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HGATE: Heterogeneous Graph Attention
Auto-Encoders

Wei Wang, Xiangyu Wei, Xiaoyang Suo, Bin Wang, Hao Wang, Hong-Ning Dai, and Xiangliang Zhang

Abstract—Graph auto-encoder is considered a framework for unsupervised learning on graph-structured data by representing graphs
in a low dimensional space. It has been proved very powerful for graph analytics. In the real world, complex relationships in various
entities can be represented by heterogeneous graphs that contain more abundant semantic information than homogeneous graphs. In
general, graph auto-encoders based on homogeneous graphs are not applicable to heterogeneous graphs. In addition, little work has
been done to evaluate the effect of different semantics on node embedding in heterogeneous graphs for unsupervised graph
representation learning. In this work, we propose a novel Heterogeneous Graph Attention Auto-Encoders (HGATE) for unsupervised
representation learning on heterogeneous graph-structured data. Based on the consideration of semantic information, our architecture
of HGATE reconstructs not only the edges of the heterogeneous graph but also node attributes, through stacked encoder/decoder
layers. Hierarchical attention is used to learn the relevance between a node and its meta-path based neighbors, and the relevance
among different meta-paths. HGATE is applicable to transductive learning as well as inductive learning. Node classification and link
prediction experiments on real-world heterogeneous graph datasets demonstrate the effectiveness of HGATE for both transductive and
inductive tasks.

Index Terms—Graph embedding representation, Heterogeneous graphs, Hierarchical attention, Transductive learning, Inductive
learning.

F

1 INTRODUCTION

THERE are many graph structures in the real world, such
as social networks, telecommunication networks, cita-

tion networks, and biological networks. Graph representa-
tion learning is one of the most widely-used graph analysis
methods. It has been widely applied in various tasks, such
as node classification [1], node clustering [2], link prediction
[3],[4], community detection [5], entity alignment [6],graph
classication [7] and recommendation system [8]. Some pow-
erful graph representation learning methods, such as Graph
Convolution Networks [9] and Graph Attention Networks
[10], are supervised methods that depend on data label
information.

In real-world applications, however, it is not easy to
appropriately and precisely label a large number of nodes
and obtain a high-quality labeled data set. On the one
hand, the type of label is difficult to determine. On the
other hand, the labeling process costs a lot of manpower
and material resources. As a robust unsupervised graph
representation learning method, graph auto-encoders [11]
avoid the problem of node labeling and thus has been
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a widely studied topic. Some graph auto-encoders only
use graph structure information for node embedding [12],
while others use both graph structure information and node
attributes that are applicable to attributed networks [13],
[14], [15], [16]. Graph attention auto-encoders [17] employ
attention mechanisms to aggregate neighbor nodes’ features
to get node representation that assigns large weights to more
important nodes, so as to improve the learning performance.

Most existing graph auto-encoders are based on homo-
geneous graphs, which are not applicable to heterogeneous
graphs that contain rich semantic information. Heteroge-
neous graphs contains different types of nodes and edges.
Homogeneous graphs which consist of only one type of
nodes and edges can be described by first order, second or-
der [18],[19] or community structures[20], but the structure
in heterogeneous graphs is usually semantic dependent,
such as meta-path structure, meta-graph structure[21], im-
plying that the local structure of one node in heterogeneous
graphs can be very different described when considering
different types of relations, we thus need different methods
to preserve the complex structures; Different types of nodes
or edges have different meaning, and the importance of
different edges or nodes is different. Therefore, it is neces-
sary to learn the importance of these kinds of relationships
between users. And different types of nodes and edges have
different attributes, which are usually located in different
feature spaces, and thus when designing heterogeneous
graph embedding methods, especially heterogeneous graph
neural networks, we need to overcome the heterogeneity of
attributes to fuse information [22].

Heterogeneous graphs represent the complex graph
structure of multi-type objects and links in the real world,
and thus contain comprehensive information and rich se-
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mantics among the objects. Heterogeneous graphs have
been widely studied in graph analysis and data mining
tasks.

A meta-path is a composite relation path between two
objects, which is usually used to represent the multi-types
of a semantic relation [23]. For example, in citation net-
works, two authors’ relationships can be represented by a
meta-path Author-Paper-Conference-Paper-Author which im-
plies that the two authors published the paper in the same
conference and a meta-path Author-Paper-Author which de-
scribes co-author relationship. The different meta-paths can
have different semantics. We can use a meta-path to describe
a composite relation or the high-order similarity of two
nodes.

It is a big challenge to embed the heterogeneous graph
by considering the comprehensive and different heteroge-
neous graph information, including node attributes, graph
structure and semantic information.

Liu et al. [24] used graph structure features to embed the
heterogeneous graph for semantic proximity search. Chang
et al. [25] and Peng et al. [26] used both network struc-
ture features and node attributes for heterogeneous graph
embedding. Wang et al. [27] used attention mechanisms to
assign different importance to different types of nodes in a
neighborhood. However, this work ignored the importance
of different meta-paths. Wang et al. [28] employed hierar-
chical attention mechanisms to learn not only the relevance
between a node and its meta-path based neighbors, but
also the relevance among different meta-paths. However,
all the above methods are supervised learning methods.
They are not applicable to unsupervised heterogeneous
graph embedding in scenarios where labelling information
is unavailable.

Most previous related work focused on generating node
representation of a single fixed graph. However, some real-
world applications require to quickly generate the represen-
tation of nodes that have not appeared before. Compared
to transductive learning, inductive learning is particularly
difficult to conduct because the training models should be
suitable for unseen nodes. There are some graph embedding
methods involved in inductive learning based on homoge-
neous graphs [29], [30]. However, they are not suitable for
heterogeneous graphs.

In this work, we propose a novel heterogeneous graph
attention auto-encoders (HGATE) to learn node representa-
tion for heterogeneous graphs in an unsupervised manner.
HGATE adopts hierarchical attention mechanism, including
node-level attention and semantic-level attention. The node-
level attention considers node attributes and graph struc-
ture information. The semantic-level attention fully learns
semantic information represented by Meta-path in hetero-
geneous graph. HGATE reconstructs not only the edges of
the heterogeneous graph but also node attributes, through
stacked encoder/decoder layers. We include both node-
level encoders and a semantic-level encoder. In the node-
level encoder, the node-level attention mechanism is used to
learn the attention values between the nodes and their meta-
based neighbors. In the semantic-level encoder, semantic-
level attention mechanism is used to learn the attention
values among different meta-paths in heterogeneous graph.
And so does the decoder. In the node-level encoder, node

attributes are fed into stacked layers to generate meta-path
based node representations. In the semantic-level encoder,
the model generates new meta-path based node representa-
tions by utilizing semantic-level attention. We use the sum
of all the meta-path node representations as the final node
representation. In the node-level decoder, we reverse the
node-level encoder to reconstruct meta-path node attributes.
Each node-level decoder layer reverses the process of its
corresponding node-level encoder layer. In the semantic-
level decoder, we reverse the semantic-level encoder to
reconstruct final node attributes. HGATE reconstructs both
node attributes and the the edges of the heterogeneous
graph. It can efficiently generate node embedding for pre-
viously unseen data, and thus can be applied to inductive
learning.

