
Elastic Resource Allocation Against Imbalanced
Transaction Assignments in Sharding-Based

Permissioned Blockchains
Huawei Huang ,Member, IEEE, Zhengyu Yue , Xiaowen Peng, Liuding He ,

Wuhui Chen ,Member, IEEE, Hong-Ning Dai , Senior Member, IEEE,

Zibin Zheng , Senior Member, IEEE, and Song Guo , Fellow, IEEE

Abstract—This article studies the PBFT-based sharded permissioned blockchain, which executes in either a local datacenter or a

rented cloud platform. In such permissioned blockchain, the transaction (TX) assignment strategy could be malicious such that the

network shards may possibly receive imbalanced transactions or even bursty-TX injection attacks. An imbalanced transaction

assignment brings serious threats to the stability of the sharded blockchain. A stable sharded blockchain can ensure that each shard

processes the arrived transactions timely. Since the system stability is closely related to the blockchain throughput, how to maintain a

stable sharded blockchain becomes a challenge. To depict the transaction processing in each network shard, we adopt the Lyapunov

Optimization framework. Exploiting drift-plus-penalty (DPP) technique, we then propose an adaptive resource-allocation algorithm,

which can yield the near-optimal solution for each network shard while the shard queues can also be stably maintained. We also

rigorously analyze the theoretical boundaries of both the system objective and the queue length of shards. The numerical results show

that the proposed algorithm can achieve a better balance between resource consumption and queue stability than other baselines. We

particularly evaluate two representative cases of bursty-TX injection attacks, i.e., the continued attacks against all network shards and

the drastic attacks against a single network shard. The evaluation results show that the DPP-based algorithm can well alleviate the

imbalanced TX assignment, and simultaneously maintain high throughput while consuming fewer resources than other baselines.

Index Terms—System stability, sharded blockchain, queueing theory, imbalanced transaction assignment

Ç

1 INTRODUCTION

BLOCKCHAIN technologies have gained enormous attention
in the past few years, leading to the blooming of countless

decentralized applications (DApps), such as digital currencies
[1], blockchain games [2], vehicles [3], internet of things [4],

and medical treatment solutions [5], etc. Nevertheless, the
scalability is still a barrier preventing the blockchain technol-
ogy from widely being adopted. Taking Bitcoin as an exam-
ple, the mining time of a block is around tenminutes, thus the
Bitcoin network is only able to handle a very limited number
of Transactions Per Second (TPS). Meanwhile, the constant
block size also restricts the scalability of the blockchain. There-
fore, it is hard for a blockchain network to achieve the similar
throughput of the mainstream payment network like Visa
(more than 5000 TPS) or Paypal (about 200 TPS).

Sharding [6], designed originally as a principle of classical
database, is now being considered as a promising solution to
improving the scalability of blockchains [7]. The key idea of
sharding-based technique is to make a distribution over the
blockchain nodes. Through sharding, the workload of trans-
action processing overhead can be amortized by different
blockchain shards. The blockchain sharding network is anal-
ogous to a highwaywith multiple toll stations, each of which
only needs to handle a subset of all blockchain transactions.
This parallel manner effectively alleviates the congestion
occurred in traditional blockchain networks. Two obvious
benefits of sharding technique are reviewed as follows. First,
sharding technique can ensure that transactions can be proc-
essed with much shorter congestion latency. Second, the
improved transaction throughput will encourage more users
and applications to engage in blockchain ecosystems. This
change will make blockchain consensus more profitable and
increase the security of the blockchain network.

� Huawei Huang, Zhengyu Yue, Xiaowen Peng, Liuding He, Wuhui
Chen, and Zibin Zheng are with the School of Computer Science and Engi-
neering, Sun Yat-Sen University, Guangzhou 510275, China.
E-mail: {huanghw28, chenwuh, zhzibin}@mail.sysu.edu.cn, {yuezhy6,
pengxw3, held3}@mail2.sysu.edu.cn.

� Hong-Ning Dai is with the Department of Computing and Decision Sci-
ences, Lingnan University, 999077, Hong Kong. E-mail: hndai@ieee.org.

� Song Guo is with the Department of Computing, Hong Kong Polytechnic
University, 999077, Hong Kong. E-mail: song.guo@polyu.edu.hk.

Manuscript received 25 Apr. 2021; revised 24 Sept. 2021; accepted 27 Dec. 2021.
Date of publication 11 Jan. 2022; date of current version 7 Mar. 2022.
This work was supported in part by the National Key R&D Program of China
under Grant 2020YFB1006005, in part by the National Natural Science Founda-
tion of China under Grant 61902445, in part by Guangdong Basic and Applied
Basic Research Foundation under Grant 2019A1515011798, in part by Guangz-
hou Basic and Applied Basic Research Foundation under Grant 202102020613, in
part by Pearl River Talent Recruitment Program under Grant 2019QN01X130,
in part by CCF-Huawei Populus euphratica forest fund under Grant CCF-Hua-
weiBC2021004, Hong Kong RGC Research Impact Fund (RIF) with the Project
No. R5060-19, General Research Fund (GRF) with the Project No. 152221/19E,
152203/20E, and 152244/21E, in part by the National Natural Science Founda-
tion of China under Grant 61872310, and in part by Shenzhen Science and Tech-
nology Innovation Commission under Grant R2020A045.
(Corresponding author: Huawei Huang.)
Recommended for acceptance by D. Mohaisen.
Digital Object Identifier no. 10.1109/TPDS.2022.3141737

2372 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 17,2022 at 08:51:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7035-6446
https://orcid.org/0000-0002-7035-6446
https://orcid.org/0000-0002-7035-6446
https://orcid.org/0000-0002-7035-6446
https://orcid.org/0000-0002-7035-6446
https://orcid.org/0000-0002-4788-4232
https://orcid.org/0000-0002-4788-4232
https://orcid.org/0000-0002-4788-4232
https://orcid.org/0000-0002-4788-4232
https://orcid.org/0000-0002-4788-4232
https://orcid.org/0000-0003-1367-180X
https://orcid.org/0000-0003-1367-180X
https://orcid.org/0000-0003-1367-180X
https://orcid.org/0000-0003-1367-180X
https://orcid.org/0000-0003-1367-180X
https://orcid.org/0000-0003-4430-7904
https://orcid.org/0000-0003-4430-7904
https://orcid.org/0000-0003-4430-7904
https://orcid.org/0000-0003-4430-7904
https://orcid.org/0000-0003-4430-7904
https://orcid.org/0000-0001-6165-4196
https://orcid.org/0000-0001-6165-4196
https://orcid.org/0000-0001-6165-4196
https://orcid.org/0000-0001-6165-4196
https://orcid.org/0000-0001-6165-4196
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0001-9831-2202
https://orcid.org/0000-0001-9831-2202
https://orcid.org/0000-0001-9831-2202
https://orcid.org/0000-0001-9831-2202
https://orcid.org/0000-0001-9831-2202
mailto:huanghw28@mail.sysu.edu.cn
mailto:chenwuh@mail.sysu.edu.cn
mailto:zhzibin@mail.sysu.edu.cn
mailto:yuezhy6@mail2.sysu.edu.cn
mailto:pengxw3@mail2.sysu.edu.cn
mailto:held3@mail2.sysu.edu.cn
mailto:hndai@ieee.org
mailto:song.guo@polyu.edu.hk

Motivation. In the sharded blockchain, the blockchain
nodes are divided into a number of smaller committees [8],
each is also called a network shard. In each committee, local
consensus can be achieved with a set of designated transac-
tions using a specified consensus protocol such as Practical
Byzantine Fault Tolerance protocol (PBFT) [9]. Thus, the
sharded blockchain can improve the blockchain TPS by
exploiting the concurrent transaction processing in parallel
shards. Several representative examples of sharded block-
chain protocols include Elastico [8], Omniledger [10],
RapaidChain [11], and Monoxide [12].

In this paper, we consider the Unspent Transaction Out-
put (UTXO)-based transaction model. In the hash-based
sharded blockchains [8], [10], [11], imbalanced transaction
assignments in some committees can be induced either by
the abnormal transaction execution [13] or by a low-quality
even a malicious transaction assignment strategy [14].
Referring to Elastico [8], committees work on different dis-
joint sets of transactions assigned according to the commit-
tee ID. However, if a malicious transaction assignment
strategy [14] aims to create a blockchain shard with low-
speed transaction processing, the TPS of the entire block-
chain can be degraded drastically. For example, reference
[14] mentioned that a malicious transaction assignment
may strategically put a large number of transactions to a sin-
gle shard. Such a single-shard flooding attack [14] can be real-
ized through manipulating the hash value of transactions.

