  value,  the  accuracy  slightly
decreases.

L = 500

Intuitively,  the  short-term  prediction  task  benefits  more
from  historical  system  trajectories  than  the  long-term
prediction  task.  When  the  length  of  the  predicted  sequence
increases,  the  advantage  brought  by  the  sequential  encoder
also  decreases.  In  the  task  with ,  the  profit  of
employing sequential encoder decreases obviously.  

VI.  Conclusions

This  paper  focuses  on  the  prediction  of  the  outputs  of  a
thickening system based on deep neural sequence models. We
introduce a CT network composed of a  sequential  encoder,  a
state  decoder,  and  a  derivative  module,  with  internal
computation  processes  including  interpolation  and  a
differential  ordinary  differential  equation  solver,  to  describe
the complex dynamics of a thickening system. Experiments on
datasets  from  real  thickening  systems  demonstrate  that  the
introduction  of  the  sequential  encoder  and  parallel  cubic
spline  interpolation  play  a  crucial  role  in  our  model
architecture. We conducted extensive experiments to evaluate
the  proposed  models  for  both  stationary  and  non-stationary
systems with different ODE solvers. The results show that the
non-stationary  system  outperforms  the  stationary  system  for
short-term  prediction  tasks.  However,  the  non-stationary

 

(a) Non-stationary system with RK4 ODE solver

(b) Stationary system with Euler ODE solver

(c) Stationary system with RK4 ODE solver
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L = 200Fig. 6.     In  the  long-term  prediction  task  with , Fig. 6(a) illustrates

that non-stationary models only performed well in the early time horizon. In
the  late  horizon,  the  predicted  sequences  deviated  from  the  true  system
outputs significantly compared with those of the stationary models, which are
shown  in Figs. 6(b) and 6(c).  The  results  also  indicate  that  the  models  with
high-order  ODE  solvers  performed  better  than  the  models  with  low-order
ODE solvers in long-term prediction tasks.
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Fig. 7.     Predicted length L affected the accuracy (log10 MSE ± 2σ, computed
across five runs) of predicted underflow concentration for both stationary and
non-stationary systems.
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model  suffers  from  the  accumulation  of  errors  from  the
incremental  calculation,  thereby  leading  to  inferior  results  in
long-term prediction  tasks.  This  demonstrates  that  the  model
with  the  non-stationary  system  is  more  suitable  for  being
embedded  in  a  model-based  feedback  controller  (e.g.,  MPC
controller)  while  the  stationary  system  avoids  this  problem
and  performs  better  in  long-term prediction  tasks.  Therefore,
the model with the stationary system is a better choice when a
stable and robust identified system is required to predict long-
term sequences (e.g., simulations or controller testing).

In  the  industrial  data  processing  field,  it  is  a  common
requirement  to  process  unevenly  spaced  data.  Although  the
dataset  employed  in  this  paper  is  sampled  evenly,  we  can
extend  our  method  to  deal  with  uneven  data  naturally  by
adjusting  the  time  intervals.  This  extension  deserves  further
experimental  verification  in  future  work.  Another  promising
research  direction  is  to  extend  the  method  to  probabilistic
generative models and perturbed time-varying models [46] for
determining  the  unknown  sampling  noise  and  uncertainty  in
thickening  systems.  Moreover,  it  is  worth  investigating  our
method for other dynamical industrial systems.
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