In summary, our contributions are highlighted as fol-
lows:

• We propose a novel heterogeneous graph auto-
encoders (HGATE) for unsupervised representation
learning on heterogeneous graph-structured data by
reconstructing both node attributes and the edges of
the heterogeneous graph. To the best of our knowl-
edge, this is the first time that Heterogeneous Graph
Attention Auto-Encoders is proposed.

• We use hierarchical attention for unsupervised at-
tributed graph representation learning, in which
node-level attention learns the relevance between a
node and its meta-based neighbors, and semantic-
level attention learns the relevance among meta-
paths. Therefore, HGATE can capture semantic in-
formation in heterogeneous graphs.

• Our proposed HGATE can efficiently generate node
embedding for previously unseen data. It can thus be
applied to both transductive and inductive learning.

• We conduct extensive experiments on real-world het-
erogeneous graph data sets and the results demon-
strate that our algorithms outperform the state-of-
the-art methods for node classification.

The rest of the paper is organized as follows. In Section 2,
we review the related works, including graph auto-encoder
and heterogeneous graph neural network. In Section 3, we
briefly introduce the notations used in this paper. Then
we present the architecture of Heterogeneous graph at-
tention auto-encoders (HGATE) in Section 4. In Section 5,
we quantitatively and qualitatively evaluate HGATE, and
present datasets, baseline methods, experiments and results.
Section 6 concludes this paper.

2 RELATED WORK

Our study is closely related to graph auto-encoder and
heterogeneous graph neural networks. In this section, we
briefly review the state-of-the-art literature.

2.1 Graph Auto-Encoder
As unsupervised learning frameworks, graph auto-encoders
convert graph structural data into vectors in a low dimen-
sional space, and then learn the low dimensional node vec-
tors through stacked encoder/decoder layers. Based on the
information used in graph embedding, graph auto-encoders
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are typically divided into two categories: topological auto-
encoders and content enhanced auto-encoders. Topographic
graph auto-encoder only uses topological structure infor-
mation for graph embedding. Baldi [11] presented a gen-
eral mathematical framework for the study of both linear
and non-linear autoencoders. Kipf et al. [12] proposed the
Variational Graph Auto-Encoders (VGAE) that used latent
variables and were capable of learning interpretable latent
representations for undirected graphs.

Content enhanced auto-encoder uses both topological
structure features and node attributes for attributed graph
representation. Compared with Topographic graph auto-
encoder, Content enhanced auto-encoder can use more in-
formation to learn more comprehensive graph embedding
representation. Variation autoencoder (VAE) [31] is a deep
network representation model that seamlessly integrates
the text information and structure of a network. Pan et
al. [14] proposed two variants of adversarial graph embed-
ding approach, adversarially regularized graph autoencoder
(ARGA) and adversarially regularized variational graph
autoencoder (ARVGA). MGAE [13] corrupts network node
content, allowing node content to interact with network
features, and marginalizes the corrupted features in a graph
autoencoder context to learn graph representations. Graph-
SAGE [29] leverages node feature information to generate
node embeddings, which was applicable to inductive learn-
ing. Gao et al. [15] captured the high nonlinearity and pre-
served various proximities in both topological structure and
node attributes. Zhang et al. [16] proposed ANRL, a neigh-
bor enhancement autoencoder, to model the node attribute
information. It seamlessly integrated network structural
proximity and node attribute affinity into low-dimensional
representation spaces. GATE [17] stacks encoder/decoder
layers and employs self-attention to reconstruct both node
attributes and the graph structure. Most existing graph en-
coders are based on homogeneous graphs and are thus not
applicable to heterogeneous graphs. In this work, we pro-
pose a novel heterogeneous graph attention auto-encoders
(HGATE) for unsupervised representation learning on het-
erogeneous graph-structured data.

2.2 Heterogeneous Graph Neural Network

Heterogeneous graph neural network is a supervised graph
embedding learning method for the heterogeneous graph.
Compared to homogeneous graph embedding, heteroge-
neous graph embedding is much more challenging, as it
needs to consider the heterogeneity and rich semantic in-
formation contained in various types of nodes and edges in
the graphs. Heterogeneous graph embedding project graph
data into a low dimensional space while preserving the
heterogeneous network structure and node attributes so that
the learned embedding can be applied to the downstream
network tasks.

Some heterogeneous graph neural networks only used
heterogeneous structural features [32], [33]. Jacob et al. [32]
learned mapping heterogeneous graphs nodes representa-
tions onto a common latent space, which exploits the de-
pendencies on the node classes, and relationships between
nodes. HEER [33] embeds heterogeneous graph via edge
representations to discover emerging relations from news.

ProxEmbed [24] adopts Long short-term memory (LSTM)
to embed the network structure between two possibly dis-
tant nodes in the heterogeneous graph to achieve semantic
proximity search. Some heterogeneous graph neural net-
works use both heterogeneous structural features and node
attributes. Zhang et al. [34] aggregated different types of
neighbors’ content features and topological features through
using attention to learn the different importance between
the node and its different types of neighbor groups. Zhang
et al. [35] proposed a heterogeneous graph attention net-
works to model different types of entities. However, they
did not consider the different weights of different entities.
HANE [27] leverages heterogeneity and node attributes to
generate high-quality embedding through attention mecha-
nism. HNE [25] explores global consistency between differ-
ent heterogeneous objects to learn unified feature represen-
tations guided by network structures.

In the heterogeneous graph, some methods use the
meta-path to represent the multi-type semantic relations
between entities [36], [37], [38], [39]. PP-GCN [26] builds
an event-based heterogeneous information network (HIN)
and designs an event meta-schema to characterize the
semantic relatedness of social events. HERec [40] uses a
random walk strategy guided by meta-paths to generate
meaningful node sequences for network embedding based
on recommendation. MEIRec [41] leverages meta-paths to
guide the selection of different-step neighbors and designed
a heterogeneous GNN to obtain the rich embeddings of
users and queries in intention recommendation. HAN [28]
generates node embedding by aggregating features from
meta-path based neighbors in a hierarchical manner, which
fully considered the importance of node and meta-path. In
summary, there is no unsupervised learning heterogeneous
neural network model to distinguish the importance of
meta-paths.

3 PRELIMINARY

In this section, we present the notations used in this paper.
They are summarized in Table 1.