Specifically, the last s bits of a transaction’s hash specify
which committee ID that the transaction should be assigned
to. However, the attacker with enough UTXO addresses can
create a huge number of malicious transactions towards the
target shard. Let D be the ID of the target shard and A be
the set of attacker’s UTXO addresses. Hash function Hð�Þ
adopts SHA-256, and O is the set of attacker’s available
addresses that can be generated arbitrarily by public-private
key pair. Then, Eq. (1) in [14] shows how to generate mali-
cious transactions in a sharding blockchain consisting of 2s

shards: for TX:in 2 A

whileHðHðTXÞÞ& 0256�sk1s� � 6¼ DdoTX:out @ O; (1)

where @ denotes choosing a single element from the given
set O. In order to know the impact of such malicious trans-
action assignment. We implement the malicious TX-genera-
tion code given as Eq. (1) in Python and run the code using
12 operating-system threads on an AMD Ryzen 9 3900X 12-
core processor. When the number of shards is 16, the TX-
generation code can generate 8038886 TXs per second,
among which 502011 TXs can be assigned to the target
shard. Then, we conduct a group of simulations using 8 mil-
lion Bitcoin TXs by injecting them into the TX-sharding sys-
tem at the best fixed rates. Fig. 1a demonstrates the time-
varying queue size of the target shard under attacking in a
16-shard blockchain system. We evaluate the performance
of queue size while varying the the ratio of malicious TXs
from 0 to 0.5. The TX rate is fixed to 4000 TPS, which is the
best throughput of the 16-shard blockchain system. We
observe that the queue size of the shard under attacking
increases until all malicious TXs are injected. The results
show that a larger ratio of malicious TXs implies a faster
increase pace of the shard’s queue size. Then, Fig. 1b

illustrates the target shard’s queue size versus different
numbers of shards when the ratio of malicious TXs is fixed
to 20%. The results show that a larger number of shards are
more vulnerable in single-shard flooding attacks. In this
paper, we call such single-shard flooding attack the bursty-
TX injection attack.

In summary, the bursty-TX injection can bring a large-
size queue to a target blockchain shard, and thus cause a
large congestion in that shard. Therefore, a critical issue is
to maintain each shard in a stable status such that the imbal-
ance of transaction’s assignment can be quickly mitigated to
guarantee low transaction confirmation latency in the
shards suffering from the bursty-TX injection attack.

Challenges. We assume that the permissioned sharded
blockchain executes in a cloud platform, which is either
implemented in the local datacenter or rented from a popu-
lar cloud provider such as Alibaba cloud or Amazon cloud.
In the context of such permissioned blockchain, the malicious
transaction assignment strategy [14] may inject a large num-
ber of bursty transactions to some target shards. Further-
more, the resource budgets in a permissioned blockchain
are much more limited than that in a permissionless block-
chain. This is because the resources of a permissionless
blockchain (e.g., Bitcoin blockchain) are provided by a wide
range of miners all over the world. In contrast, the resources
in a cloud-based permissioned blockchain are provided by
the local datacenter or by the commercial cloud platform
provider. Thus, a challenge is how to maintain shards stable
in a resource-limited permissioned blockchain while taking
the threat of the bursty-TX injection attack into account.

On the other hand, although the existing state-of-the-art
blockchain sharding studies [8], [10], [11], [12] have pro-
posed a number of transaction-processing solutions in the
context of sharding-based blockchains, we still have not yet
found any available solutions to solving the stability issue
aforementioned. Therefore, a new strategy that can handle
the imbalanced transaction assignments occurred in the
shards of a permissioned blockchain is in an urgent need.
To this end, we formulate the congestion of the permis-
sioned sharded blockchain as the stability issue in a multi-
queue system. In this system, some shards may congest if
they are assigned a large number of transactions either by
the abnormal transaction execution [13] or by the malicious
transaction assignment strategy [14]. To alleviate the con-
gestion occurred in some shards, we adopt the Lyapunov
Optimization framework [15] to address the stability issue.
Our idea emphasizes on how to efficiently allocate block-
chain-network resources according to the observed status of
each shard’s Memory Pool (shorten as mempool), so as to

Fig. 1. The motivation examples: the impact of single-shard flooding
attacks [14] (also called bursty-TX injection attacks in this paper).

HUANG ET AL.: ELASTIC RESOURCE ALLOCATION AGAINST IMBALANCED TRANSACTION ASSIGNMENTS IN SHARDING-BASED... 2373

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 17,2022 at 08:51:25 UTC from IEEE Xplore. Restrictions apply.

minimize the operation cost while simultaneously keeping
the sharded blockchain stable.

Contributions. The contributions are stated as follows.

� In the PBFT-based permissioned blockchain, we
study how to allocate budget-limited network
resources to blockchain shards in an elastic manner,
such that the transaction processing can be main-
tained stable in those blockchain shards, under the
condition of imbalanced transaction assignments or
even under the bursty-TX injection attacks. We for-
mulate this problem using the Lyapunov Optimiza-
tion framework. We then devise a drift-plus-penalty
(DPP)-based algorithm striving for the near-optimal
resource-allocation solution.

� We rigorously analyze the theoretical boundaries of
both the system objective and the shard’s queue
length, while utilizing the proposed DPP algorithm.

� Finally, the numerical simulation results show that
the proposed DPP algorithm can maintain a fine-bal-
anced tradeoff between resource consumption and
queue stability. In particular, the DPP-based algo-
rithm can also well handle the bursty-TX injection
attack in two representative scenarios.

The rest of this paper is organized as follows. Section 2
reviews the state-of-the-art studies. Section 3 describes the
system model and problem formulation. Then, Section 4
depicts the proposed algorithm by exploiting the Lyapunov
Optimization framework. Section 5 shows the evaluation
results. Finally, Section 6 concludes this paper.

2 RELATED WORK

Transaction Processing. Several studies investigate the trans-
action processing of blockchains using queueing theory. The
representative studies are reviewed as follows. In [16], the
authors focus on how to develop queueing theory of block-
chain systems. They devised a Markovian batch-service
queueing system with two different service stages, i.e., the
mining process in the miners pool and the creation of a new
block. Besides, they adopted the matrix-geometric solution
to obtain stable condition of the system. Then, Ricci et al. [17]
introduced a simple queueing-theory model to show the
delay experienced by Bitcoin transactions. The proposed
model associates the delay of transactions with both transac-
tion fee and transaction value. Their result indicates that
users typically experience a delay slightly larger than the
residual lifetime of the total duration between block genera-
tions. Memon et al. [18] implemented the simulation of min-
ing process in Blockchain-based systems using queuing
theory. Kawase et al. [19] considered a queueing model with
batch service and general input to understand the stochastic
behavior of the transaction-confirmation process. In [20], the
authors applied Jackson networkmodel on thewhole Bitcoin
network where individual nodes operate as priority M/G/1
queueing systems. The usefulness of this model is demon-
strated by efficiently computing the forking probability in
Bitcoin blockchain. Although these previousworks reviewed
above adopted the traditional queueing theory to depict
transaction’s processing, they cannot offer available solu-
tions to handling the stability problem for network shards

when the bursty-TX injection attack occurs. In contrast, the
approach we propose in this paper utilizes the Lyapunov
optimization framework to resist the bursty-TX injection
attack for the permissioned sharded blockchain.

Sharding Protocols. Sharding is first proposed by [21] to
distribute data at global scale and support externally-consis-
tent distributed transactions of distributed databases and the
cloud infrastructure. This technology allows the network to
partition into different parts. Motivated by this distributed
design, several studies have discussed the intra-consensus
protocols of blockchains under the sharding mechanism. For
example, Luu et al. [8] first integrated sharding with the
blockchain to achieve a scale-out system called Elastico, in
which the capacity and throughput can be linearly propor-
tional to the number of shards while maintaining decentrali-
zation and security. Elastico is viewed as the first candidate
for a secure sharding protocol for permissionless block-
chains, thereby scaling up the agreement throughput near
linearly with the computational power of the network. It can
also tolerate byzantine adversaries, by controlling up to one-
forth computation capacity, in the partially synchronous net-
work. Then, Kokoris et al. [10] presented a sharding protocol
named OmniLedger, which ensures security and correctness
by using a bias-resistant public-randomness protocol for
choosing large and statistically representative shards to pro-
cess transactions, and by introducing an efficient cross-shard
commit protocol that atomically handles transactions affect-
ingmultiple shards. Zamani et al. [11] proposed RapidChain,
the first sharding-based public blockchain protocol that is
resilient to Byzantine faults from up to 1/3 of its participants,
and achieves a complete sharding of the communication,
computation, and storage overhead when processing trans-
actions without assuming any trusted setup. Wang et al. [12]
proposed Monoxide to maintain the simplicity of the block-
chain system and enhance the capacity by duplicating equal
and asynchronous zones, which work independently with
minimal coordination. In [22], the authors presented the
design of Chainspace which offers high scalability through
sharding across blockchain nodes using a novel distributed
atomic commit protocol named S-BAC, while offering high
auditability. Themost similarwork to this paper is the shard-
ing protocol proposed by Dang et al. [23]. In this work, aim-
ing to realize high transaction throughput at scale, the
authors proposed an efficient shard formation protocol, a
trusted hardware-based performance-improving solution,
as well as a general distributed transaction protocol. Com-
paring with [23], our study in this paper also strives for
improving the sharding protocol for the PBFT-based permis-
sioned blockchain. The difference is that the goal of [23] is to
achieve high transaction throughput by proposing a shard
formation protocol, while our work in this paper is towards
stable transaction processing through efficiently allocating
network resources to blockchain shards.