Heterogeneous Graph [37]. A heterogeneous graph is
represented as G = {V,E} consisting of an object set V
and a link set E. A heterogeneous graph is also associated
with a node type mapping function φ : V → A and a link
type mapping function ψ : E → R, where A and R denote
the sets of predefined objects and link types. The number of
object types |A| > 1 or the number of link type |R| > 1.

Meta-path [23]. A meta-path is represented asm, defined
on the graph of network schema TG = (A,R) of the form
A1

R1−→ A2
R2−→ A3 · · ·AL

RL−→ AL+1 which describes a
composite relation R = R1 · R2 · · ·RL between objects
A1, A2, A3 · · ·AL+1, where · denotes the relation composi-
tion operator, and L+ 1 is the length of m.

Meta-path based Neighbors [28]. In a heterogeneous
graph, the meta-path-based neighbors Nm

i of node i are
defined by the set of nodes which connect with node i via
meta-path m. Note that the node’s neighbors include itself.

4 HGATE
In this section, we describe our novel graph attention
auto-encoders (HGATE) for heterogeneous graphs. The ar-
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Fig. 1. The architecture of HGATE.

TABLE 1
The main notations used in the paper

Notations Definitions
N The number of node in the graph
E The number of edges in the graph
M The number of meta-path in the graph
F The number of node attribute features

k
The number of node-level neural networks
layer

m The Meta-path
A ∈ RN×N The adjacency matrix
X ∈ RF×N The node feature matrix
xi ∈ RF The features of node i
X̂ ∈ RF×N The reconstructed node feature matrix
x̂i ∈ RF The reconstructed features of node i

Hk ∈ Rd×N The node representation matrix generated
by the kth node-level encoder layer

Ĥk ∈ Rd×N The node representation matrix generated
by the kth node-level decoder layer

αk
i,j

The attention coefficient in the kth node-
level encoder layer

α̂k
i,j

The attention coefficient in the kth node-
level decoder layer

θ
mx,my

i

The attention coefficient in the semantic-
level encoder layer

θ̂
mx,my

i

The attention coefficient in the semantic-
level decoder layer

Nm
i

The meta-path based neighborhood of node
i, including itself

chitecture of HGATE reconstructs not only the edges of
the heterogeneous graph but also node attributes, through
stacked encoder/decoder layers based on hierarchical at-
tention, including node-level and semantic-level attentions.
Figure 1 illustrates the workflow of HGATE that follows
a hierarchical attention structure: node-level attention en-
coder, semantic-level attention encoder, node-level attention
decoder and semantic-level attention decoder. First, we
present the encoder and decoder to show how our auto-
encoder reconstructs node features using the heterogeneous
graph structure and semantic information. We then describe

the proposed loss function that learns node representations
by minimizing the reconstruction loss of the node features
and the edges of the heterogeneous graph.

4.1 Node-level encoder
The node-level attention encoder can generate new meta-
path based representations of nodes by learning the rele-
vance between the node and its meta-path based neighbors
in the heterogeneous graph. We use a transformation matrix
W to transform the input features and then project them into
the next neural network layer feature space. Each encoder
layer aggregates node attributes and structure information
from a node’s first-order neighbors by using self-attention
to learn the relevance between nodes and their meta-
path based neighbors. Under the same meta-path, the self-
attention is shared among nodes. Single encoder layer can
aggregate node attributes and structure information from a
node’s first-order neighbors. We use multiple encoder layers
to fully learn the node representation. Through the stack
encoder layer, information can propagate through network
structure. Multiple encoder layers can aggregate node at-
tributes and structure information from node’s multi-order
neighbors.

In the kth node-level encoder layer, the relevance of
meta-path based node pairs (i, j) can be formulated as
follows:

em,k
i,j = σ(V m,k

s

T
Wm,khm,k−1

i + V m,k
r

T
Wm,khm,k−1

j ), (1)

where Wm,k ∈ Rdk×dk−1

, V m,k
s ∈ Rdk

and V m,k
r ∈ Rdk

are the trainable parameters of the kth node-level encoder
layer, and σ denotes the activation function. The term em,k

i,j

represents the relevance of node j to node i, which is
different from the relevance of node i to node j. Node-level
attention preserves the asymmetry of heterogeneous graphs.

To make the coefficients comparable among the neigh-
bors of nodes, we use the softmax function to normalize
em,k
i,j :

αm,k
i,j =

exp(em,k
i,j )∑

l∈Nm
i
exp(em,k

i,l )
, (2)

where Nm
i denotes the neighborhood of node i based on

meta-path, including node i itself.
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We use the node feature as the initial node representa-
tion, i.e., hm,0

i = xi. For meta-path m, the kth encoder layer
generates the representation of node i in layer k as follows,

hm,k
i =

∑
j∈Nm

i

αm,k
i,j (Wm,khm,k−1

j ). (3)

The node-level encoder is based on meta-path, which can
capture the corresponding single semantic information.

4.2 Semantic-level encoder
In the heterogeneous graph, different meta-paths represent
different semantic information. The semantic-level encoder
can aggregate different semantic information to generate
a more comprehensive node embedding through using
semantic-level attention to automatically learn the relevance
among different meta-paths. We use a single layer semantic-
level encoder to capture the semantic information in this
work.

For node i, the relevance between meta-path mx and my

based node embedding can be formulated as follows:

ω
mx,my

i = σ(V T
q h

mx,k
i + V T

t h
my,k
i ), (4)

where Vq ∈ Rd and Vt ∈ Rd are the trainable parameters
of the semantic-level encoder layer, and σ denotes the
activation function.

In order to make the coefficients among meta-paths com-
parable, we use the softmax function to normalize θmx,my

i :

θ
mx,my

i =
exp(ω

mx,my

i )∑M
z=1 exp(ω

mx,mz

i )
. (5)

Then, the meta-path based embedding of node i can be
aggregated by other meta-path based embedding with the
corresponding coefficients as follows:

hmx
i =

M∑
y=1

θ
mx,my

i h
my,k
i . (6)

After applying the semantic-level encoder, we consider
the sum of all meta-path based node embeddings of the
semantic-level encoder layer as the final node representa-
tion. The final node representation is as follows:

hi =
M∑
x=1

hmx
i . (7)

4.3 Node-level decoder
The node-level decoder layer reconstructs the attributes of
the node based on meta-path by utilizing the representa-
tions of their neighbors according to their attention values.
We use a decoder with the same number of layers as the
encoder. Each decoder layer reverses the process of its
corresponding encoder layer following the work of [17]. The
reciprocal kth node-level decoder layer corresponds to the
kth node-level encoder layer encoder. We use k′ to represent
the reciprocal kth node-level decoder layer. Similar to the
encoding layer, the attention value of a meta-path based
neighboring node j to node i in the reciprocal kth decoder
layer is computed as follows:

êm,k′

i,j = σ(V̂ m,k′T

s Ŵm,k′ ĥm,k′+1
i + V̂ m,kT

r Ŵm,k′ ĥm,k′+1
j ),

(8)

where Ŵm,k′ ∈ Rdk′×dk′−1

, V̂ m,k′

s ∈ Rdk′

and V̂ m,k′

r ∈ Rdk′

are the trainable parameters of the reciprocal kth node-level
decoder layer.

Similarly, we use softmax function to normalize êm,k′

i,j to
make the coefficients comparable among the neighbors of
nodes.

α̂m,k′

i,j =
exp(êm,k′

i,j )∑
l∈Nm

i
exp(êm,k′

i,l )
. (9)

Using the output of the semantic-level encoder as the
input of the node-level decoder, the reciprocal kth node-
level decoder layer reconstructs the representation of node i
in the previous layer as follows:

ĥm,k′

i =
∑

j∈Nm
i

α̂m,k′

i,j (Ŵm,k′ ĥm,k′+1
j ). (10)

In the node-level decoder, we are motivated to reverse
the node-level encoder to reconstruct meta-path based node
attributes. Each node-level decoder layer reverses the pro-
cess of its corresponding node-level encoder layer.

4.4 Semantic-level decoder
The semantic-level decoder layer reverses the semantic-level
encoder to aggregate the different meta-path information
to reconstruct node attributes. The normalized relevance
between meta-paths of node i in the semantic-level decoder
is computed as follows:

ω̂
mx,my

i = σ(V̂ T
q ĥ

mx
i + V̂ T

t ĥ
my

i ), (11)

θ̂
mx,my

i =
exp(ω̂

mx,my

i )∑M
z=1 exp(ω̂

mx,mz

i )
. (12)

The meta-path based embedding of node i can be ag-
gregated by other meta-path based embedding with the
corresponding coefficients as follows:

ĥmx
i =

M∑
y=1

θ̂
mx,my

i ĥ
my

i . (13)

After applying the semantic-level decoder, we con-
sider the sum of all meta-path based node embedding of
semantic-level decoder as the reconstructed node attributes.
The final reconstructed node attributes as follows:

ĥi =
M∑
x=1

ĥmx
i . (14)

4.5 Loss function
Our model reconstructs both node attributes and the edges
of the heterogeneous graph. Therefore, the loss function
consists of two components: attribute loss and edge of
heterogeneous graphs loss.

We minimize the reconstruction loss of node attribute
feature as follows:

Lfea =
N∑
i=1

||Xi − X̂i||2. (15)

In general, connected nodes in the graph are more likely
to be similar to each other. We minimize the reconstruction

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on March 17,2022 at 12:14:05 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3138788, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, JUNE 2020 6

loss of the edges of the heterogeneous graph by making
the representations of meta-path based neighboring nodes
similarly:

Lstr = −
M∑

m=1

N∑
i=1

∑
j∈Nm

i

log(
1

1 + exp(−hmi
Thmj )

). (16)

M is the type of meta-path, N is the number of nodes
under a certain meta-path, and Nm

i is the set of neighbor
nodes of node i under meta-path m.

By merging feature loss and heterogeneous graph local
structure loss, we minimize the reconstruction loss of node
features and the edges of the heterogeneous graph as fol-
lows:

L = Lfea + λLstr (17)

where λ controls the contribution of the edges of hetero-
geneous graph reconstruction loss. The overall process of
HGATE is described in Algorithm 1.

Algorithm 1 The overall process of HGATE
Input: The node feature matrix X and The adjacency matrix
set A based on meta-path.
Output: The node representation matrix H and the recon-
structed node feature matrix.

1: Initialize node-level encoder/decoder parameters:
Wm,k, Ŵm,k, V m,k

s , V̂ m,k
s , V m,k

r , V̂ m,k
r , semantic-level

encoder/decoder parameters: Vq ,V̂q ,Vt,V̂t.
2: for m = 1, 2, ...,M do
3: for k = 1, 2, ...,K do
4: Calculate αi,j according to (2)
5: Calculate hm,k

i according to (3)
6: end for
7: Calculate θmx,my

i according to (5)
8: Calculate hmx

i according to (6)
9: end for

10: Calculate hi according to (7)
11: for m = 1, 2, ...,M do
12: for k = 1, 2, ...,K do
13: Calculate α̂i,j according to (9)
14: Calculate ĥm,k

i according to (10)
15: end for
16: Calculate θ̂mx,my

i according to (12)
17: Calculate ĥmx

i according to (13)
18: end for
19: Calculate ĥi according to (14)

4.6 Analysis of HGATE
Compared with existing methods, the proposed HGATE
model has advantages such as unsupervised graph rep-
resentation learning, suitability for heterogeneous graphs,
applicability to transductive and inductive learning and
high efficiency. We next present the analysis of the HGATE
model in detail as follows.

HGATE is an unsupervised graph representation learn-
ing method that avoids the limitations of supervised learn-
ing methods, such as extensive efforts in constructing the
labelled dataset. Compared with the supervised learning
method, HGATE does not need to use node labels, which

saves manpower and material resources to label data and
avoids the impact of data label quality on the performance
of the model.

HGATE is suitable for heterogeneous graphs, which
reconstructs both node attributes and edges of the heteroge-
neous graph to generate node representations. HGATE uses
the hierarchical attention mechanism to capture semantic
information.

HGATE can be applied to both transductive and induc-
tive learning. The sharing of attention parameters among
nodes in HGATE can effectively generate nodes embedded
in previously undiscovered data. HGATE can be applied
to some real-world scenarios that need to generate the
embedded representation of new nodes.

HGATE is efficient and can be parallelized. Because the
computation of attention can be carried out individually
across all nodes and meta-paths. The computational com-
plexity of our architecture for one iteration is O

(
M × (N ×

F ×D+E×D)+M ×N ×D
)

, where N is the number of
nodes, E is the max number of edges based on meta-path,
M is the number of meta-paths, and D is the maximum d(k)

in all layers.

5 EVALUATION

In this section, we evaluate HGATE via conducting exten-
sive experiments on three datasets. In Section 5.1, we first
introduce three heterogeneous graphs datasets. We describe
the baseline approaches in Section 5.2. In Section 5.3 and
Section 5.4, we present the node classification and link
prediction results. In Section 5.5, we introduce three kinds of
variation experiments. We also present parameter-study ex-
periments in Section 5.6. We visualize the node embedding
results in Section 5.7.