Resource Allocation. Several previous studies paid atten-
tion to the resource allocation of blockchain networks. For
example, Jiao et al. [24] considered deploying edge comput-
ing services to support the mobile blockchain. The authors
proposed an auction-based resource-allocation mechanism
for the edge-computing service provider. Luong et al. [25]
developed an optimal auction by exploiting the deep learn-
ing technique for the edge-resource allocation in the context

2374 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 17,2022 at 08:51:25 UTC from IEEE Xplore. Restrictions apply.

of mobile blockchain networks. Fang et al. [26] proposed a
queue-based analytical model to solve the resources alloca-
tion problem in PoW-based blockchain networks. These
previous works focus on the resource allocation for tradi-
tional blockchain networks. In contrast, the resource-alloca-
tion model we propose in this paper aims at the PBFT-
based permissioned sharded blockchain by exploiting the
queuing-based theory. More importantly, the proposed
resource-allocation mechanism can particularly maintain
the stability for each network shard.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 Sharding-Based Permissioned Blockchain

Suppose that an enterprise needs to build a permissioned
blockchain using the sharding technique. All blockchain
nodes are executing in a local cloud platform. Those block-
chain nodes are managed using sharding protocol, in which
the local consensus is achieved by exploiting PBFT protocol.
Thus, the natural goals of operating such a permissioned
blockchain include: to keep the blockchain stable while
processing transactions, and to consume the minimum
resources while maintaining the local cloud platform. The
cloud resources mainly include the computer power mea-
sured in the number of CPU cores, the network bandwidth,
as well as the storage space provided by the cloud-platform
virtual machines.

As shown in Fig. 2, the transaction-sharding protocol
mainly includes the following stages: i) the blockchain net-
work is divided into different committees (or called net-
work shards); ii) each committee then independently
processes different sets of assigned transactions in parallel
to achieve a high throughput of transaction processing; and

iii) collation blocks are aggregated to perform the final
PBFT towards the formation of a new block on the main
chain. Referring to the classic blockchain sharding protocol
[8], the computing power is mainly used to perform the
PoW-based committee formation, while the network band-
width is exploited to run the PBFT consensus protocol for
generating new blocks.

3.2 Blockchain Shards

In a sharding-based blockchain network, several groups of
transactions are allocated to different network shards for
processing. The blocks generated in each shard chain are
called collation blocks, which are verified by all miners (also
called collators) in this shard. The collators of each shard are
selected by the block validator in the entire blockchain net-
work through validator manager contract (VMC) [27],
which is the core of a sharding mechanism.

Each shard holds a memory, i.e., the local mempool in
each shard, where the arrived transactions are stored tenta-
tively and waiting to be processed by the committee. When
a new transaction is assigned to a network shard, it will be
validated by the committee node that the transaction first
arrives at. After validation, this transaction will be stored in
the mempool and then be broadcast to other committee
nodes; otherwise, the transaction will be rejected. At the
beginning of each epoch, the miners in a network shard will
select a set of transactions from the local mempool to gener-
ate a collation block. When a miner wins the mining in each
epoch, it will broadcast the new collation block to its com-
mittee peers, which then validate the new block. After-
wards, the new block will be added to the shard’s collation
chain and all the transactions contained in this collation
block will be removed from the local mempool of this shard.

3.3 Arrived Transactions in Each Network Shard

Under the same UTXO-based transaction model presented
in [8], [10], [11], we consider that committees (network
shards) work on disjoint sets of transactions. In each net-
work shard, since the propagation time for spreading new
transactions is much shorter than the time spending on
achieving consensus towards the collation block, the propa-
gation time of new transactions is negligible in our system
model. Thus, new transactions are viewed as that they
arrive at all committee nodes within a network shard simul-
taneously. After transaction’s propagation, all committee
nodes in this shard share the same set of transactions. That
is, they hold the identical view of the local mempool. There-
fore, the mempool can be viewed as a single-server queue
which stores the assigned transactions waiting to be proc-
essed by the multiple nodes in the shard. In this queueing
model, transactions arrive randomly following a Poisson
distribution. When being packed to a collation block, the
transactions contained in the block will be removed from
the mempool. We call this removing action the transaction’s
dequeueing. In each epoch, all committee members gener-
ate a new collation block when they reach an agreement
based on the PBFT consensus protocol. Every shard’s queue
represents the condition of the local mempool. Based on the
queueing model aforementioned, a blockchain sharding
network can be viewed as a multi-queue system shown in
Fig. 3.

Fig. 2. A PBFT-based sharded permissioned blockchain, in which trans-
actions are assigned to different committees (network shards) according
to their hash values.

HUANG ET AL.: ELASTIC RESOURCE ALLOCATION AGAINST IMBALANCED TRANSACTION ASSIGNMENTS IN SHARDING-BASED... 2375

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 17,2022 at 08:51:25 UTC from IEEE Xplore. Restrictions apply.

3.4 Threat Model of Bursty-TX Injection Attack

Blockchain is typically implemented using conventional
hardware, software and networks. Even a theoretically
secure blockchain sharding protocol can be vulnerable to
various attacks. Similar to the single-shard flooding attack
presented in [14], we consider that the hash-based transac-
tion assignment strategy could be malicious. In most hash-
based sharded blockchains [8], [10], [11], the several ending
bits of a transaction decide which network shard to place.
Through manipulating the transaction’s hash, the malicious
transaction assignment strategy can inject a large-volume
bursty transactions in a target shard at a specified epoch.
The large amount of transactions injected to a target shard
can cause the effect of denial-of-service (DoS) attack [28] in
the target. When such an attack occurs, the transactions sub-
mitted by blockchain users may congest in the shard’s mem-
pool. Thus, the service quality of the blockchain system
degrades drastically, because the user’s transactions suffer
from large confirmation latency in the shard under attack.
Especially in the context of transaction-sharding protocol
like Elastico [8], the target shard suffered from such bursty-
TX injection attack can delay the generation of the local col-
lation block, and then postpone the creation of the final
block in the main chain.

3.5 Problem Formulation

We consider that the permissioned sharded blockchain
studied in this paper runs in a time-slotted environment.
All timeslots are indexed by t 2 0; 1; 2; 3; . . .f g, and the
length of a timeslot is longer than the time of forming a col-
lation block. We summarize important symbols and nota-
tions in Table 1. Let I ¼ 1; 2; 3; . . . ; Nf g be the set of
mempool queues, thus each queue is indexed by i 2 I.
Then, K denotes the number of all types of aforementioned
resources that can be allocated to the permissioned sharded
blockchain.

We then use a vector piðtÞ , ½p1i ðtÞ; p2i ðtÞ; p3i ðtÞ; . . . , pKi ðtÞ�
to represent the total resources that can be allocated to shard
i 2 I at timeslot t. Note that, pki ðtÞ, k 2 ½K�, denotes the

amount of the kth resource invested on the shard i 2 I to
generate a collation block in timeslot t 2 T . Each type of the
kth resource has a maximum budget denoted by Pk

max. In
order to represent the significance of each type of resources,
we devise a weight vectorw , ½w1; w2; w3; . . . ; wK �, where wk

indicates the weight of the kth resource.
In every timeslot t 2 T , we assume that BiðtÞ is the

amount of transactions (TXs) processed by shard i 2 I. The
value of BiðtÞ is closely associated with the allocated
resource piðtÞ. Referring to [26], the data amount processed
by shard i 2 I at timeslot t is calculated as follows:

BiðtÞ ¼
XK
k¼1

wkp
k
i ðtÞ

� �a
; 8i 2 I; t 2 T; (2)

where a 2 ½0; 1� is a normalized parameter associatedwith the
consensus speed of the PBFT protocol. In reality, a could be
the normalized degree of network connectivity in a peer-to-
peer blockchain network. The larger a is, the easier a collation
block is generatedwith the given same amount of resources.

At the beginning of a timeslot, a set of TXs will be
assigned to each network shard. The TXs arrived in shard
i 2 I at timeslot t 2 T are denoted by AiðtÞ. Afterwards, the
committee nodes in the shard will choose a subset of TXs
from the local mempool to participate in the consensus pro-
cess. The verified transactions will be packed into a new col-
lation block. Then, we use QiðtÞ to represent the queue
length of shard i in the beginning of timeslot t. Thus, the
queue-length evolution can be expressed as

Qiðtþ 1Þ ¼ maxfQiðtÞ �BiðtÞ þAiðtÞ; 0g; 8i 2 I; t 2 T: (3)

On the other hand, to represent the investment cost on
the consensus of the sharded permissioned blockchain, we
define ciðtÞ as the numerical resource consumption by the

Fig. 3. Multi-queue model and the bursty-TX injection attack in the
sharded blockchain.