5.1 Datasets
We use three datasets, ACM [28], DBLP [28] and Sina Weibo
for transductive and inductive tasks. We summarize the
statistics of data sets in Table 2. The ACM and DBLP datasets
are benchmark datasets. The ACM dataset contains 1) one
type of nodes, i.e., Papers and 2) two types of meta-paths
including Paper-Author-Paper and Paper-Subject-Paper. Paper
features are the elements of a bag-of-words represented
of keywords. The DBLP dataset contains 1) one type of
nodes, i.e., Author and 2) three types of meta-paths including
Author-Paper-Author, Author-Paper-Conferences-Paper-Author
and Author-Paper-Term-Paper-Author. Author features are the
elements of a bag-of-words represented of keywords. The
Sina Weibo dataset is a subset extracted from Sina Weibo
dataset collected by Fudan University1, which contains one
type of nodes, i.e., User and three kinds of meta-paths
including the following relationship, forwarding relationship
and @ relationship. User features are the elements of a bag-of-
words represented of keywords. We manually divide users
into three classes including the Internet, Movie, and Politics.

For transductive tasks, we have the access to the whole
heterogeneous graph structure and all nodes’ attributes on
all datasets during model training. For inductive tasks,

1. http://sma.fudan.edu.cn/datainfo/weibo.html
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TABLE 2
The statistics of the benchmark datasets

Datasets Nodes Meta-paths #Edges #Features #Classes

ACM 3,025
PAP 29,281

1,830 3
PSP 2,210,761

DBLP 4,057
APA 11,113

334 4APCPA 5,000,495

APTPA 6,772,278

Weibo 3,135
Follow 98,573

1,303 3Forward 19,695

@ 11,781

we can only access the heterogeneous graph structure and
node attributes of a subgraph on all datasets during model
training. And the heterogeneous graph structure and node
attributes of other nodes outside the subgraph are unseen.
We then use the model to generalize the representation of
unseen nodes. More specifically, we randomly select 2000
nodes in the training data, and then predict the rest of the
node representation by the trained models.

5.2 Baselines
We compare our HGATE with the state-of-the-art methods,
including three supervised methods and five unsupervised
methods. Supervised methods are GCN [9], GAT [10] and
HAN [28]. Unsupervised methods are DeepWalk [42], GAE
[12], VGAE [12], ASNE [43] and GATE [17]. We next briefly
describe them as follows.

Supervised Methods

• GCN [9]: Graph Convolutional Networks is a semi-
supervised graph convolutional network designed
for homogeneous graphs.

• GAT [10]: Graph Attention Network is a semi-
supervised neural network for homogeneous graphs.
GAT leverages masked self-attention to learning the
influence of neighboring nodes.

• HAN [28]: Heterogeneous Graph Attention Network
is a semi-supervised heterogeneous graph neural
network using the hierarchical attention mechanism.

Unsupervised methods

• DeepWalk [42]: DeepWalk learns social representa-
tions of a graph’s vertices within short random walks
for homogeneous graphs.

• GAE [12]: Graph Auto-Encoder is an unsupervised
graph neural network for homogeneous graphs.
GAE uses graph convolutional networks as the en-
coder and reconstructs the graph structure in the
encoder.

• VGAE [12]: Variational Graph Auto-Encoder is a
variant of GAE for homogeneous graphs. VGAE uses
a graph convolutional network encoder and a simple
inner product decoder.

• ASNE [43]: ASNE is a generic Attributed Social Net-
work Embedding framework, which learns the rep-
resentations for social actors while preserving both
the structural proximity and attribute proximity.

• GATE [17]: Graph Attention Auto-Encoder is a neu-
ral network for the unsupervised representation of
homogeneous graphs. GATE reconstructs both node
attribute and graph structure by using the attention
mechanism.

For the homogeneous graph embedding methods, we
test all the meta-paths and report the best performance in
our results.

5.3 Node Classification
In experiments, we randomly initialize parameters and use
Adam optimizer to learn model parameters. Tensorflow is
used to implement HGATE.

In the node classification task, we set the learning rate to
10−4 on ACM and Sina Weibo datasets in the transductive
learning. And we set the learning rate to 5× 10−3 on DBLP
dataset. For the inductive tasks, we set the learning rate to
10−2, 5 × 10−5 and 10−4 on ACM, DBLP, and Sina Weibo
datasets, respectively. For all datasets, we use two node-
layers with 512-node representation dimensions and a single
semantic layer with 512-node representing dimensions. The
model is trained for 200 epochs with the λ equalt to 1. We
only use a half of the trainable parameters by setting equal
parameters for both decoder layers and encoder layers. Both
the datasets and the program codes of our HGATE are
publicly available at website2.

For baseline methods, we optimize their parameters
using the validation set. For inductive learning, we use the
same subgraph with HGATE to train the baseline models.
For supervised methods, we use 20% of model training data
as training set, 10% as verification set and 70% as test set.
Unsupervised methods do not require class labels. To ensure
the fairness of the experiments, we set the node embedding
dimension to 512 for all baseline methods.

In this subsection, we compare our HGATE with the
aforementioned state-of-the-art baselines based on trans-
ductive and inductive node classification by logistic regres-
sion. We generate the representation of all nodes. Then we
use different training set proportions for training, including
20% , 50%, 80%. And we use the rest of the dataset as the
test set. We report the average classification Micro-F1 and
Macro-F1 in Table 3 and Table 4 on the test nodes after 10
runs of training.

Table 3 shows the transductive node classification results
for the ACM, DBLP, and Sina Weibo datasets. HGATE
achieves powerful performance across all three datasets.

From the top of Table 3, we observe that HGATE out-
performs all supervised and unsupervised baselines on
the ACM dataset for transductive learning. It proves the
effectiveness of our method in transductive learning. The
performance of using node features for classification is bet-
ter than DeepWalk, GAE, VGAE and ASNE, implying that
node attributes have a significant impact on classification
results in ACM dataset. GATE outperforms GAE, ASNE
and VGAE, which indicates the attention mechanism can
distinguish the subtle influence of different neighbors to the
node. Further, compared with unsupervised method GATE,
HGATE is improved by 1.15% on Micro-F1 and by 1.19%

2. https://github.com/fantasy-sxy/HGATE
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TABLE 3
Experiment results (%) on the transductive node classification task. Available data types are the node features matrix X, adjacency matrix A, and

labels Y .

Datasets Training Metrics Feature DeepWalk GAE VGAE ASNE GATE HGATE GCN GAT HAN

ACM

20%
Macro-F1 89.02 76.45 83.74 88.80 88.00 90.99 91.86 90.70 91.67 92.30

Micro-F1 89.09 76.12 83.80 88.80 87.89 90.95 91.78 90.74 91.65 92.23

50%
Macro-F1 89.11 77.90 84.67 89.42 87.81 91.92 92.90 91.82 92.16 92.87

Micro-F1 89.16 77.46 84.73 89.43 87.64 91.94 92.80 91.87 92.20 92.80

80%
Macro-F1 90.38 79.78 84.92 90.02 89.94 92.47 93.66 90.99 92.05 93.03

Micro-F1 90.25 79.01 84.96 90.08 89.75 92.40 93.55 91.07 92.06 92.89

DBLP

20%
Macro-F1 78.04 91.89 91.34 91.83 90.26 89.02 90.95 90.25 91.03 93.54

Micro-F1 78.80 92.39 92.08 92.42 90.82 89.93 91.65 91.22 91.90 94.02

50%
Macro-F1 79.99 91.66 90.90 90.95 91.22 89.67 91.52 90.55 92.02 94.08

Micro-F1 80.63 92.21 91.52 91.52 91.77 90.49 92.11 91.38 92.80 94.48

80%
Macro-F1 79.92 92.13 91.62 91.64 92.09 90.74 92.57 90.83 92.42 94.67

Micro-F1 80.67 92.61 92.24 92.24 92.61 91.63 93.10 91.63 93.06 95.07

Sina Weibo

20%
Macro-F1 90.49 96.72 97.39 97.08 96.83 95.56 98.00 96.22 97.38 97.50

Micro-F1 90.55 96.69 97.37 97.09 96.77 95.53 97.97 96.13 97.33 97.49

50%
Macro-F1 93.31 97.41 97.49 97.33 97.65 96.35 98.00 96.89 97.82 98.15

Micro-F1 93.30 97.45 97.51 97.39 97.64 96.43 98.02 96.88 97.83 98.21

80%
Macro-F1 94.68 98.44 97.73 97.38 97.32 97.49 98.60 97.52 98.43 99.53

Micro-F1 94.74 98.41 97.77 97.45 97.29 97.45 98.56 97.45 98.41 99.52

on Macro-F1 for ACM dataset with using 80% data as train-
ing set, since the semantic-level attention mechanism can
capture the semantic information of heterogeneous graphs
through learning the relevance among different meta-paths.
HGATE is competitive with the performance of the best
supervised graph embedding baseline. HGATE outperforms
GCN and GAT, since HGATE is an unsupervised learning
algorithm that uses feature loss and edge of the graph
loss for optimization without using node category labels.
Compared with supervised method HAN, HGATE is im-
proved by 0.66% on Micro-F1 and 0.63% on Macro-F1 for
ACM dataset with using 80% data as the training set, which
proves the effectiveness of unsupervised methods.

From the middle of Table 3, HGATE outperforms all su-
pervised and unsupervised baselines except HAN on DBLP
dataset for transductive learning. DeepWalk performs well
on DBLP dataset. This is mainly because the graph structure
features of DBLP has more influence on node classification.
HGATE performs not as effective as HAN. Because HAN is
a supervised learning method with the hierarchical attention
mechanism, which uses the node classification label to learn
the embedded representation of nodes. While HGATE is an
unsupervised learning method, which does not use the node
classification label. On the DBLP dataset, our method is still
better than the latest unsupervised method. Compared with
unsupervised graph embedding method ASNE, HGATE is
improved by 0.49% on Micro-F1 and by 0.48% on Macro-F1
with using 80% data as training set.

From the bottom of Table 3, HGATE outperforms all
supervised and unsupervised baselines except HAN on Sina
Weibo dataset for transductive learning. The performance
of classification using user attribute features directly and
DeepWalk is better on Sina Weibo dataset, which indicates
that both user attributes features and graph structure fea-

tures have great influence on node classification. HGATE
is better than the state-of-the-art unsupervised methods.
Compared with unsupervised graph embedding method
GAE, HGATE is improved by 0.87% on Macro-F1 and 0.79%
on Micro-F1 with using 80% data as training set. Similar
to the results on DBLP dataset, HGATE performs slightly
worse than the HAN on Sina Weibo dataset.

Table 4 shows the inductive node classification results
for ACM, DBLP, and Sina Weibo datasets. Accordingly, we
observe that HGATE also performs well in the inductive
task, which can effectively generate the embedded represen-
tation of unseen nodes in model training. The performance
of inductive learning is generally not as good as that of
transductive learning, because inductive learning only uses
part of data set for training, and the available information is
limited.

From the top of Table 4, similar to the transductive
tasks, HGATE achieves the best performance among all the
supervised and unsupervised baseline methods on the ACM
datasets for inductive learning. For ACM dataset, HGATE is
1.56% higher than the best unsupervised learning algorithm
on Macro-F1 with using 80% data as training set. HGATE
is 4.59% higher than the best supervised learning algorithm
on Macro-F1 and 4.63% higher on Micro-F1 with using 80%
data as training set. HGATE outperforms HAN and GATE
is better than GAT, showing that the unsupervised learning
algorithm is better than the supervised learning methods in
inductive learning on ACM dataset.

From the middle of Table 4, HGATE outperforms all su-
pervised and unsupervised baselines except HAN on DBLP
dataset for inductive learning. For DBLP datasets, HGATE
achieves better performance than unsupervised baseline
methods. Compare unsupervised baseline methods, HGATE
achieves an improvement gain of 1.60% on Micro-F1 and
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TABLE 4
Experiment results (%) on the inductive node classification task. Available data types are the node features matrix X, adjacency matrix A, and

labels Y .

Datasets Training Metrics Feature GAE VGAE GATE HGATE GCN GAT HAN

ACM

20%
Macro-F1 89.02 78.95 78.15 88.96 90.82 82.68 87.42 87.17

Micro-F1 89.09 78.93 78.18 88.88 90.70 83.22 87.35 87.07

50%
Macro-F1 89.11 80.69 80.41 90.96 92.54 82.66 88.31 87.88

Micro-F1 89.16 80.70 80.37 90.95 92.47 83.34 88.30 87.84

80%
Macro-F1 90.38 81.46 80.29 91.44 93.00 82.04 90.01 88.41

Micro-F1 90.25 81.16 80.33 91.41 92.89 82.81 89.91 88.26

DBLP

20%
Macro-F1 78.04 89.58 90.02 89.14 91.26 91.33 91.57 93.51

Micro-F1 78.80 90.76 91.04 90.08 91.90 91.83 92.40 94.02

50%
Macro-F1 79.99 90.86 90.25 90.22 92.02 91.02 91.74 93.71

Micro-F1 80.63 91.57 91.03 91.13 92.56 91.52 92.47 94.14

80%
Macro-F1 79.92 91.28 91.28 90.99 93.08 91.27 91.03 94.56

Micro-F1 80.67 91.99 92.00 91.87 93.60 91.87 91.74 94.95

Sina Weibo

20%
Macro-F1 90.49 92.95 95.56 95.71 96.52 86.89 86.49 93.26

Micro-F1 90.55 93.42 95.65 95.69 96.49 87.92 88.24 93.54

50%
Macro-F1 93.31 94.97 96.69 96.11 97.04 91.43 91.24 95.36

Micro-F1 93.30 95.28 96.81 96.17 97.07 91.84 92.22 95.60

80%
Macro-F1 94.68 94.68 97.19 97.13 98.44 92.70 93.65 97.08

Micro-F1 94.74 94.90 97.29 97.13 98.41 92.82 94.26 97.13

TABLE 5
Experiment results on the transductive link prediction task. Available data types are the node features matrix X, adjacency matrix A.