TABLE 1
Symbols and Notations

I the set of queues, jIjð¼ NÞ represents the size of I
T the set of all timeslots, t 2 T
K the # of all types of resources, k 2 1; 2; 3; . . . ;Kf g
piðtÞ the vector of resources allocated for shard i 2 I at t
pki ðtÞ the kth resource allocated to shard i 2 I at timeslot t
Pk
max the budget of the kth resource

wk the weight of the kth resource
QðtÞ vector of actual queues,QðtÞ ¼

Q1ðtÞ; Q2ðtÞ; . . . ; QNðtÞ½ �
QiðtÞ the queue length of shard i 2 I at timeslot t
AiðtÞ the arrival transactions of queue i 2 I at timeslot t
BiðtÞ the dequeued transactions of queue i 2 I at timeslot

t
R the reward to measure each unit of dequeued data
V the parameter measuring the weight of penalty
a the parameter reverse to the consensus difficulty
LðQðtÞÞ the Lyapunov function ofQðtÞ
DðQðtÞÞ the Lyapunov drift, DðQðtÞÞ ¼ LðQðtþ 1ÞÞ �

LðQðtÞÞ
ZðtÞ vector of virtual queues, ZðtÞ ¼

Z1ðtÞ; Z2ðtÞ; . . . ; ZKðtÞ½ �
zkðtÞ the increment arrived in virtual queue k at timeslot

t
QðtÞ the concatenated vectorQðtÞ ¼ ½QðtÞ;ZðtÞ�

2376 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 17,2022 at 08:51:25 UTC from IEEE Xplore. Restrictions apply.

network shard i 2 I in timeslot t 2 T

ciðtÞ ¼
XK
k¼1

pki ðtÞ; 8i 2 I; t 2 T: (4)

Objectives of Blockchain-Network Operator. From the view-
point of the operator of a permissioned sharded blockchain,
the objectives are twofold: (i) to pursue a high speed of TX
processing, and (ii) to lower the operating cost in terms of
resource consumption during the TX processing. Those two
objectives seem conflict with each other. The operator has to
maximize the payoff of transaction processing while using a
limited amount of resources. To integrate those two conflict
goals together, we devise a penalty function penðtÞ, which is
calculated by the total resource consumption defined in
Eq. (4) minus the TX-processing payoff. To measure the
payoff while processing a unit of data dequeued from BiðtÞ,
we also define a constant R as the TX-processing reward
parameter. Here, we clarify the simplification to measure
each transaction equally as the reward parameter R when
calculating the payoff of dequeued transactions. This is
because the unique value of each transaction is blind to the
proposed resource-allocation method. Only the number of
transactions in each shard can be observed by the proposed
method taking the transaction’s privacy into account in the
context of permissioned blockchain. Therefore, our system
model treats every transaction equally and calculates the
payoff of transaction’s processing using the constant reward
parameter R. In practice, R can be configured according to
the empirical preference of the blockchain network opera-
tor, when he/she defines the relative weights of two penalty
terms ciðtÞ and BiðtÞ. Then, the penalty function can be writ-
ten as follows:

penðtÞ ¼
XN
i¼1

ciðtÞ �BiðtÞ �R½ �

¼
XN
i¼1

XK
k¼1

pki ðtÞ �R �
XN
i¼1

XK
k¼1

wkp
k
i ðtÞ

� �a
; 8t 2 T: (5Þ

Recall that a sharded permissioned blockchain network
can be viewed as a multi-queue system as shown in Fig. 3.
Besides the objective to minimize the penalty defined in
Eq. (5), the network operator also intends to guarantee that
each shard queue is in a stable condition during a long
period, even under the large-volume bursty-TX injection
attack. Using the notion of queue stability defined in [15], the
multi-queue system is strongly stable if it satisfies

lim
t!1

1

t
� 1
N

Xt�1
t¼0

XN
i¼1

E QiðtÞf g < 1: (6)

The basic idea to prove the Eq. (6) is that in a multi-queue
system, the assigned TXs in each queue will not be accumu-
lated to infinity in the long run. Therefore, to keep the
multi-queue system stable, each shard needs to process the
TXs arrived in the queue with sufficient allocated resources.
In this way, every TX assigned to this network shard can be
processed in time. With the objective function and the con-
straints described above, we propose the following resource

allocation problem for the sharded permissioned blockchain
network

min pen

s:t:
XN
i¼1

pki ðtÞ � Pk
max; 8k 2 ½K�; t 2 T:

Queue stability depicted by Ineq. (6):

Var : piðtÞ; 8i 2 I; t 2 T: (7Þ

In next section, we design an adaptive resource allocation
algorithm that can find a near-optimal solution to problem (7).

4 DYNAMIC RESOURCE-ALLOCATION ALGORITHM

To address the proposed resource-allocation problem (7) in
the context of maintaining the stability of the multi-queue
sharded permissioned blockchain, we design a dynamic
resource-allocation algorithm using the stochastic Lyapu-
nov optimization technique [15]. In practice, the proposed
algorithm can execute in the same manner of the sharding
protocol.

4.1 Algorithm Design

Since the PBFT-based sharded blockchain is viewed as a
queueing system with N > 0 queues, we define QðtÞ ¼
Q1ðtÞ; Q2ðtÞ; . . . ; QNðtÞ½ � as the vector of queue backlogs of
all network shards. To quantitatively measure the size of the
vector QðtÞ, a quadratic Lyapunov function LðQðtÞÞ is defined
as follows:

LðQðtÞÞ , 1

2

XN
i¼1

QiðtÞ2; 8t 2 T: (8)

We then define a one-timeslot conditional Lyapunov drift
DðQðtÞÞ as follows:

DðQðtÞÞ , LðQðtþ 1ÞÞ � LðQðtÞÞ; 8t 2 T: (9)

This drift is in fact the change in the Lyapunov function
(8) over one timeslot. Suppose that the current queue state
in timeslot t isQðtÞ, we have the following lemma.

Lemma 1 (Lyapunov Drift). Given the quadratic Lyapunov
function (8), and assuming LðQð0ÞÞ < 1, for arbitrary non-
negative constants B > 0 and � > 0, the following drift con-
dition holds:

lim
t!1

1

t
�
Xt�1
t¼0

XN
i¼1

E QiðtÞf g < B=�: (10)

Lemma 1 tells that if the drift condition Eq. (10) holds
with � > 0, then all queues are strongly stable with the
queue backlog bounded by B=�. The proof of lemma 1 fol-
lows the same routine shown in [15], we omit the proof
detail because of the space limitation.

Next, we need to handle the first constraint of problem
(7) to ensure that the total consumption of the kth resource
should be restricted by the budget Pk

max. To solve this issue,
we transform the inequality constraints into a queue

HUANG ET AL.: ELASTIC RESOURCE ALLOCATION AGAINST IMBALANCED TRANSACTION ASSIGNMENTS IN SHARDING-BASED... 2377

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 17,2022 at 08:51:25 UTC from IEEE Xplore. Restrictions apply.

stability problem. By defining virtual queues ZkðtÞ for all
k 2 ½K�, the update equation of ZkðtÞ is written as

Zkðtþ 1Þ ¼ maxfZkðtÞ þ zkðtÞ; 0g; 8k 2 ½K�; t 2 T; (11)

where zkðtÞ ¼
PN

i¼1 p
k
i ðtÞ � Pk

max; 8k 2 ½K�; t 2 T . The initial
length of the virtual queue Zkð0Þ; 8k 2 ½K� is 0.

Insight. Eq. (11) indicates that Zkðtþ 1Þ � ZkðtÞ � zkðtÞ. By
summing the inequality above over timeslots t ¼ 0; 1; . . . ; T �
1, and dividing both sides by T , we have ZkðT Þ�Zkð0Þ

T �
1
T

PT�1
t¼0 zkðtÞ. With Zkð0Þ ¼ 0, take expectation on both sides

and let T !1, the result is limsupT!1
E ZkðT Þf g

T � limsupT!1
zkðtÞ, where zkðtÞ is the time-average expectation of zkðtÞ. If
virtual queue ZkðtÞ is mean-rate stable, we get limsupT!1
zkðtÞ � 0, which implies that the constraint of resource restric-
tion in problem (7) is satisfied.

With the objective to maintain both the actual and virtual
queues, we combine both of them to devise a concatenated
vector QðtÞ ¼ ½QðtÞ;ZðtÞ�, which can be updated using both
Eqs. (3) and (11). Then, the Lyapunov function of QðtÞ is
defined as

LðQðtÞÞ , 1

2

XN
i¼1

QiðtÞ2 þ 1

2

XK
k¼1

ZkðtÞ2; t 2 T: (12)

If we successfully make LðQðtÞÞ maintain a small value
for each timeslot t, both the actual queues QðtÞ and virtual
queues ZðtÞ can be “squeezed” to a small space of queue
backlogs. In the following, we present how to achieve such
the goal using the technique of Lyapunov drift [15].