Datasets Metrics Feature DeepWalk GAE VGAE ASNE GATE HGATE GCN GAT HAN

ACM
Macro-F1 70.86 52.04 98.43 99.73 98.70 95.79 96.82 89.08 93.31 97.40

Auc 79.22 56.84 99.89 99.98 99.83 98.88 98.63 96.28 96.82 99.86

DBLP
Macro-F1 92.46 52.69 97.16 97.02 97.01 98.72 99.43 85.59 94.88 92.43

Auc 97.31 53.37 99.12 99.12 99.53 99.88 99.98 93.31 98.05 96.09

Sina Weibo
Macro-F1 66.51 57.03 88.02 85.37 90.79 79.76 85.12 70.66 81.45 82.89

Auc 70.08 60.98 93.83 92.64 97.13 85.54 91.51 86.05 89.61 89.99

1.80% with using 80% data as the training set. And HGATE
performs better than supervised baseline methods except
HAN.

From the bottom of Table 4, HGATE performs better than
all supervised and unsupervised baselines on Sina Weibo
dataset. Compared with unsupervised baseline methods,
HGATE achieves an improvement gain of 1.25% on Macro-
F1 and 1.12% on Micro-F1 with using 80% data as training
set. Compared with supervised baseline methods, HGATE
achieves an improvement gain of 1.36% on Macro-F1 and
1.28% on Micro-F1 with using 80% data as training set.
For inductive learning, the performance of unsupervised
method is better than that of the supervised method on
Sina Weibo dataset, which proves the superiority of unsu-
pervised method for inductive learning.

Based on the above analysis, HGATE performs better
than the most stats-of-art unsupervised methods for node
classification. And HGATE outperforms or matches the
most state-of-art supervised methods in the node classi-
fication experiment. HGATE can efficiently generate node
embedding for unseen nodes.

5.4 Link prediction

In this subsection, we compare our HGATE with the afore-
mentioned baselines on transductive and inductive link pre-
diction by logistic regression. We compare different models
based on their ability to correctly classify each example
(node pair) into links and non-links. We create evaluation
examples from the links and an equal number of randomly
sampled pairs of unconnected nodes. We compute the fea-
ture representation for a pair of nodes, using the Hadamard
Operator[3] for all methods. The Hadamard operator com-
putes the element-wise product of two vectors and closely
mirrors inner product operation in learning node embed-
dings. We report the area under the ROC curve(AUC) and
F1 scores for each model on the test set. For the homoge-
neous graph embedding methods, we test all the meta-paths
and report the best performance in our results. We randomly
select 100000 edges in each graph, and then choose 80%
training-set proportions for training. Meanwhile, we use the
rest of the dataset as the validation set and the test set. We
report Macro-F1 and AUC in table 5 and Table 6 on the test
nodes.

For the transductive tasks, we set the learning rate to 5×
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TABLE 6
Experiment results on the inductive link prediction task. Available data types are the node features matrix X, adjacency matrix A

Datasets Metrics Feature GAE VGAE GATE HGATE GCN GAT HAN

ACM
Macro-F1 70.86 99.75 99.62 97.32 95.42 86.52 84.41 96.79

Auc 79.22 99.95 99.98 99.44 98.56 85.55 92.15 99.37

DBLP
Macro-F1 92.46 96.87 98.01 98.15 98.75 85.59 94.16 92.39

Auc 99.23 99.12 99.78 99.71 99.70 93.38 98.49 92.89

Sina Weibo
Macro-F1 66.51 78.33 78.61 80.67 84.67 68.07 81.25 82.95

Auc 70.08 88.17 87.69 87.98 91.12 81.75 89.42 88.84
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Fig. 2. The node classification results on transductive learning for variants of HGATE.
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Fig. 3. The node classification results on inductive learning for variants of HGATE.

10−2, 10−3 , 10−2 on ACM, DBLP and Sina Weibo datasets,
respectively. For the inductive tasks, we set the learning rate
to 10−3 on ACM, DBLP, and 5 × 10−2 Sina Weibo datasets,
respectively. For all datasets, we use two node-layers with
512-node representation dimensions and a single semantic
layer with 512-node representing dimensions. The model is
trained for 200 epochs with the λ equalt to 1.

For baseline methods, we optimize their parameters
using the validation set. For inductive learning, we use the
same subgraph with HGATE to train the baseline models.To
ensure the fairness of the experiments, we set the node
embedding dimension to 512 for all baseline methods.

Discussions Results for the link prediction task are
summarized in Table 5 and Table 6, the observations are
as follows:

1) The performance is weak for all datasets for deepwalk,

that is because deepwalk is based on random walk without
considering the feature. This demonstrates the usefulness of
attributes in predicting missing links. Note that the method
based on features has a good performance in DBLP datasets.

2) The performance of our model outperforms the GCN,
GAT cross all the datasets. And all the methods based on
auto-encoder outperform GCN, GAT, HAN. GCN, GAT and
HAN can fully leverage node label and the rich information
in attributes, this maybe damage the performance of link
prediction because two nodes maybe similar but there is no
chance to have a link between them in actual scene.

3) In transductive link prediction, our model outper-
forms other methods in DBLP datasets. And in inductive
link prediction, our model outperforms other methods in
DBLP and Weibo datasets. Compared to the GAE, VGAE
and GATE, we observe performance drop of our model
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Fig. 4. Parameter sensitivity of HGATE.

and HAN. The reason is GAE, VGAE, ASNE and GATE
learn different representation vectors for the same node in
different graphs in experiments. However, our model learns
the same vector for the same node in different meta-paths. In
addition, ASNE and GAE, VGAE model integrate negative
sample into the loss function, their models can weaken
the similarity of unconnected nodes node better than other
methods. The performance of our model in DBLP dataset
is better than the results in ACM and Sina Weibo datasets.
The reason is ACM and Weibo datasets contain less link
information. The link sparsity problem makes our model
cannot fully learn the graph structure.

5.5 Variant Experiment
We compare our architecture with its three variant based
on transductive and inductive learning. We use the node
classification task as representatives. Our model HGATE
contains three important components including semantic-
level attention, reconstruction of node attributes and re-
construction of edges of the heterogeneous graph features.
And we design the variant methods of HGATE by using
these three components. We compare the influences of the
three components on both ACM and DBLP datasets in
node classification task. The three variant method including
HGATEnodeatt, HGATEstr and HGATEfea.