Lemma 2 (Optimality Over Resource Allocation). Let
p� ¼ p�1;p

�
2;p

�
3; . . . ;p

�
N

� �
be the optimal resource allocation

solution to problem (7). Suppose the sharded blockchain system
satisfies the boundedness assumptions[15] and the law of large
numbers. If the problem is feasible, then for any d > 0, there
exists a stationary randomized policy that makes the resource
allocation depend only on the state of multi-queue system, such
that penðtÞ < pen�ðtÞ þ d and AiðtÞ < BiðtÞ, where

pen�ðtÞ ,
XN
i¼1

c�i ðtÞ �B�i ðtÞ � R
� �

; 8t 2 T: (13)

The proof of Lemma 2 is given in [15]. The next step is to
minimize a concatenated vector DðQðtÞÞ, which is defined
as the Lyapunov drift of QðtÞ, and DðQðtÞÞ ¼ LðQðtþ 1ÞÞ �
LðQðtÞÞ. It should be noticed that minimizing the Lyapunov
drift of QðtÞ would enforce queues towards a lower conges-
tion. However, only focusing on the drift part may incur a
large penalty penðtÞ. Thus, we then propose a dynamic
resource allocation algorithm based on the drift-plus-penalty
(DPP) technique [15] to maintain the stability of a multi-
queue blockchain system, and to minimize penðtÞ simulta-
neously. To achieve the goal, we integrate the penalty func-
tion into the Lyapunov drift DðQðtÞÞ. In every timeslot t, we
try to minimize the following drift-plus-penalty:

DðQðtÞÞ þ V � penðtÞ

¼ DðQðtÞÞ þ V �
XN
i¼1

ciðtÞ �BiðtÞ �R½ �; 8t 2 T; (14Þ

where V is a weight parameter representing how much we
emphasize on minimizing the penalty penðtÞ. When V ¼ 0,
the objective is to minimize the drift alone. Thus, to provide
guarantees on penðtÞ, we consider V > 0, which indicates a
joint optimization taking both the system stability and the
resource consumption into account.

Lemma 3 (Drift Boundary). The boundary of the drift-plus-
penalty expression shown in Eq. (14) satisfies

DðQðtÞÞ þ V �
XN
i¼1

ciðtÞ �BiðtÞ �R½ �

� Bþ V �
XN
i¼1

ciðtÞ �BiðtÞ � R½ �

þ
XN
i¼1

QiðtÞ AiðtÞ �BiðtÞ½ �

þ
XK
k¼1

ZkðtÞzkðtÞ; 8t 2 T; (15Þ

where the positive constant B exists and is bounded by:

B � 1

2

XN
i¼1

E AiðtÞ2 þBiðtÞ2jQðtÞ
n o

þ 1

2

XK
k¼1

E zkðtÞ2jQðtÞ
n o

�
XN
i¼1

E minfQiðtÞ; BiðtÞg �AiðtÞjQðtÞf g:

Proof. Exploiting the definition of Lyapunov drift, we have

DðQðtÞÞ ¼ LðQðtþ 1ÞÞ � LðQðtÞÞ

¼ 1

2

XN
i¼1

Qiðtþ 1Þ2 �QiðtÞ2
h i

þ 1

2

XK
k¼1

Zkðtþ 1Þ2 � ZkðtÞ2
h i

�
ðaÞ 1

2

XN
i¼1

QiðtÞ �BiðtÞ þAiðtÞ½ �2�QiðtÞ2
n o

þ 1

2

XK
k¼1

ZkðtÞ þ zkðtÞ½ �2�ZkðtÞ2
n o

¼
XN
i¼1

1

2
AiðtÞ �BiðtÞ½ �2þQiðtÞ AiðtÞ �BiðtÞ½ �

� �

þ
XK
k¼1

1

2
zkðtÞ2 þ ZkðtÞzkðtÞ

� �

� Bþ
XN
i¼1

QiðtÞ AiðtÞ �BiðtÞ½ �

þ
XK
k¼1

ZkðtÞzkðtÞ; 8t 2 T;

where the inequation (a) follows from Eqs. (3) and (11).
When adding V �PN

i¼1 ciðtÞ �BiðtÞ �R½ � on both sides of
the above derivation, the Eq. (15) holds. tu
Because the arrival new TXs AiðtÞ in timeslot t is inde-

pendent of QðtÞ, minimizing the right-hand-side (RHS) of

2378 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 17,2022 at 08:51:25 UTC from IEEE Xplore. Restrictions apply.

Eq. (15) for each timeslot t is equalized to solving the origi-
nal optimization problem (7). Thus, we expand the RHS of
Eq. (15) and rearrange the objective as

min CðpiðtÞÞ
Var : piðtÞ; 8i 2 I; t 2 T; (16Þ

where CðpiðtÞÞ ¼
PN

i¼1
PK

k¼1ðZkðtÞ þ V Þpki ðtÞ � ðQiðtÞ þVRÞ
½wkp

k
i ðtÞ�a.

Note that, problem (16) is a linear programming and
CðpiðtÞÞ is a convex function, through partially differentiat-
ingCðpiðtÞÞ by pki ðtÞ and rearranging terms, then we get

@CðpiðtÞÞ
@pki ðtÞ

¼ ZkðtÞ þ V � aðwkÞaðQiðtÞ þ VRÞ½pki ðtÞ�a�1: (17)

From Eq. (17) we can find a real-numbered valley point

pki ðtÞ ¼
ffiffi½p
a� 1� ZkðtÞþV

aðwkÞa QiðtÞþVR½ � (8i 2 I; 8k 2 ½K�), which is the

optimal resource allocation solution to the optimization
problem (7). Then, given Eq. (17), the DPP-based resource-
allocation algorithms are presented as Algorithms 1 and 2.

Algorithm 1. Drift-Plus-Penalty Resource Allocation

Input: T , V , R, a
Output: piðtÞ, 8i 2 I, t 2 T

1 Qð0Þ ;;Zð0Þ ;;
2 for 8t 2 T do
3 Invoking Algorithm 2 (t;QðtÞ;ZðtÞ; V;R;a) to get the opti-

mal resource allocation piðtÞ, 8i 2 I.
4 Update the actual and virtual queuesQðtÞ and ZðtÞ accord-

ing to Eqs. (3) and (11), respectively.

Algorithm 2. Resource Allocation Per Timeslot

Input: t;QðtÞ;ZðtÞ; V; R;a
Output: piðtÞ, i 2 I

1 for 8i 2 I; 8k 2 ½K� do
2 pki ðtÞ

ffiffi½p
a� 1� ZkðtÞþV

aðwkÞa QiðtÞþVR½ �.

4.2 Algorithm Analysis

In this section, we analyze the performance guarantee of the
proposed DPP-based algorithm.

4.2.1 Upper Bound of System Objective

First, Theorem 1 tells that the proposed DPP algorithm can
ensure the system objective guaranteed within an O(1=V)
distance to that of the optimal solution to problem (7).

Theorem 1. Suppose that problem (7) is feasible and there exists
an optimal resource allocation solution which can obtain an opti-
mal value pen�, and LðQð0ÞÞ < 1. For any V > 0, the time-
average penalty yielded by the proposed Algorithm 1 satisfies

lim
t!1 sup

1

t

Xt�1
t¼0

XN
i¼1

ciðtÞ �BiðtÞ �R½ � � pen� þ B

V
; (18)

where B is depicted in Lemma 3.

Proof. Integrating the result of Lemma 2 into the RHS of
Eq. (15), and let d! 0, we have

DðQðtÞÞ þ VpenðtÞ

� Bþ V � pen� þ
XN
i¼1

QiðtÞ AiðtÞ �BiðtÞ½ �

þ
XK
k¼1

ZkðtÞzkðtÞ; (19Þ

where DðQðtÞÞ ¼ LðQðt þ 1ÞÞ � LðQðtÞÞ.
Taking expectations on both sides, and summing the

Eq. (19) over t 2 0; 1; . . . ; t� 1f g, it yields

E LðQðtÞÞf g � E LðQð0ÞÞf g þ V
Xt�1
t¼0

penðtÞ

� B � tþ Vt � pen� þ E
Xt�1
t¼0

XN
i¼1

QiðtÞ AiðtÞ �BiðtÞ½ �
()

þ E
Xt�1
t¼0

XK
k¼1

ZkðtÞzkðtÞ
()

: (20Þ

Eq. (3) implies that QiðtÞ � 0. Referring to Theorem
4.5 of [15] and the requirement of system stability, we
have E AiðtÞf g � E BiðtÞf g � 0. Eq. (11) secures ZkðtÞ �
0. Since zkðtÞ denotes the inequality constraint in problem
(7), we have E zkðtÞf g � 0. The Lyapunov function
LðQðtÞÞ � 0 is due to Eq. (12). With those inequalities
illustrated above, rearranging the terms of Eq. (20) and
dividing both sides by V � t, we have

1

t

Xt�1
t¼0

penðtÞ � pen� þ B

V
þ E LðQð0ÞÞf g

V � t : (21)

Then, taking a limsupt!1 and invoking Eq. (5), the
conclusion of Theorem 1 holds. tu

4.2.2 Upper Bound of the Queue Length of Shards

In this part, we analyze the congestion performance (mea-
sured in queue length) of network shards when adopting the
proposed Algorithm 1. First, we give Assumption 1.

Assumption 1 (Slater Condition [15]). For the expected
arrival rates AiðtÞ and process rates BiðtÞ, there exists a con-
stant � > 0, which satisfies E AiðtÞf g � E BiðtÞf g � ��.
We see that such Slater Condition [15] is related to the

system stability. Using this condition, we then have the fol-
lowing theoretical upper bound of queue length.

Theorem 2. If problem (7) is feasible and Assumption 1 holds,
then the proposed Algorithm 1 can stabilize the multi-queue
blockchain system, and the time-average queue length
satisfies

lim
t!1 sup

1

t

Xt�1
t¼0

XN
i¼1

E QiðtÞf g � Bþ V ðpen� � penminÞ
�

;

where B is defined in Lemma 3 and penmin is the minimum
resource consumption yielded by all the feasible solutions.

HUANG ET AL.: ELASTIC RESOURCE ALLOCATION AGAINST IMBALANCED TRANSACTION ASSIGNMENTS IN SHARDING-BASED... 2379

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 17,2022 at 08:51:25 UTC from IEEE Xplore. Restrictions apply.

Proof. Referring to Eq. (20), we separate the actual queues
apart from the inequation. Given LðQðtÞÞ � 0, we have

� E LðQð0ÞÞf g þ V
Xt�1
t¼0

penðtÞ

� B � tþ Vt � pen� þ E
Xt

t¼0

XN
i¼1

QiðtÞ AiðtÞ �BiðtÞ½ �
()

:

Exploiting Assumption 1, we then have

� E LðQð0ÞÞf g þ V
Xt�1
t¼0

penðtÞ

� B � tþ Vt � pen� �
Xt

t¼0

XN
i¼1

QiðtÞ�:

Rearranging terms and dividing both sides by t � �, we
get

1

t

Xt

t¼0

XN
i¼1

QiðtÞ

� B � tþ E LðQð0ÞÞf g þ Vt � pen� � V
Pt�1

t¼0 penðtÞ
t � �

� Bþ V ðpen� � penminÞ
�

þ E LðQð0ÞÞf g
t � � :

Finally, we take a limsup as t!1 to conclude the proof.tu
Insights. Theorems 1 and 2 show that the proposed DPP-

based algorithm has an O(1=V) 	 O(V) tradeoff between
resource consumption and queue-length performance. As the
TX processing delay is proportional to the queue’s length,
thus the proposed algorithm can make a fine-balanced cost-
delay tradeoff for the permissioned sharded blockchain.

5 PERFORMANCE EVALUATION

In this section, we conduct numerical simulations to evalu-
ate the proposed DPP Res. Allocation algorithm in the con-
text of PBFT-based sharded permissioned blockchain.

5.1 Basic Settings for Numerical Simulation

In simulations, the sharded blockchain network consists of a
varying number ofN network shards.

Dataset. For simulations, we generate numerical synthe-
sized transaction dataset as the arrived TXs AiðtÞ for each
network shard i 2 I at each timeslot t 2 f1; 2; . . . ; 1000g
timeslots. The integer value of AiðtÞ is randomly distributed
within the range [5, 25].

Resources. Network shards consume the cloud-platform
resources to strive for consensus. We consider two types of
resources in our simulation. The first type is the computing
power (measured in the # of CPU cores). The second type is
the network bandwidth, measured in Kbit/Second (Kb/s).
Recall that we have mentioned that the computing
power is mainly for committee formation and the network
bandwidth is for PBFT consensus in Section 3.1. The
weights of those two resources are variable depending on
different network configurations. How to set the weights of
different resources is not the focus of this paper. Thus, we

set the weights of the two types of resources to 5 and 3,
respectively. Other weight settings can be also evaluated
similarly and thus omitted.

Other Parameters.We then fix R=5 to denote the reward of
dequeueing each unit of TX data. The consensus parameter
a for all network shards is set to 0.5. The total simulation
duration is set as 1000 timeslots.

5.2 Metrics

To compare the performance of algorithms, we focus on the
following metrics.

� Queue Length. The backlog of each queue which rep-
resents the number of unprocessed TXs in the mem-
pool of each shard.

� Computing-Power Consumption. The consumption of
computing-power for the all shards spending on
processing TXs in each timeslot.

� Network Bandwidth Consumption. The bandwidth con-
sumption for all network shards to process TXs
waited in mempool per timeslot.

5.3 Baselines

We consider the following baselines for the comparison
with the proposed algorithm.

� Top-S Res. Allocation [29]. This baseline equally allo-
cates each type of resource to the queues that locate
in the top-S percentage of all network shards with
respect to (w.r.t) their queue length.

� Longest-First Res. Allocation [30]. This baseline always
allocates each type of resource to the queue that has
the longest queue among all network shards w.r.t
their queue length.

� Average Res. Allocation. This strategy allocates each
type of available resources to all network shards on
average at each timeslot.

� Random Res. Allocation. The last baseline allocates each
type of available resources with a random amount to
every network shard at each timeslot.

5.4 Performance Analysis

5.4.1 Effect of Tuning Parameter V

The first group of simulations evaluates the effect of param-
eter V . First, we fix N ¼ 4 and set V to 50, 100, and 150 in
different executing cases. In addition, to study the effect of
dynamically tuning parameter V , we also implement a
codebook-based method referring to [31]. In such code-
book-based approach, V is adaptively varied within the
range [50, 150] according to the changes of shard’s queue
backlog and the resource consumption. The goal is to main-
tain a balanced trade-off between those two objective terms.
For example, when the queue length of shards is observed
too large, V is tuned to a small value accordingly. When too
many resources are consumed by network shards, V is then
tuned to a large value. For all network shards, the total com-
puting-power budget and the total network bandwidth
budget are set to 200 CPUs and 100 Kb/s, respectively.
From Figs. 4a, 4b and 4c, we can observe that the proposed
DPP Res. Allocation can stabilize all queues of network
shards, since the length of 90% of all queues is within 40

2380 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 17,2022 at 08:51:25 UTC from IEEE Xplore. Restrictions apply.

while varying the parameter V . Second, the virtual-queue
technique can keep the two types of resources under their
given individual budgets. Finally, we find that a larger V
leads to a lower resource-consumption in terms of both
computing-power and network bandwidth consumption.
Thus, the resource consumption illustrates an O(1=V) ratio.
However, a large V increases the queue length and thus
causes larger waiting latency for TXs. Therefore, the queue
length shows an O(V) ratio. Those observations match the
insights disclosed in the end of Section 4.2. In contrast, the

codebook-based method has a similar resource-consump-
tion performance with other cases under fixed V , but yields
a more narrow range of queue length than other three cases.
In conclusion, the tradeoff between the resource consump-
tion and the queueing delay of TXs should be made care-
fully by tuning the parameter V .

5.4.2 Performance Comparison With Baselines

Through Fig. 5, we compare the proposed DPP Res. Alloca-
tion algorithm with the three baselines aforementioned. The

Fig. 4. Performance evaluation while varying parameter V .

Fig. 5. Performance comparison with baseline algorithms.

HUANG ET AL.: ELASTIC RESOURCE ALLOCATION AGAINST IMBALANCED TRANSACTION ASSIGNMENTS IN SHARDING-BASED... 2381

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 17,2022 at 08:51:25 UTC from IEEE Xplore. Restrictions apply.

budgets of computing-power and network bandwidth
resources are set to 5000 CPUs and 2500 Kb/s, respectively.
The number of network shards varies from 5 to 100. For the
Top-S Res. Allocation, we set S to 50%.

Interestingly, from Fig. 5a, we observe that when the
shard number is smaller than 100, Top-S Res. Allocation has
the similar queue length as the proposedDPP Res. Allocation
does. However, when the shard number reaches 100, the
Top-S Res. Allocation strategy cannot maintain the stable
queue length anymore, because the the Top-S strategy only
focuses on allocating resources for the queues that locate at
the top S percentage of all w.r.t queue length. When the
number of network shards grows large, the resources are
not able to fulfill the requirement of maintaining short
queues for network shards. As for the Longest-First Res. Allo-
cation, it can only maintain stable queue length when the
number of shards is less than 10. When the number of
shards exceeds 15, the average queue length of Longest-First
Res. Allocation soars to about 700. Therefore, this strategy
fails to guarantee a stable queue length. The reason is that
this baseline allocates all available resources to the longest
queue every timeslot. Thus, other queues are ignored, mak-
ing the average queue length grows sharply.

On the other hand, when the number of shards is less
than 50, Random Res. Allocation yields a shorter queue

length than DPP Res. Allocation. This is because Random
Res. Allocation can provide sufficient required resources to
all network shards with the given budgets. However,
once the number of shards exceeds 50, the average queue
length indicated by Random Res. Allocation increases dras-
tically from 20 to 780, as shown in Fig. 5a. Since the queue
length grows exponentially under the Random Res. Alloca-
tion strategy when the number of shards increases, its
low resource-consumption properties shown in Figs. 5b
and 5c are meaningless.