• HGATEfea: a variant of HGATE which uses
semantic-level attention and reconstruction node at-
tributes.

• HGATEstr: a variant of HGATE which uses
semantic-level attention and reconstruction the edges
of the heterogeneous graph features.

• HGATEnodeatt: a variant of HGATE which recon-
struction node attributes and reconstruction the
edges of the heterogeneous graph features removing
the semantic-level encoder/decoder layers.

Figure 2 and Figure 3 show the transductive and in-
ductive results of HGATE’s variants respectively. HGATE
outperforms or matches its variants in all the datasets. This
approves that each component contributes to the overall
performance of our architecture.

For the transductive learning results in Figure 2,
HGATEnodeatt performs worse than or equal to other vari-
ants on ACM dataset, which approve that semantic-level
attention has a significant effect on the node embedding
results on ACM dataset. HGATEstr performs worse than
HGATEfea on ACM, which approve that graph structure is
more important than node attributes on node classification

for ACM dataset. The results of HGATEfea and HGATE
are extraordinary close on ACM dataset, indicating that
the contribution of node attributes to the node embeddings
result is strong on ACM dataset. On the contrary, HGATEfea

performs worse than other variants on DBLP dataset, which
approve that among the three components, node attributes
are the least important for node embedding results on
DBLP dataset. The results of HGATEstr and HGATE are
extraordinary close on DBLP dataset, indicating that the
contribution of graph structure to the node embeddings
result is strong on DBLP dataset. Similar to the results of
DBLP dataset, the performance of HGATEstr is better than
that of HGATEfea, which indicates that graph structure is
more important than node attributes on Weibo dataset. The
performance of HGATEnodeatt is close to that of HGATE,
which proves that three different meta-paths have similar
effects on the node embedding of Sina Weibo dataset.

For the inductive learning results in Figure 3,
HGATEnodeatt performs worse than other variants on ACM
dataset, which approve that semantic-level attention can
well learn the importance among different meta-paths on
ACM dataset. HGATEfea performs worse than HGATEstr

on ACM and DBLP datasets, which approve that graph
structure is more important than node attributes on node
classification for ACM dataset and DBLP datasets. The
results of HGATEstr and HGATE are extraordinary close
on ACM dataset, indicating that the contribution of node
attributes to the node embeddings result is weak on ACM
dataset. HGATEfea performs worse than other variants
on DBLP dataset, which approve that among the three
components, node attributes are the least important for
node embedding results on DBLP dataset. For Sina Weibo
dataset, HGATEfea performs worse than other variant mod-
els, which indicates that node attributes have less effect on
node embedding for inductive learning.

5.6 Parameters Experiments
We analyze the influence of model parameters on the ex-
perimental results of node classification on ACM dataset
for transductive learning. As shown in Figure 4, we choose
the appropriate parameters to achieve the satisfied node
classification performance.

Node embedding dimension. With the increase of node
embedding dimension, the performance of node classifica-
tion is improved. Higher node embedding dimension can
represent more comprehensive node attribute and structure
information. However, as the node embedding dimension
increases, the complexity of the algorithm is also increased.
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Fig. 5. Visualization embedding on ACM data.

In order to achieve the balance between the classification
results and the training time of the model, we set the node
dimension to 512.

Node-level encoder/decoder’s layer numbers. With the
increase the number of node-level encoder/decoder’s layer
, the performance of node classification first rises and then
falls. The suitable node-level encoder/decoder’s layer num-
bers can improve the learning ability of HGATE. However,
the layer numbers continue to increase, the effective transfer
of information in the model is hindered, which leads to
poor embedding effect. As shown in Figure 4, in order
to achieve better performance of node classification for
transductive learning, we set the layer number of the node
level encoder/decoder to 2.

Learning rate. Similarly, the performance of node classi-
fication first rises and then falls with the increase of learning
rate. HGATE needs an appropriate learning rate to minimize
model loss. We set the learning rate to 0.0001 to achieve
better performance of node classification for transductive
learning.

Epoch. With the increase of the training epoch, the per-
formance of node classification first increases significantly
and then changes slowly. With the increase of epoch, the
model continues to learn from the original data to obtain
a better node embedding representation. According to the
elbow method, when the training epoch is 200, HGATE
achieves better node classification performance.

Proportion parameter of the edges of the heteroge-
neous graph reconstruction loss. With the increase of the
proportion parameter of the edges of the heterogeneous
graph reconstruction loss, the performance of node classifi-
cation fluctuates slightly. HGATE model loss includes node
attribute feature loss and graph structure loss. By adjusting
the proportion parameter of the the edges of the heteroge-
neous graph reconstruction loss, we can adjust the influence
of graph structure on the result of node embedding, and
then affect the result of node classification. When the pro-
portion parameter of the the edges of the heterogeneous
graph reconstruction loss is 1, HGATE achieves better node
classification performance.

5.7 Visualization

In order to compare the node embedding results of different
models, we visualize the node embedding results on the
ACM dataset for inductive and transductive learning. In
order to realize visualization, we utilize t-SNE to project
the node embedding results into two-dimensional space. We
compare the node embedding results of HGATE with the
other five models, including HAN, GATE, GCN and GAT.
The visualization results are shown in Figure 5, and the color
of the node represents the category label of the node.

From Figure 5, the result of node embedding in trans-
ductive learning of all models is better than that of inductive
learning. Because transductive learning uses all data to learn
the embedded representation of nodes, which can fully learn
the relationship between nodes, while inductive learning
uses part of data for training, and the available informa-
tion is limited. The node embedding of HAN is better
than other models, because HAN is a supervised learning
method based on hierarchical attention mechanism, which
uses the node category label to get the node embedding
representation. The nodes embedding representation of our
model (HGATE) shows better visualization performance,
on account of HGATE is an unsupervised learning method
without using node labels, which optimizes the results by
minimizing the loss of node attributes and heterogeneous
graph structure. Similarly, GATE is an unsupervised learn-
ing method, its visualization results are similar to our model
HGATE. GCN and GAT are supervised homogeneous graph
methods, and their visualization results are similar.

6 CONCLUSION

In this work, we propose the heterogeneous graph auto-
encoders (HGATE) that is a novel unsupervised heteroge-
neous graph embedding method. HGATE uses the hierar-
chical attention mechanism to learn the importance of nodes
and meta-paths, which can capture complex structures and
rich semantic information on the heterogeneous graph.
HGATE not only reconstructs the the edges of the hetero-
geneous graph but also reconstructs the node attributes. It
efficiently generates node embedding for previously unseen
data, and thus can be applied to both transductive and
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inductive learning. We conduct comprehensive experiments
on real-world heterogeneous graphs datasets to validate our
models in node classification and link prediction task.

In future work, we will consider multi-types of nodes in
the heterogeneous graph for graph embedding representa-
tion.
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