In the case of Average Res. Allocation strategy, we see that
the queue length is even lower than that of Random Res. Allo-
cation when the number of shards is small, and still main-
tains a very low level when the blockchain has 100 network
shards. However, such low-level queue length is achieved
by supplying all the available resources (i.e., the full com-
puting-power budget shown in Fig. 5b and the full net-
work-bandwidth budget shown in Fig. 5c) to all network
shards. Therefore, the Average Res. Allocation strategy cannot
achieve a balance between resource consumption and
queue’s stability.

In contrast, the proposed DPP Res. Allocation algorithm
can always maintain a stable queue length shown in Fig. 5a
when the number of shards varies from 5 to 100. Also,
Figs. 5b and 5c demonstrate that DPP Res. Allocation

Fig. 6. Performance evaluation under the continued bursty-TX injection attack against all network shards.

2382 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 17,2022 at 08:51:25 UTC from IEEE Xplore. Restrictions apply.

requires a linearly-growing resource consumption when the
number of shards increases from 5 to 100. Even though
when the shard number reaches 100, the average resource
consumption of DPP Res. Allocation is still lower than that of
the other three baselines including Top-S, Longest-First and
Average Res. Allocation.

Regarding throughput (calculated by the total # of
dequeued TXs in each timeslot), Fig. 5d shows that when
the shard number is less than 15, five strategies have sim-
ilar throughput. However, when the number of shards
exceeds 50, the throughput of Longest-First Res. Allocation
is significantly lower than other four baselines. The rea-
son is that Longest-First Res. Allocation only serves the
shard having the most congested memory pool whenever
the shard number varies. When the shard number reaches
100, the throughput of the proposed DPP Res. Allocation is
higher than that of Top-S and Random Res. Allocation
schemes, and is similar to that of Average Res. Allocation.
Considering the throughput performance shown in
Figs. 5b and 5c, it’s not hard to see that the DPP Res. Allo-
cation has the most efficient resource utilization among
the five algorithms.

In summary, the proposed DPP Res. Allocation attains a
fine-balanced tradeoff between queue stability and resource
consumption comparing with other baselines.

5.4.3 Continued Bursty-TX Injection Attacks Against All

Shards

In this part, we compare the performance under the con-
tinued bursty-TX injection attack of the proposed DPP
Res. Allocation with two baselines, i.e., Top-S and Longest-
First Res. Allocation. Since the other two baselines (Average
and Random Res. Allocation) have very low efficiency on
resource consumption, we omit their comparisons in this
group of simulation. The budgets of computing-power
and network bandwidth resources are set to 5000 CPUs
and 2500 Kb/s, respectively. The number of shards is set
as 100. The parameter S is fixed to 50% for Top-S Res.
Allocation. To simulate the continued bursty-TX injection
attack, we keep injecting a number of TXs to each net-
work shard with a rate 25 TXs/timeslot between the
100th and the 150th timeslot.

Fig. 6a demonstrates the performance of queue length of
three strategies under the continued bursty-TX injection
attack. We can see that the proposed DPP Res. Allocation can
quickly process the large number of injected TXs and main-
tain a short queue length in the 50 timeslots under attacking.
In contrast, for the Top-S and Random Res. Allocation base-
lines, the average length of shard’s queue has already
become extremely congested even before we launch the
continued bursty-TX injection attack at the 100th timeslot.

Fig. 7. Performance evaluation under the drastic bursty-TX injection attack against a single network shard.

HUANG ET AL.: ELASTIC RESOURCE ALLOCATION AGAINST IMBALANCED TRANSACTION ASSIGNMENTS IN SHARDING-BASED... 2383

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 17,2022 at 08:51:25 UTC from IEEE Xplore. Restrictions apply.

In terms of throughput, Fig. 6b shows that the proposed
DPP Res. Allocation can always have the maximum through-
put comparing with the other two baselines. As shown in
Figs. 6c and 6d, DPP Res. Allocation requires the lowest
resource consumption among the three algorithms. The rea-
son is described as follows. Unlike Top-S Res. Allocation and
Random Res. Allocation, the proposed algorithm does not
have to utilize all of the available resources in every time-
slot. When the continued bursty-TX injection attack begins,
although DPP Res. Allocation tends to utilize a suddenly
increasing resources, it can quickly enforce shard queues to
return to stable status when the attack stops at the 150th
timeslot.

5.4.4 Drastic Bursty-TX Injection Attack Against a

Single Shard

Under the similar settings to that of the previous group of
simulation, we are also interested in the performance of the
three algorithm under the drastic bursty-TX injection attack
against a specified network shard. The only difference is the
implementation of the drastic injection attack. To simulate
such the drastic bursty-TX injection attack, we inject 3000
TXs to only a single network shard at the beginning of the
100th timeslot.

Fig. 7 shows the evaluation results of the drastic bursty-
TX injection attack. In contrast with the other two baselines,
we observe the similar performance of the proposed DPP-
based algorithm, in terms of average queue length, through-
put, and the resource consumption. Comparing with the
previous group of simulations, although the increases of
both queue length and resource consumption are more
sharp, the absolute values of those metrics are very similar
to those of the continued injection attack. Importantly, the
throughput of DPP-based algorithm still demonstrates the
best among the three algorithms.

Thus, in summary, the proposed DPP Res. Allocation
algorithm can maintain the stable queue length under both
the continued and the drastic bursty-TX injection attacks,
and illustrates a more efficient resource consumption than
other two baselines.

6 CONCLUSION

System stability is critical to the key performance of the
sharding-based blockchain. We study how to maintain sta-
ble queues for network shards by proposing a fine-grained
resource-allocation algorithm for the PBFT-based sharded
permissioned blockchain. Based on the multi-queue analyti-
cal model, we adopt the stochastic optimization technique
to help us jointly consider both the resource consumption
and the queue stability when allocating network resources
to each blockchain shard. Through the proposed theoretical
framework, we can choose how much we emphasize on
resource-consumption or queue stability by dynamically
tuning a weight parameter V . We also rigorously analyze
the theoretical upper bounds of system objective and
shard’s queue length of the proposed DPP-based algorithm.
Finally, the numerical simulation results show that the pro-
posed DPP-based algorithm can effectively stabilize shard
queues while requiring a reasonable level of resource

consumption. Under two representative cases of bursty-TX
injection attacks, the evaluation results demonstrate that the
proposed DPP-based algorithm can well alleviate the imbal-
anced TX assignments with much shorter queue length,
higher throughput, and lower resource consumption, com-
paring with other baselines.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Decentralized Bus. Rev., pp. 1–9, Oct. 2008.

[2] T. Min, H. Wang, Y. Guo, and W. Cai, “Blockchain games: A
survey,” in Proc. IEEE Conf. Games, 2019, pp. 1–8.

[3] K. Liu, W. Chen, Z. Zheng, Z. Li, and W. Liang, “A novel debt-
credit mechanism for blockchain-based data-trading in Internet of
Vehicles,” IEEE Internet Things J., vol. 6, no. 5, pp. 9098–9111,
Oct. 2019.

[4] H.-N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for Internet of
Things: A survey,” IEEE Internet Things J., vol. 6, no. 5, pp. 8076–8094,
Oct. 2019.

[5] M. G. Kim, A. R. Lee, H. J. Kwon, J. W. Kim, and I. K. Kim,
“Sharing medical questionnaries based on blockchain,” in Proc.
IEEE Int. Conf. Bioinf. Biomed., 2018, pp. 2767–2769.

[6] G. Yu, X. Wang, K. Yu, W. Ni, J. A. Zhang, and R. P. Liu, “Survey:
Sharding in blockchains,” IEEE Access, vol. 8, pp. 14 155–14 181,
2020.

[7] Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to scalability
of blockchain: A survey,” IEEE Access, vol. 8, pp. 16 440–16 455,
2020.

[8] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Sax-
ena, “A secure sharding protocol for open blockchains,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 17–30.

[9] M. Castro et al., “Practical Byzantine fault tolerance,” in Proc. 3rd
Symp. Operating Syst. Des. Implementation, 1999, pp. 173–186.

[10] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta,
and B. Ford, “OmniLedger: A secure, scale-out, decentralized
ledger via sharding,” in Proc. IEEE Symp. Secur. Privacy, 2018,
pp. 583–598.

[11] M. Zamani, M. Movahedi, and M. Raykova, “RapidChain: Scaling
blockchain via full sharding,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2018, pp. 931–948.

[12] J. Wang and H. Wang, “Monoxide: Scale out blockchains with
asynchronous consensus zones,” in Proc. 16th USENIX Symp.
Netw. Syst. Des. Implementation, 2019, pp. 95–112. [Online]. Avail-
able: https://www.usenix.org/conference/nsdi19/presentation/
wang-jiaping

[13] L. N. Nguyen, T. D. T. Nguyen, T. N. Dinh, and M. T. Thai,
“OptChain: Optimal transactions placement for scalable block-
chain sharding,” in Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst.,
2019, pp. 525–535.

[14] T. Nguyen and M. T. Thai, “Denial-of-service vulnerability of
hash-based transaction sharding: Attacks and countermeasures,”
2020, arXiv:2007.08600v2.

[15] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures Com-
mun. Netw., vol. 3, no. 1, pp. 1–211, 2010.

[16] Q.-L. Li, J.-Y. Ma, and Y.-X. Chang, “Blockchain queue theory,” in
Proc. Int. Conf. Comput. Soc. Netw., 2018, pp. 25–40.

[17] S. Ricci, E. Ferreira, D. S. Menasche, A. Ziviani, J. E. Souza, and A.
B. Vieira, “Learning blockchain delays: A queueing theory
approach,” ACM SIGMETRICS Perform. Eval. Rev., vol. 46, no. 3,
pp. 122–125, 2019.

[18] R. A. Memon, J. Li, J. Ahmed, A. Khan, M. I. Nazir, and M. I. Man-
grio, “Modeling of blockchain based systems using queuing the-
ory simulation,” in Proc. 15th Int. Comput. Conf. Wavelet Act. Media
Technol. Inf. Process., 2018, pp. 107–111.

[19] Y. Kawase and S. Kasahara, “A batch-service queueing system
with general input and its application to analysis of mining pro-
cess for bitcoin blockchain,” in Proc. IEEE Int. Conf. Internet Things
IEEE Green Comput. Commun. IEEE Cyber Phys. Soc. Comput. IEEE
Smart Data, 2018, pp. 1440–1447.

[20] J. Misic, V. B. Misic, X. Chang, S. G. Motlagh, andM. Z. Ali, “Block
delivery time in bitcoin distribution network,” in Proc. IEEE Int.
Conf. Commun., 2019, pp. 1–7.

2384 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 17,2022 at 08:51:25 UTC from IEEE Xplore. Restrictions apply.

https://www.usenix.org/conference/nsdi19/presentation/wang-jiaping
https://www.usenix.org/conference/nsdi19/presentation/wang-jiaping

[21] J. C. Corbett et al., “Spanner: Google’s globally-distributed data-
base,” in Proc. 10th USENIX Symp. Oper. Syst. Des. Implementation,
2012, pp. 261–264. [Online]. Available: https://www.usenix.org/
conference/osdi12/technical-sessions/presentation/corbett

[22] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Dane-
zis, “Chainspace: A sharded smart contracts platform,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2018, pp. 1–15.

[23] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C.
Ooi, “Towards scaling blockchain systems via sharding,” in Proc.
Int. Conf. Manage. Data, 2019, pp. 123–140.

[24] Y. Jiao, P. Wang, D. Niyato, and Z. Xiong, “Social welfare maximi-
zation auction in edge computing resource allocation for mobile
blockchain,” in Proc. IEEE Int. Conf. Commun., 2018, pp. 1–6.

[25] N. C. Luong, Z. Xiong, P. Wang, and D. Niyato, “Optimal auction
for edge computing resource management in mobile blockchain
networks: A deep learning approach,” in Proc. IEEE Int. Conf.
Commun., 2018, pp. 1–6.

[26] M. Fang and J. Liu, “Toward low-cost and stable blockchain
networks,” in Proc. IEEE Int. Conf. Commun., 2020, pp. 1–6.

[27] H.-W. Wang, “Ethereum sharding: Overview and finality,” Dec.
2017. [Online]. Available: https://medium.com/@icebearhww/
ethereum-sharding-and-finality-65248951f649

[28] D. Dasgupta, J. M. Shrein, and K. D. Gupta, “A survey of block-
chain from security perspective,” J. Banking Financial Technol.,
vol. 3, no. 1, pp. 1–17, 2019.

[29] H. Huang, S. Guo, W. Liang, K. Wang, and Y. Okabe, “Coflow-like
online data acquisition from low-earth-orbit datacenters,” IEEE
Trans. Mobile Comput., vol. 19, no. 12, pp. 2743–2760, Dec. 2020.

[30] S. T. Maguluri and R. Srikant, “Scheduling jobs with unknown
duration in clouds,” IEEE/ACM Trans. Netw., vol. 22, no. 6,
pp. 1938–1951, Dec. 2014.

[31] J. Koo, J. Yi, J. Kim, M. A. Hoque, and S. Choi, “Seamless dynamic
adaptive streaming in LTE/Wi-Fi integrated network under
smartphone resource constraints,” IEEE Trans. Mobile Comput.,
vol. 18, no. 7, pp. 1647–1660, Jul. 2019.

Huawei Huang (Member, IEEE) received the
PhD degree in computer science and engineering
from the University of Aizu, Aizuwakamatsu,
Japan, in 2016. He is currently an associate pro-
fessor with Sun Yat-Sen University. He has
served as a research fellow of JSPS, and an
assistant professor with Kyoto University, Japan.
His research interests include blockchain and dis-
tributed computing. He is now serving as a guest
editor of the IEEE Journal on Selected Areas in

Communications and IEEE Open Journal of the Computer Society, the
operation-committee chair for the IEEE Symposium on Blockchain at
IEEE SERVICES 2021, and the TPC co-chair of GLOBECOM’2021/
ICC’2022 Workshop on scalable, secure, and intelligent blockchain.

Zhengyu Yue is currently working toward the
master’s degree in the School of Computer Sci-
ence and Engineering, Sun Yat-Sen University,
Guangzhou, China. His research interest include
blockchain.

Xiaowen Peng is currently working toward the
master degree in the School of Computer Sci-
ence and Engineering, Sun Yat-Sen University,
Guangzhou, China. His research interest include
blockchain.

Liuding He is currently working toward the
undergraduate degree in the School of Computer
Science and Engineering, Sun Yat-Sen Univer-
sity, Guangzhou, China. His research interest
include blockchain.

Wuhui Chen (Member, IEEE) received the bach-
elor’s degree fromNortheast University, Shengyang,
China, in 2008, and the master’s and PhD degrees
from the University of Aizu, Aizuwakamatsu, Japan,
in 2011 and 2014, respectively. From 2014 to 2016,
he was a research fellow with the Japan Society for
the Promotion of Science, Tokyo, Japan. From 2016
to 2017, he was a researcher with the University of
Aizu. He is currently an associate professor with Sun
Yat-sen University, Guangzhou, China. His current
research interests include edge/cloud computing,
cloud robotics, and blockchain.

Hong-Ning Dai (Senior Member, IEEE) received
the PhD degree in computer science and engineer-
ing from the Department of Computer Science and
Engineering, Chinese University of Hong Kong,
Hong Kong. He is currently with the Department of
Computing and Decision Sciences, Lingnan Uni-
versity, Hong Kong, as an associate professor. His
current research interests include blockchain and
the Internet of Things. He has served as associate
editors of the IEEETransactions on Industrial Infor-
matics, IEEE Systems Journal, and IEEE Access.
He is also a senior member of the ACM.

Zibin Zheng (Senior Member, IEEE) received
the PhD degree from the Chinese University of
Hong Kong, Hong Kong, in 2011. He is currently
a professor with the School of Computer Science
and Engineering, Sun Yat-Sen University, China.
He published more than 300 international journal
and conference papers, including nine ESI highly
cited papers. His research interests include
blockchain, artificial intelligence, and software
reliability. He was a recipient of several awards,
including the Top 50 Influential Papers in Block-

chain of 2018, the ACM SIGSOFT Distinguished Paper Award at
ICSE2010, the Best Student Paper Award at ICWS2010.

Song Guo (Fellow, IEEE) received the PhD
degree in computer science from the University of
Ottawa, Ottawa, Canada. He is currently a full pro-
fessor with the Department of Computing, Hong
Kong Polytechnic University, Hong Kong. He has
authored or coauthored more than 450 papers in
major conferences and journals. His current
research interests include big data, cloud and edge
computing, mobile computing, and distributed sys-
tems. He was a recipient of the 2019 TCBD Best
Conference Paper Award, 2018 IEEE TCGCC

Best Magazine Paper Award, 2017 IEEE Systems Journal Annual Best
Paper Award, and six other best paper awards from IEEE/ACM conferen-
ces. He was an IEEE Communications Society distinguished lecturer. He
has served as an associate editor of the IEEE Transactions on Parallel and
Distributed Systems, IEEE Transactions on Cloud Computing, IEEE
Transactions on Emerging Topics in Computing, etc. He also served as the
general and program chair for numerous IEEE conferences. He currently
serves in the Board ofGovernors of the IEEECommunicationsSociety.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

HUANG ET AL.: ELASTIC RESOURCE ALLOCATION AGAINST IMBALANCED TRANSACTION ASSIGNMENTS IN SHARDING-BASED... 2385

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 17,2022 at 08:51:25 UTC from IEEE Xplore. Restrictions apply.

https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
https://medium.com/@icebearhww/ethereum-sharding-and-finality-65248951f649
https://medium.com/@icebearhww/ethereum-sharding-and-finality-65248951f649

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

